
Title Parallelization methodology for video coding - an
implementation on the TMS320C80

Author(s) Leung, KK; Yung, NHC; Cheung, PYS

Citation Ieee Transactions On Circuits And Systems For Video
Technology, 2000, v. 10 n. 8, p. 1413-1425

Issued Date 2000

URL http://hdl.handle.net/10722/42876

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37882185?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000 1413

Parallelization Methodology for Video Coding—
An Implementation on the TMS320C80

Kwong-Keung Leung, Student Member, IEEE, Nelson H. C. Yung, Senior Member, IEEE, and
Paul Y. S. Cheung, Senior Member, IEEE

Abstract—This paper presents a parallelization methodology for
video coding based on the philosophy of hiding as much commu-
nications by computation as possible. It models the task/data size,
processor cache capacity, and communication contention, through
a systematic decomposition and scheduling approach. With the aid
of Petri-nets and task graphs for representation and analysis, it em-
ploys a triple buffering scheme to enable the functions of frame
capture, management, and coding to be performed in parallel. The
theoretical speedup analysis indicates that this method offers ex-
cellent communication hiding, resulting in system efficiency well
above 90%. To prove its practicality, a H.261 video encoder has
been implemented on a TMS320C80 system using the method. Its
performance was measured, from which the speedup and efficiency
figures were calculated. The only difference detected between the
theoretical and measured data is the program control overhead
that has not been accounted for in the theoretical model. Even with
this, the measured speedup of the H.261 is 3.67 and 3.76 on four
parallel processors (PPs) for QCIF and352 240 video, respec-
tively, which correspond to frame rate of 30.7 and 9.25 frames per
second, and system efficiency of 91.8% and 94%, respectively. This
method is particularly efficient for platforms with small number of
parallel processors.

Index Terms—Efficiency, H.261, H.263, parallel coding,
petri-net, speedup.

I. INTRODUCTION

I N THE PAST decade, the proliferation of video and audio
applications has been substantial and widespread, to say the

least. Technologies such as DVD, VCD, VoD, digital TV, and
video phone, among others, are gradually emerging as consumer
products or services, offering multimedia communications, in-
formation access and entertainment. A vital link in the suc-
cess of these applications lies in how the video information is
being communicated. To ensure such success, the International
Telecommunication Union (ITU) introduced the H.261 recom-
mendation in 1990, which is designed to standardize the video
codec for audiovisual services at kbits [1]. Three years
later, the MPEG-1 coding standard for moving pictures to be
stored on digital storage media was announced by the Interna-
tional Organization for Standardization (ISO) [2]. In 1995, built
upon the earlier H.261, the H.263 standard was recommended

Manuscript received October 6, 1998; revised March 16, 2000. This paper
was supported by the Texas Instrument Tsukuba Research and Development
Center, Japan, by the University Grants Committee, Area of Excellence in In-
formation Technology, Hong Kong, under Grant AOE98/99.EG01, and by the
Centre of Urban Planning and Environmental Management, the University of
Hong Kong. This paper was recommended by Associate Editor N. Ranganathan.

The authors are with the Department of Electrical and Electronic Engineering,
the University of Hong Kong, Pokfulam Road, Hong Kong SAR, China (e-mail:
kkleung@eee.hku.hk; nyung@eee.hku.hk; cheung@eee.hku.hk).

Publisher Item Identifier S 1051-8215(00)10627-5.

by ITU to deal with video coding for low bitrate communica-
tion [3], and the MPEG-2 standard for generic coding of moving
pictures and audio was also introduced by ISO in the same year
[4]. In 1997, the ISO announced the MPEG-4 for integrating the
production, distribution and content access paradigms of digital
TV, interactive graphic applications, and World Wide Web [5],
and the MPEG-7 for standardizing descriptions of various types
of multimedia information to allow fast and efficient searching
of such information [6].

Apart from these standards, there are also other video-coding
methods [7]–[9] that offer a high compression rate at accept-
able visual quality and performance. Whichever method one
chooses, the tremendous computational complexity of video
coding has pushed single processor technology to its limit. It
has been widely accepted that the high complexity of video
coding demands multiple high-speed processors, fast cache,
and dedicated bus or network to work in parallel. In reality,
supercomputers have been frequently used for experimentation
or verification of methodologies, while special hardware chips,
boards or systems have been built for real-time applications.
Both these technologies are either too expensive or dedicated.
With the advances in desktop multiprocessor computers and
parallel digital signal processor (DSP) technology, there is a
real opportunity for practical implementation of programmable
real-time video encoder at an affordable price. However, this
demands a parallelization strategy that can exploit the potential
parallelism and utilize the computing resources efficiently. In
particular, this strategy should perform well with small pro-
cessor number if it is to find applications in desktop systems.

