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Subharmonics and Chaos in Switched Reluctance
Motor Drives

J. H. Chen, K. T. Chau, Member, IEEE, C. C. Chan, Fellow, IEEE, and Quan Jiang

Abstract—In this paper, the investigation of the nonlinear
dynamics of an adjustable-speed switched reluctance motor
(SRM) drive with voltage pulse width modulation (PWM) reg-
ulation is carried out. Nonlinear iterative mappings based on
both nonlinear and approximately linear flux linkage models
are derived, hence the corresponding subharmonic and chaotic
behaviors are analyzed. Although both flux linkage models can
produce similar results, the nonlinear one offers the merit of
accuracy but with the sacrifice of computational time. Moreover,
the bifurcation diagrams show that the system generally exhibits
a period-doubling route to chaos.

Index Terms—Chaos, motor drives, subharmonics, switched re-
luctance motors.

I. INTRODUCTION

I N RECENT years, the switched reluctance motor (SRM)
drive has been recognized to have promising industrial appli-

cations. Its simplicity in both motor construction and power con-
verter requirement offers the prospect of a low-cost high-perfor-
mance brushless motor drive [1], [2]. So far, SRM research has
been focused on motor design, converter topology and control
strategy. To the best of the authors’ knowledge, the investiga-
tion onto the nonlinear system dynamics, namely subharmonic
and chaotic behaviors, in SRM drives is absent in literature. The
major reason should be due to the complexity of analytical for-
mulation and high nonlinearities of SRM drive systems.

Chaos is a common phenomenon in power converters when
they operate under feedback control [3], [4]. Subharmonics and
chaos in switched mode power supplies have been actively in-
vestigated for a number of years. Chaos in induction and brush-
less dc motor drives have also been discussed [5], [6]. Very re-
cently, the nonlinear dynamics and chaotic behavior of indus-
trial dc motor drives have been detailedly investigated, by both
numerical simulation and analytical modeling [7], [8].

It is the purpose of this paper to investigate the nonlinear dy-
namics of an adjustable-speed SRM drive with voltage PWM
regulation. Firstly, nonlinear iterative mappings based on both
nonlinear and approximately linear flux linkage models will be
derived. Then, the corresponding dynamic analysis based on a
practical SRM drive system will be carried out to study the sub-
harmonic and chaotic behaviors.
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Fig. 1. Schematic diagram of SRM drive system.

II. SYSTEM MODELING

As shown in Fig. 1, an adjustable-speed SRM drive system
is used for exemplification, where speed control is achieved
through PWM control of motor phase voltages.

The SRM commutation strategy uses rotor position feedback
to select the commutating parameters such as turn-on angle
and turn-off angle , of each phase winding of the SRM for
those lower-leg power switches (, and ). For the sake
of synchronizing the voltage PWM regulation with the phase
commutation, the PWM carrier signal ramp voltage, in each
phase winding is a function of the instantaneous rotor displace-
ment

(1)

where and are the lower and upper bounds of the ramp
voltage, is its period, and is an integer.

As the op-amplifier OA has a feedback gain, the speed con-
trol signal can be expressed as

(2)

where and are the instantaneous and reference speed
of the SRM. Then both and are fed into the comparator CM
which outputs the signal to turn on or off those upper-leg power
switches ( , and ), depending on the phase commuta-
tion. Obviously, the interval of voltage PWM regulation of each
phase winding is governed by the phase commutation. When the
control voltage exceeds the ramp voltage, the upper-leg switch
being the same phase of the turn-on lower-leg switch is off; oth-
erwise it is on. The other phase switches remain off.

0885–8969/02$17.00 © 2002 IEEE
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Ignoring the mutual inductances among phase windings, the
system equation based on the nonlinear flux linkage model is
given by

(3)

where , , are the th phase voltage, current, and
flux linkage, respectively, coenergy of all

phases, phase resistance, phase inductance, viscous
damping, load inertia, and load torque.

