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Performance of Generalized Selection Combining
for Mobile Radio Communications With Mixed

Cochannel Interferers
Chi Ming Lo and Wong Hing Lam, Senior Member, IEEE

Abstract—The performance of generalized selection combining
(GSC) space diversity for mobile radio systems in the presence of
multiple cochannel interferers is studied. Two cochannel interfer-
ence models are considered: 1) cochannel interferers consisting
of - Nakagami- interferers and Rayleigh interferers and
2) cochannel interferers in which each interferer follows Nak-
agami- distribution for a fraction of time and Rayleigh distribu-
tion for the remaining of time. The fading parameters of the Nak-
agami- interferers are limited to integer values only. The desired
signal is assumed to be Rayleigh faded. Also, all the desired signals
and the cochannel interferers received on each branch are inde-
pendent of each other. Closed-form expressions are derived for the
probability density functions (pdfs) of the instantaneous signal-to-
interference power ratio (SIR) at the output of the GSC for the two
cochannel interference models. Using these SIR pdfs, closed-form
expression for evaluating the outage probability and the average
bit error probability (BEP) are subsequently derived. A differential
phase-shift keying scheme is considered in the derivation. Numer-
ical results showing the influences of various system parameters on
the outage probability and the average BEP are then presented.

Index Terms—Cochannel interference, generalized selection
combining (GSC), Nakagami- fading, Rayleigh fading.

I. INTRODUCTION

I N MOBILE radio communications, the presence of multi-
path fading deteriorates system performance and cochannel

interference limits system capacity. Space diversity combining,
which combines multiple replicas of received signals, has long
been recognized as an effective compensation technique for
combating multipath fading and cochannel interference [1],
[2]. Two methods to combine these multipath components
are maximal ratio combining (MRC) and selection combining
(SC). MRC is known as the optimal combining technique at the
expense of implementation complexity. SC is considered as the
simplest method, but it achieves much lower diversity gain than
MRC. Recently, Konget al. (see, e.g., [3] and [4]) published a
number of papers bridging the gap between these two extremes
(MRC and SC) by introducing generalized selection combining
(GSC), which optimally combines the largest signal(s) out
of available diversity branch signals.

Previous works have studied the outage probability and the
average BEP of GSC diversity systems over various fading
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channels. Enget al. [4] derived a closed-form expression for
the average BEP of coherent and differential binary phase-shift
keying (BPSK/DPSK) for GSC over Rayleigh fading channels
for and and arbitrary . Alouini and Simon [5]
studied the outage and the average error probabilities of-ary
PSK (MPSK) and -ary quadrature amplitude modulation
(MQAM) for GSC over Rayleigh fading channels. In [6], they
presented an average BEP analysis of coherent binary modula-
tions for GSC over Nakagami- fading channels for
and and . In [7], they then extended the average BEP
analysis to include MPSK and MQAM for arbitrary and

. Ma and Chai [8] presented an error probability analysis for
GSC over Nakagami- fading channels for various coherent
and noncoherent modulation schemes and nonindependent
identically distributed (i.i.d.) branch fading statistics. To the
best of the authors’ knowledge, no performance analysis of
GSC diversity systems over fading channels with cochannel
interference has been reported in literature.

Cochannel interferers are usually assumed to follow a single
fading distribution in the literature. However, since cochannel
interferers are traveling in very different paths, they are most
probably experiencing different kinds of fading distributions. In
addition, a single interferer may follow different fading distri-
butions at different points in time due to the rapidly changing
nature of mobile radio environment. It is therefore of interest
to investigate the performance of GSC diversity systems under
these two situations.

In this paper, we thus derive closed-form expressions to
evaluate the performance of GSC diversity systems over fading
channels with multiple cochannel interferers. Two cochannel
interference models are considered: 1)cochannel interferers
consisting of - Nakagami- interferers and Rayleigh in-
terferers and 2) cochannel interferers in which each interferer
follows Nakagami- distribution for a fraction of time and
Rayleigh distribution for the remaining of time. The desired
signal is assumed to be Rayleigh faded. With the assumption
of an interference-limited environment, the probability density
functions (pdfs) of the instantaneous signal-to-interference
power ratio (SIR) at the GSC output are then derived for both
cochannel interference models. Using these new SIR pdfs,
the outage probability and the average BEP are subsequently
derived. Note that DPSK scheme is assumed.

The outline of this paper is as follows. The system model
is described in Section II. In Section III, we will briefly de-
scribe the two cochannel interference models. The performance
of GSC diversity systems over fading channels is then derived in
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Fig. 1. Block diagram of a generalized selection combiner.