On this issue, there have been a number of implementation
examples of the H.261, H.263, MPEG-1, and MPEG-2 on var-
ious parallel systems. These approaches may be broadly clas-
sified into three categories according to their implementation
platforms: supercomputers [10]–[14], network of workstations
(NOW) [15]–[17], and dedicated DSP [18]–[21]. In terms of
parallelization techniques, spatial [11],[21], temporal [12], [17],
or both [10], [13] have been commonly considered. Only a few
employed function decomposition on dedicated hardware [20].
From these examples, it can be observed that for the imple-
mentations on supercomputers, real-time performance is often
achievable on large number of nodes with system efficiency
(speedup/nodes) ranging from 32% [10] to 40% [11]. On the
other hand, implementations on NOW achieve better efficiency
(62%) on small number of nodes (12–16), but the actual frame
rate is usually low [3–4.5 frames per second (fps)] [17]. On ded-
icated DSP, ignoring those simulated cases, the best implemen-
tation reported so far was an H.263 on a TMS320C80 system,

1051–8215/00$10.00 © 2000 IEEE

1414 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000

achieving 4.26 fps and an efficiency of 81% (MP not consider as
a processor) [18]. As not many can have exclusive access to su-
percomputers for coding purpose, it becomes obvious that the
focus should be on a viable parallelization method that works
well on NOW or parallel DSP. Besides, many supercomputer
implementations have low system efficiency, meaning that a
high percentage of the system’s time is not doing useful tasks.
The goal of this parallelization method must be to bring the
efficiency up to 100%. Furthermore, one-off or dedicated ap-
proaches limit their expandability and flexibility. As the four
coding standards share a basic framework, it would be attrac-
tive if the new method is sufficiently general in describing this
framework and allows performance analysis to be carried out
before any practical implementation.

In this paper, we present a new parallelization method for
video coding. It stems from the concept of performing compu-
tation and communication in parallel such that communications
appear to be hidden by computation. The expected effect of this
approach is that computations occupy most of the processor
cycles, giving extremely high system efficiency. In essence,
this method models the task size, processor cache capacity
and communication contention, through a systematic decom-
position and scheduling approach, with the aid of Petri-nets
and task graphs for representation and analysis. With the task
and data size known, typical problems such as cache miss
may be avoided by imposing restrictions on the task and data
size during decomposition. By considering communication
contention on the network, task scheduling, and execution may
be modeled more accurately to reflect actual events. The use
of Petri-nets and task graphs help to visualize and analyze the
model and enable theoretical study and practical refinement.
The theoretical speedup analysis of this method indicates that
it offers excellent communication hiding, resulting in system
efficiency well above 90%. To prove its practicality, a H.261
video encoder has been implemented on a TMS320C80 system
according to the model. Its performance was measured, from
which the speedup, frame rate, and efficiency were calculated.
The only difference detected between the theoretical and
measured data is the program control overhead that has not
been accounted for in the theoretical model. Even with this, the
measured speedup of the H.261 is 3.67 and 3.76 on four parallel
processors (PPs) for QCIF and 352240, respectively, which
correspond to frame rate of 30.7 and 9.25 fps, and system
efficiency of 91.8% and 94%, respectively [22].

This paper is organized as follows. Section II describes
the parallelization method and the estimation of computation
and communication delays. Section III demonstrates how the
method is applied to implementing the H.261 encoder on the
TMS320C80. Section IV presents the measurement conditions
as well as the detailed results and discussions. This paper is
concluded in Section V.

II. PARALLELIZATION METHODOLOGY

A. Preliminary Considerations

Ideally, parallel processing with number of processors
should have a speedup of times in performance. However,
this is possible only if the problem can be decomposed into

exactly equal workload tasks that can be executed in par-
allel without any other overhead, and all the processors start and
complete their work simultaneously without any idling. If we
define system efficiency as the ratio between speedup and,
such parallelization is said to have linear speedup and 100%
system efficiency. In reality, algorithms usually contain a se-
quential component and a parallel component, in which only
the parallel component can be decomposed into parallel tasks.
Moreover, these parallel tasks may have certain dependency that
requires communication between them during execution. This
communication overhead cannot be completely ignored even
if fast network is used. Furthermore, task decomposition and
scheduling create constant overhead that can be substantial too.
Adding these up, the true performance of a parallel implementa-
tion would be determined by how well the sequential component
and various overheads can be minimized or hidden.