The phase voltage depends on the states of its upper-leg
and lower-leg power switches. If both of them are turned on,

where is the dc link voltage; otherwise,
which is caused by two freewheeling diodes. If only one of them
is turned on, which is caused by one of freewheeling
diodes.

The phase current is always unipolar for the converter
topology shown in Fig. 1. Moreover, the initial value of the cur-
rent of each phase winding will be zero when , since the

phase windings are conducted in turn.
The phase flux linkage is found by measurement or

field analysis, which is a function of bothand . Because of
high nonlinearity, it is generally expressed by an interpolation
function of and . Hence, the corresponding interpolation of

and

can also be obtained.
Due to the switching operation, the system equation given by

(3) is in fact a time-varying nonlinear state equation. By defining
the state vector as

(4)

the solution of (3) in the continuous-time domain can be written
as

(5)

III. D ERIVATION OF POINCARÉ MAP

On the investigation of subharmonic and chaotic behaviors
in the drive system, the most attractive approach has been the
nonlinear iterative mapping, so-called Poincaré map [4], [9].

Since SRM phase windings are conducted in turn, the sum of
all phase currents is selected as a new state
variable. The new state vector becomes

(6)

which will be used to describe the dynamics of the drive system.
As its commutation strategy and voltage PWM regulation are

based on the rotor displacement, the steady-state solution can
be a periodic orbit with respect to. Practically, it is impos-
sible to find any periodic orbit in the conduction interval of each
phase winding because its flux linkage also depends on. Thus,
the minimum period is at least the phase-shift angle. A plane
is defined as

(7)

The trajectory of under observation repeatedly passes
through the when increases monotonically. The sequence
of crossing defines a map

(8)

where .
The Poincaré map (8) is a two-dimensional (2-D) mapping,

but it is based on the solution (5) of the -dimensional
nonautonomous equation (3). In order to avoid the calculation
of the plane crossing, the rotor displacementrather than time

is selected as the independent variable of the system. The next
crossing of the plane can be directly calcu-
lated by integrating from to . To make

an independent variable, the last equations of (3) is di-
vided by its first equation and then the first equation is inverted

(9)
The corresponding and can be obtained from (1) and (2)
as

(10)

(11)

Actually, only two adjacent phase windings have currents at the
same time when . For the sake of clarity and simplicity,

phase windings conducted in turn can be represented by only
two phase windings activated alternatively. Moreover, since the
first equation of (9) does not need to be calculated, (9) can be
reduced as

(12)

Equation (12) can be rewritten as

(13)
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Therefore, the Poincaré map (8) based on (13) is given by

(14)

The Poincaré map (14) is termed a nonlinear model map which
corresponds to a three-dimensional (3-D) differential equation
(13) including the nonlinearity of the flux linkage. Obviously,
the necessary computational time in numerical simulation is
lengthy.

When the drive system operates in light-load and low-peed
conditions, an approximately linear flux linkage model can be
adopted, which is expressed as . is given by

(15)

where the intervals of and represent the un-
aligned and the aligned cases, respectively,is the number of
rotor poles, and . For each phase
winding, selecting , , and equal to the
phase-shift angle , the electromagnetic torque in the conduc-
tion interval is always . Assuming that gradu-
ally becomes zero within the period of , there is no electro-
magnetic torque produced by this phase winding in this period.
Thus, in this period can be ignored since the initial value of
the successive phase current must be zero. It follows that only
the current of the activated phase winding will be calculated at
any instance. In this case, the sum of allphase currents is
discontinuous in the instance of the phase commutation. Thus,
(9) is deduced as

(16)

Equation (16) can be rewritten as

(17)

Therefore, the Poincaré map (8) based on (17) is given by

(18)

This Poincaré map is termed a linear model map which corre-
sponds to a 2-D differential equation (16) based on the approx-
imately linear flux linkage model.