Section IV for the two cochannel interference models. Numer-
ical results are shown in Section V and conclusions are summa-
rized in Section VI.

II. SYSTEM MODEL

In a cellular radio environment, there is usually a number of
cochannel interferers from different cells at the receiver. Typi-
cally, the same cochannel interferers are present on each diver-
sity branch [14], [15]. In this paper, a GSC diversity combiner is
considered and its block diagram is shown in Fig. 1. As can be
seen in Fig. 1, a GSC combiner consists of a special SC (SSC)
combiner and a conventional MRC combiner. Considering the
MRC portion in Fig. 1, we know from [6] that the instantaneous
SIR at the MRC output (or the GSC output)can be shown to
be given by

(1)

where is the instantaneous SIR at theth SSC output branch.
Note that we assume . Therefore, can
also be written as

(2)

where is the th largest element in the vector and

Note that and are, respectively, the instantaneous SIR
and the instantaneous desired signal power on theth diversity
branch at the SSC combiner input. Since the same cochannel in-
terferers are present on each diversity branch, we assume that
is the instantaneous power of the resultant cochannel interferer

per diversity branch. Hence, the instantaneous SIR at the GSC
output can be written as

(3)

where is the instantaneous desired signal power at the GSC
output.

III. COCHANNEL INTERFERENCEMODELS

In consideration of a mobile radio system, where each
cochannel interferer is either modeled by Nakagami-or
Rayleigh distribution, the pdf of the instantaneous interference
power of the th interferer is given by [2], [9]

for Nakagami- cochannel interferer (4)

or

for Rayleigh cochannel interferer (5)

where is the th interferer’s fading severity parameter,is
the averageth interferer’s power, and denotes the gamma
function [10]. The corresponding characteristic functions (CFs)
for the Nakagami- and Rayleigh cochannel interferers are, re-
spectively, given by [11]

(6)

(7)

Using these CFs, we are able to derive the pdfs of the total inter-
ference power of multiple cochannel interferers for the two
cochannel interference models.



116 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 51, NO. 1, JANUARY 2002

Fig. 2. Outage probability against average signal-to-average total interference power ratio� for cochannel interference model 1 and different values ofD and
N .

A. Cochannel Interference Model 1

In this cochannel interference model, we consider the case of
cochannel interferers consisting of- Nakagami- inter-

ferers and Rayleigh interferers. It is shown in the Appendix
that, for integer Nakagami fading parameter, the pdf of
for cochannel interference model 1 can be written as

(8)

where and

(9)

Note that for and all are assumed
to be different.

B. Cochannel Interference Model 2

For cochannel interference model 2, we consider the case of
independent cochannel interferers in which each interferer

exhibits both Nakagami- pdf and Rayleigh pdf
alternatively. Here, we define a fading time-share

factor . For a fraction of time , the interferer
is Nakagami- faded. For the remaining fraction of the time
1 , the interferer is Rayleigh faded. The net pdf of the
power of the th interferer is thus the weighted sum of the
Nakagami- and Rayleigh pdfs as

(10)

With the assumptions of 1) identical average powerand
fading parameter for all Nakagami- interferers, 2)
identical average power for all Rayleigh interferers, and 3)
identical fading time share factor for each of the cochannel
interferers, the resulting CF of the sum of the powers of the
cochannel interferers can then be shown to be given by

(11)

After performing inverse Laplace transform on (11) and as-
suming integer values for , the pdf of for cochannel in-
terference model 2 can be obtained as

(12)

where

(13)
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Fig. 3. Average BEP of DPSK against average signal-to-average total interference power ratio� for cochannel interference model 1 and different values ofD

andN .

IV. DERIVATIONS OF THEOUTAGE PROBABILITY AND AVERAGE

BEP

Assuming that the desired signal is modeled by Rayleigh dis-
tribution, the pdf of the instantaneous desired signal poweris
given by [2]

(14)

where is the average desired signal power. The pdf of the
instantaneous desired signal powerof the combined signal at
the output of the GSC can be deduced from [5] as

(15)

Note that the desired signals received on each branch are as-
sumed to have the same.

A. Outage Probability and Average BEP of GSC With
Cochannel Interference Model 1

Since is the instantaneous SIR at the output of the
GSC, the pdf of can be derived using

(16)

Substituting (8) and (15) into (16) and using the following
Laplace transform pair [12]:

(17)

the pdf of for the case of cochannel interference model 1 can
be derived into closed form as

(18)

Having derived the pdf of in (18), a closed-form expression
for evaluating the outage probability and the average BEP is then
derived as follows.