Let be the probability that the system is used in a pure se-
quential mode on one processor. The probability of using all

processors in a fully parallel mode is thus [23]. Am-
dahl’s Law states “If the sequential component of an algorithm
accounts for of the program’s execution time, then the max-
imum possible speedup that can be achieved on a parallel system
is .” This can be interpreted as when an algorithm is paral-
lelized by processors, the sequential component execution
time remains unchanged, while the execution time of the other
components are reduced by time. If and represent the
execution times on 1 and processors, respectively, we have

(1)

If , then the speedup . Here, the
speedup is upper bounded by no matter how large is. If

, then , which is the ideal case. In general,
is also called the sequential bottleneck in a program.
For communication, if is large, the delay through the in-

terconnection network grows proportionally. To reduce this ef-
fect, one can either reduce the communications between pro-
cessors, or use high-speed network to shorten the delay. The
problem is that the communications may be difficult to reduce,
and if this is the case, no matter how fast the network is, net-
work delay could still be substantial. Another possible and yet
more attractive approach is to incorporate a dedicated commu-
nication unit working in parallel with a computation unit, in
each processor. The whole idea is that when computation is in
progress, there can be communication in the background. Rather
than trying to reduce the absolute communication delay, this ap-
proach attempts to hide all or part of the communication.

Furthermore, decomposition and scheduling are crucial to the
whole parallelization approach. How the problem is decom-
posed into tasks determines the granularity of the paralleliza-
tion. To arrive at an appropriate granularity, task and data de-
pendencies must be knowna priori. The general rule is that
the tasks of a sequential component have strong dependency,
whilst the tasks of a parallel component have weak dependency.
Similarly, data could be exclusive to a task or shared by others.
Once it is allocated, the shared data between processors cre-
ates the basic communication needs. When performing sched-
uling, granularity plays a major role. Scheduling is simpler for

LEUNG et al.: PARALLELIZATION METHODOLOGY FOR VIDEO CODING—AN IMPLEMENTATION ON THE TMS320C80 1415

coarse granularity because of the smaller number of tasks and
less communication between them. However, task workloads
are more difficult to be balanced, and efficiency is expected to
be poorer. In addition, if the tasks/data allocated to a processor
is larger than its cache size, then the cache misses would cause
unexpectedly long task delays. Conversely, fine granularity re-
sults in numerous smaller tasks and probably more communi-
cations between them. It would usually be easier to balance the
workload in each processor, giving better efficiency and smaller
cache miss problem. However, more communication means that
a match in the cache size and task size is not an issue to be over-
looked if one strives for true performance.

B. Computation Characteristics of Video-Coding Algorithms

Existing video-compression standards rely on the reduction
of temporal and spatial data redundancy existing among digital
video data. Temporal data redundancy corresponds to data cor-
relation between pixels across different frames and it is reduced
by motion compensation between frames. In a macroblock
(MB), pixels are coded as the motion-compensated residues
after subtracting by the pixels in the reference frames. Since
the residues are usually smaller in magnitude than the pixels
themselves, compression is achieved by coding the residue data
and the motion vectors. Usually, there is one motion vector per
MB, although some standards support more than one motion
vector per MB by distinguishing motion vectors between
forward and backward directions and between odd and even
picture field references.

To determine the motion field, motion estimation (ME) is
usually performed. Assume that the current and reference frame
data are supplied from a global data server (DS), which can be
a video capturing processor or a communication processor, ME
is a process of searching for the closest MB from the reference
frames within a search area. The search area is a bounded and
enlarged area in a spatial position offset from the position of the
currently coded MB. Different standards have different sizes.
Theoretically, there is no specific ordering of the MBs in a pic-
ture regarding ME, it can be parallelized over all the MBs if so
desired.

After motion compensation, the frame of residues is divided
into a number of blocks of pixels for transform coding,
quantization, zigzag traversal, and variable-length coding. Sim-
ilar to ME, there is no specific ordering of the blocks in a pic-
ture regarding these coding steps. Therefore, in theory, coding
of a frame can be parallelized spatially with granularity of MBs
as long as the required input data and reference frame data are
available.