It is important to note that the linear model map (18) facil-
itates to investigate the nonlinear dynamics mainly caused by
the switching nonlinearity. Since (16) can be expressed as ana-
lytical formulae, it not only takes minimum computational time
in numerical simulation, but is also apt to carry out preliminary
analysis of nonlinear characteristics.

IV. A NALYSIS AND RESULTS

Based on the derived mapping, the dynamic analysis of a
practical SRM drive system, in which the SRM is designed for

Fig. 2. Nonlinear torque characteristics.

Fig. 3. Period-1 orbit. (a) Waveforms of control and ramp voltages. (b)
Waveform of sum of all phase currents. (c) Trajectory of sum of all phase
currents versus rotor speed.

the P-star electric vehicle [2], is carried out to study its subhar-
monic and chaotic behaviors.

For the sake of simplicity and clarity, two ramp voltages
are adopted within the voltage PWM regulation of each phase
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Fig. 4. Period-2 orbit. (a) Waveforms of control and ramp voltages. (b)
Waveform of sum of all phase currents. (c) Trajectory of sum of all phase
currents versus rotor speed.

winding. Hence, the component and parameter values of the
SRM drive system are as follows:

• Controller: , , V, V,
V/rads , V, rad/s;

• SRM: , , , , ,
, , mH,

mH/rad, Nm, Nm/rads ,
kgm (including the inertia of the mechanical load); the
nonlinear torque characteristics is shown in Fig. 2.

One way to locate a subharmonic or chaotic orbit is to in-
tegrate the system equation until the steady state is achieved.
This way is called a brute-force algorithm [9]. Assuming that
the Poincaré map (8) reaches the steady-state orbit for the given
initial values after iteration, the -point subharmonic or
chaotic orbit is calculated by

(19)

Fig. 5. Chaotic orbit. (a) Waveforms of control and ramp voltages. (b)
Waveform of sum of all phase currents. (c) Trajectory of sum of all phase
currents versus rotor speed.

The nonlinear characteristics of the SRM drive system will be
investigated by employing this algorithm to compute the non-
linear model map (14).

A. Subharmonics

Since the currentis governed by the phase commutation, the
steady-state periodic solution of the SRM drive system can be a
period-1 orbit or a period- orbit with
so-called subharmonics, which are described as

(20)

(21)

For the above system parameter conditions, the steady-state
solution is a period-1 orbit. The oscillation frequency ofis
about Hz. The corresponding waveforms of,

and as well as the trajectory ofversus are shown in Fig. 3.
It shows that the waveforms of different phase currents have the
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(a)

(b)

Fig. 6. Bifurcation diagrams. (a) Rotor speed versus feedback gain. (b) Sum
of all phase currents versus feedback gain.

same pattern. Due to , the current of each phase winding
has two peaks and hence the trajectory looks like a classical
period-2 orbit.

Similarly, the corresponding waveforms and trajectory of the
period-2 orbit for V/rads is shown in Fig. 4. Due to the
high nonlinearity of the flux linkage, the inductance within the
first ramp voltage is less than that within the second ramp. When
the conduction interval within the first ramp is rather long, the
current will be high enough to induce a cycle skipping phenom-
enon (bypassing the second ramp) as shown in Fig. 4(a). Then,
the conduction interval within the first ramp of the next phase
winding will be much shorter than the former. Hence, different
from the period-1 orbit, the currents of two adjacent phase wind-
ings have dissimilar patterns. Moreover, the former has the mag-
nitude much greater than that of the latter. It should be noted that
the maximum value of phase currents increases from 27 A of the
period-1 orbit to 40 A of the period-2 orbit.

B. Chaotic Behaviors

Chaotic waveforms of , and as well as the trajectory of
versus are shown in Fig. 5. It shows that the chaotic orbit

is virtually an aperiodic bounded steady-state trajectory. From
the chaotic trajectory shown in Fig. 5(c), it can be found that it
mainly consists of two kinds of patterns. One kind is unimodal
curves while the other kind is bicorn curves. A special case of
only one set of unimodal and bicorn curves is actually the pe-
riod-2 trajectory shown in Fig. 4(c). Physically, the unimodal

Fig. 7. Bifurcation diagram of rotor speed versus feedback gain at 50 rad/s.