The outage probability is the probability of an interference
power’s exceeding the desired signal power divided by a power
protection ratio , and it can be evaluated using [11]

(19)
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Substituting (18) into (19) and using the following relation:

(20)

the outage probability can then be simplified into a closed-form
expression as shown in (21) at the bottom of the page, where

is the Gauss hypergeometric function [10].
For the derivation of the average BEP, the conditional BEP of

a particular modulation scheme is required. In the application of
DPSK signaling, the conditional BEP for a given SIRis given
by [13]

(22)

The average BEP can then be evaluated by averaging the
conditional BEP over pdf of as

(23)

Substituting (18) and (22) into (23), the can be derived into
closed form as shown in (24) at the bottom of the page, where

is the incomplete gamma function [10]. Note that the fol-
lowing derivation procedure has been used in the derivation of
(24).

Let

(25)

Using variable transformation as can be
rewritten as

(26)

Using binomial expansion on the first term of the integrand in
(26) and assuming integer values for can then be manipu-
lated into closed form as

(21)

(24)
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Fig. 4. Outage probability against average signal-to-average total interference power ratio� for cochannel interference model 2 and different values ofD and
F .

(27)

B. Outage Probability and Average BEP of GSC With
Cochannel Interference Model 2

For the interference model 2, the derivation procedure for the
case of cochannel interference model 1 can also be applied. Sub-
stituting (12) and (15) into (16) and using the Laplace transform
pair in (17), the pdf of for the case of cochannel interference
model 2 after some manipulations lead to

(28)

Using the relation in (20) and substituting (28) into (19), the
outage probability for the case of cochannel interference model
2 can be obtained. In addition, by substituting (22) and (28)
into (23), and after further manipulations, the average BEP for
the case of cochannel interference model 2 can also be derived
straightforwardly. Details of the derivations are omitted for the
sake of brevity.

V. NUMERICAL RESULTS

In this section, numerical results are presented on the outage
and the average bit error probabilities of GSC diversity sys-
tems for the two cochannel interference models. The power pro-
tection ratio, the number of available diversity signals, and the
number of cochannel interferers are equal to dB, ,
and , respectively.

Fig. 2 shows the outage probability versus the average
desired signal to average total interference power ratio

for cochannel interference model
1 and different values of and . Fig. 3 provides the
average BEP of DPSK as a function of for cochannel
interference model 1 and different values of and .
Note that and

are assumed in Figs. 2 and
3. One can see that a desired outage probability or average BEP
can be achieved at smaller for decreasing or increasing

. Note also that GSC becomes MRC and SC when
and , respectively.

In Fig. 4, the outage probability is depicted in relation to the
average desired signal to average total interference power ratio

defined as for interference
model 2 and different values of and . In Fig. 5, the average
BEP of DPSK is plotted against for different values of
and . We assume in Figs. 4 and 5 that and

. It can be seen that the outage probability or the average
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Fig. 5. Average BEP of DPSK against average signal-to-average total interference power ratio� for cochannel interference model 2 and different values ofD

andF .

BEP decreases with increasing and . From all the above
figures, we know that in the presence of multiple cochannel in-
terference, GSC can also achieve much better performance than
SC, and similar performance as MRC.

VI. CONCLUSION

In this paper, we studied GSC for mobile radio systems in the
presence of Rayleigh desired signal and two cochannel interfer-
ence models. The desired signals and the cochannel interferers
received on each branch are assumed to be independent. The
pdfs of the instantaneous SIR at the output of GSC have been
derived for the two cochannel interference models. Using these
new SIR pdfs, closed-form expressions for the outage proba-
bility and the average BEP, which provide a convenient tool for
performance analysis, were then derived. The effects of various
system parameters on the outage probability and the average
BEP were also presented.

APPENDIX

DERIVATION OF THEDENSITY FUNCTION OF FORCOCHANNEL

INTERFERENCEMODEL 1

In this Appendix, we show that the pdf of the resultant
cochannel interfering power is given by (8) for cochannel
interference model 1. Assuming the presence ofindependent
cochannel interferers’ being either Nakagami-and Rayleigh
faded, the power of the resultant interfering signalscan be
written as

(A1)

where and
are the sums of the powers of the- Nakagami- interferers
and the Rayleigh interferers, respectively. Note again that

is the power of theth interferer. From (A1),

it can be deduced that the CF of can be given in terms
of and as

(A2)

where . Note that for
(i.e., Rayleigh fading). In addition, all are

assumed to be different. Taking the inverse Laplace transform
of (A2) as in ([11, Appendix]), one obtains (8).
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