The final step in coding a frame is the generation of the
output bitstream. This step includes the construction of the
bitstream structure by inserting headers of various levels that
often use differential coding to reference the previous or
neighboring headers. For this reason, the bitstream construc-
tion is inherently sequential. In the following discussion, we
consider the bitstream construction for a frame to be a single
nondivisible task calledheader-VLC.

Fig. 1. Task graph for video coding.

Fig. 2. A task-allocation scheme.

C. Task Decomposition

In this paper, a task is defined as a data unit together with
a piece of function or code that operates on the data. The data
includes the variable space for the input, output and any side ef-
fect involved. For example, the ME of an MB is a task with the
input MB, all referenced pixels in the search area, and the re-
sulting motion vector as data. Its function is to find the motion
vector giving the smallest sum-absolute-error. The side effect is
the error statistic, which can be used for future MB type deter-
mination.

In determining the size of a task, several criteria should be
considered. Firstly, data size of a task is restricted to be smaller
than or equal to the processor cache. Second, the execution time

1416 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000

Fig. 3. Petri-net representation of the hiding scheme

of a task at a remote processor should be greater than the data
communication time for loading the task and saving the results
from the processor. Otherwise, it is better to execute the task
locally. Third, a task should possess certain generalized func-
tional meaning, as they have higher possibility of being reused
in a class of applications. In general, if not all three criteria can
be satisfied in each case, the first two should take precedence of
the third.

Usually, it is desirable to have large number of parallel tasks,
which can be grouped according to data access locality and
temporal locality. To satisfy this, we argue data decomposition
is better than functional decomposition because within a
function, data accessed usually has high temporal locality. If a
function is split into two tasks, the data shared between tasks
may cause more communication overhead. Conversely, two
tasks with shared data may be merged to form a bigger task to
reduce such overhead.

The above considerations were applied to video coding and
Fig. 1 depicts a general task graph. It consists of nine tasks per
MB in each column. Thearc between two tasks represents the
precedence relation between them. If a frame consists ofMB,
there are tasks per frame, where there is no precedence
constraint between tasks of different MBs.

D. Task Memory Access and Allocation

The mapping of tasks to the processors has two constraints.
The first is that the precedence relation established in the task
graph must be followed. If two tasks with precedence relation
are mapped to different processors, there must be at least a
synchronization point in time between the two processors such
that the precedence relationship is satisfied. It should be noted
that the synchronization point introduces processor idling time,
as the processors that complete their execution faster than the
others would have to wait for those that are still executing. To
avoid unnecessary synchronization, tasks should be allocated
such that there is a minimum number of synchronization points.
The second is the matching of task data to processor memory.
This constraint is not a necessary condition, but it allows the
use of triple buffering to hide communication overhead. To do
that, the basic requirement for triple buffering is that the local
memory of a processor can at least hold two tasks simultane-
ously. When a task is being executed, the result of the last task
is saved to the global buffer while the next task is being loaded.
If the saving and loading of data complete earlier than the com-
putation of the current task, the processor can proceed to the
next task without idling. Strictly, the first constraint is for cor-

LEUNG et al.: PARALLELIZATION METHODOLOGY FOR VIDEO CODING—AN IMPLEMENTATION ON THE TMS320C80 1417

rectness and therefore must be satisfied. The second constraint
is for achieving better performance, which can be sacrificed if
necessary.

Mathematically, a sequence of tasks allocated to a pro-
cessor should be constructed on the condition that every
pair of successive tasks have the union of their data access
smaller than or equal to the processor memory size. Let

be a sequence of tasks allocated
to a processor, be the number of tasks in, be the
data accessed by , and be the size of processor memory.
If the tasks in are executed in the order of increasing, the
condition is that

(2)

To illustrate these points, Fig. 2 depicts one possible task al-
location scheme, in which the MBs are decomposed into
subsets of MBs each when allocated to each processor.
Under this scheme, each processor can perform a sequence of
tasks before a synchronization point and start another sequence
of tasks after a synchronization point.