Fig. 8. Bifurcation diagram of rotor speed versus feedback gain at 100 rad/s.

curve involves high current operation in such a way that the drive
system tends to greatly accelerate the rotor speed within the in-
terval of current rise, and then it will decelerate the rotor speed
within the interval of cycle skipping.

Moreover, the chaotic trajectory illustrates that the trajectory
with the bicorn pattern stands for stable operation while that
with the unimodal pattern stands for unstable operation. There-
fore, if the system trajectory can be attracted into one set of the
bicorn curve, it will be a period-1 orbit as shown in Fig. 3(c);
if the trajectory can be represented as one set of unimodal and
bicorn curves, it will be a period-2 orbit as shown in Fig. 4(c);
if the trajectory involves infinite sets of unimodal and bicorn
curves, it will be a chaotic orbit as shown in Fig. 5(c). Actually,
the existence of unimodal curves can be considered as a neces-
sary condition of the occurrence of subharmonics and chaos.

C. Bifurcation Diagrams

For a chaotic system, it is interested in identifying how to
route to chaos with respect to the variation in system parameters.
As a parameter is varied, a bifurcation is an abrupt change in
the steady-state behavior of the system. A plot of the steady-
state orbit against a bifurcation parameter is termed a bifurcation
diagram. Thus the resulting bifurcation diagrams facilitate the
appraisal of the steady-state system behavior at a glance.

Based on the nonlinear flux linkage model map, the bifur-
cation diagrams of and versus for rad/s are
shown in Fig. 6. When selecting rad/s, the bifurca-
tion diagram of versus is shown in Fig. 7. All these bifur-
cation diagrams illustrate that the system exhibits a period-dou-
bling route to chaos. Comparing Figs. 6(a) and 7, it can be found
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that they are very different. Also, the corresponding value of
for rad/s bifurcating into chaotic operation is much
less than that for rad/s. In general, the case of higher

and/or lower is prone to exhibit subharmonic and chaotic be-
haviors.

Based on the linear flux linkage model map, the bifurcation
diagram of versus is shown in Fig. 8. Comparing Figs. 6(a)
and 8, it can be found that they have similar pattern. How-
ever, the bifurcation diagram based on the nonlinear model map
provides more accurate bifurcation points of subharmonics and
chaos, even though the linear model map can offer faster com-
putational speed.

V. CONCLUSION

In this paper, the nonlinear dynamics of SRM drives with the
emphasis of subharmonics and chaos are firstly investigated.
Poincaré maps (including both nonlinear and approximately
linear flux linkage models) of a practical SRM drive system
with voltage PWM regulation have been derived. Based on
the derived maps, the characteristics of system subharmonics,
chaos and bifurcation diagrams are discussed. It reveals that
the system exhibits a period-doubling route to chaos. Although
the investigation has been focused on a typical SRM drive,
the proposed approach and derived equations can readily be
applied or extended to other SRM drives.

REFERENCES

[1] P. J. Lawrenson, “A brief status review of switched reluctance drives,”
EPE J., vol. 2, no. 3, pp. 133–144, 1992.

[2] C. C. Chan, Y. Zhan, Q. Jiang, and K. T. Chau, “A high performance
switched reluctance motor drive for P-star EV project,” inProc. Int.
Elect. Vehicle Symp., 1996, pp. 78–83.

[3] J. R. Wood, “Chaos: A real phenomenon in power electronics,” inProc.
IEEE Appl. Power Electron. Conf., 1989, pp. 115–123.

[4] D. C. Hamill, J. H. B. Deane, and D. J. Jefferies, “Modeling of chaotic
dc–dc converters by iterated nonlinear mappings,”IEEE Trans. Power
Electron., vol. 7, no. 1, pp. 25–36, 1992.

[5] I. Nagy, L. Matakas, Jr., and E. Masada, “Application of the theory of
chaos in PWM technique of induction motors,” inProc. Int. Power Elec-
tron. Conf., 1995, pp. 58–63.

[6] N. Hemati, “Strange attractors in brushless DC motors,”IEEE Trans.
Circuits Syst. I, vol. 41, pp. 40–45, Jan. 1994.

[7] K. T. Chau, J. H. Chen, C. C. Chan, J. K. H. Pong, and D. T. W. Chan,
“Chaotic behavior in a simple dc drive,” inProc. IEEE Conf. Power
Electron. Drive Syst., 1997, pp. 473–479.

[8] K. T. Chau, J. H. Chen, and C. C. Chan, “Dynamic bifurcation in dc
drives,” in Proc. IEEE Power Electron. Specialists Conf., 1997, pp.
1330–1336.

[9] T. S. Parker and L. O. Chua,Practical Numerical Algorithms for Chaotic
Systems. New York: Springer-Verlag, 1989.

J. H. Chen was born in Guangdong, China, in 1961. He received the B.Sc.
(Eng.) and M.Sc. (Eng.) degrees in electrical engineering from Tsinghua Uni-
versity, Beijing, China, in 1982 and 1987, respectively. He is currently pursuing
the Ph.D. degree at the University of Hong Kong.

Prior to entering the Ph.D. program, he was an Associate Professor with the
Department of Electrical Engineering, Tsinghua University. His areas of in-
terests include electrical machine and drive design, modeling, simulation, and
power electronics. He has published several papers in this area.

K. T. Chau (M’89) received the first-class honors B.Sc. (Eng.), M.Phil., and
Ph.D. degrees in electrical and electronic engineering from the University of
Hong Kong.

Currently, he works as Associate Professor at the University of Hong
Kong. His teaching and research interests focus on three main areas—power
converters, machines and drives, and electric vehicles. In these areas, he has
published over 100 refereed technical papers and some industrial reports.
He has also served as chair and organizing committee member for many
international conferences.

C. C. Chan(M’77–SM’77–F’92) received the B.Sc. degree from China Univer-
sity of Mining and Technology, Beijing, China, the M.Sc. degree from Tsinghua
University, Beijing, China, and the Ph.D. degree from the University of Hong
Kong, in 1953, 1957, and 1981, respectively.

He began his professional electrical engineering career in 1959. He worked
for 11 years in industry and 26 years in academic institutions. He is now the
Head of the Department of Electrical and Electronic Engineering, the Honda
Chair Professor of Engineering, and the Director of the International Research
Centre for Electric Vehicles, all at The University of Hong Kong, Hong Kong,
China.

Dr. Chan was awarded the Honorary D.Sc. Degree from the University of
Odessa in 1992 for his contributions to the advancement of electric drives and
electric vehicles. He is also a Fellow of IEE, HKIE, and the Royal Academy
of Engineering. He is very active in professional society activities. He is the
Senior Vice President of the Hong Kong Institution of Engineers and holds over
20 posts in international committees. He also serves as Consultant to several
organizations in Hong Kong and the U.S.

Quan Jiang received the B.Eng. degree in electrical engineering from Hefei
Polytechnic University, Hefei, China, and the M.Eng. and Ph.D. degrees in elec-
trical engineering from Southeast University, Nanjing, China, in 1983, 1986, and
1991, respectively.

From 1991 to the present, he has worked as a Lecturer and Associate Pro-
fessor in the Department of Electrical Engineering, Southeast University. From
1994 to the present, he has worked as a Postdoctoral Fellow and a Research
Associate at the University of Hong Kong. His main research interests are in
design and control of electric machines and their controllers, power electronics
and finite element analysis. He has published more than 20 technical papers.