E. Communication Hiding

Let be the number of frames to be coded as a unit. For
MPEG-1/2, is the number of B-frames between successive
I- or P-frames, plus the trailing I- or P-frame. For H.261 and
H.263, is 1 and 2, respectively, which H.263 allows two
frames to be coded as a unit called a PB-frame. The Petri-net
representation in Fig. 3 depicts the buffering scheme. In the net,
a circle represents aplace labeled as [24]. The rectangular
boxes representtransitionslabeled as . If a transition is asso-
ciated with a time delay, it is labeled as, else it is represented
by abar. Thearcsbetween places and transitions carry a weight
of unity unless specified. A transition is enabled and fired if all
of its inlet places have the number of tokens specified in the cor-
responding arc. Once fired, the tokens enabling the transition are
consumed while new tokens are generated in the outlet places.
The solid black circle and number inside a place represent the
number of tokens in that place. The tokens currently shown in
Fig. 3 represent the initial marking, where onlyis enabled for
capturing a frame.

In this scheme, there are three sets of logical buffers. The first
logical buffer is called thecapture buffer(CB) which is used to
hold the frame currently being captured. Its size is equivalent
to a single frame buffer. The second logical buffer is called the
transit buffer(TB), which has frame buffers. Its purpose is
to keep a set of recently captured frames. The third logical
buffer is called theprocess buffer(PB), which is the same as the
TB and it is used to hold the frames that are being coded
currently. The utilization of these buffers is such that the phys-
ical frame memory corresponding to a logical frame buffer is
not fixed. For instance, when a new frame is captured into the
CB, its buffer pointer is swapped with the pointer of a free frame
buffer in the TB. This allows the capturing hardware to access
the free buffer and load the next frame. This continues until
frames are stored into the TB. Then the pointers of the PB
are swapped with those of the TB such that the physical memory
associated with the TB is now associated with the PB instead,

Fig. 4. Petri-net for parallel coding of a frame.

and vice versa. The delays for swapping buffer pointers (, ,
) are considered insignificant compared with the coding time.

Note that in this scheme, the coding of a frame is divided into
two parallel transitions, and , with delay and , respec-
tively. It is because the Header-VLC task is inherently sequential
across the MBs while all the other functions from ME to IMC
can be decomposed into parallel tasks.

This overlapping of video capturing and coding repeats and
there is a delay of frames in the coded bitstream. It can be
shown that a new frame in the CB is skip only if the coding time
is longer than the capture time. Therefore, the resulting average
frame rate is determined either by or , depending on how
well is parallelized.

The transition is further expanded in Fig. 4. This Petri-net
consists of rows of parallel transitions separated by synchro-
nization points. The number of parallel transitions in each
row equals . The number of rows equals , which is the
number of synchronization points. In the net, each
denotes the sequence of tasks executed by processorbefore
the th synchronization point. There is no other synchronization
when is executed.

The details of is expanded in Fig. 5. In this Petri-net,
is the number of tasks in the sequence . These

tasks are executed in one processor, which is assumed to have
limited data cache size. Before execution of a task, the task data

1418 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000

is loaded into the cache from a global data server. After execu-
tion, the result is saved back to the server.

F. Theoretical Speedup Estimation

From Fig. 3, ignoring the time delays of , , and as
they involve only swapping of pointers and skipping of frames,
the significant delays are (frame capture), (Header-VLC)
and (parallel task execution). As they are executed in parallel,
the resulting frame coding time is

(3)

From the expansion of , and denoting the delay of
by , we have

(4)

To determine , let us denote the computation delay,
task loading delay, and saving delay by ,
and , respectively, for the th task in . From
the expansion of , equals to the sum execution
delays of tasks in plus the leading task loading
and trailing result saving delays, which is given by

(5)

Therefore, the resulting frame time is expressed as

(6)

Given the sequential frame time in (7), the speedup is the ratio
between and

(7)

From the above equations, there are two conditions under
which the scheme exhibits better performance. First, from (5),
there is a constant delay due to the initial task loading and the
trailing task saving, and there is further overhead if the task com-
munication delay is larger than the task computation delay. The
former delays cannot be hidden as such, but the latter communi-
cation delay can be hidden if

, which depends on the communication channel
bandwidth and the data size.

Secondly, the overall performance also depends on whether
the loading is evenly distributed across the processors. From (4),
it is the sum of a series of maximum delays, each represents

Fig. 5. Petri-net of task sequenceS(i; j).

a critical path between two synchronization points, that deter-
mines . Therefore, is the smallest if workload is evenly
distributed across the processors between each pair of synchro-
nization points.

To further simplify the estimation, we assume the computa-
tion delay () to be a random variable with Gaussian
distribution. The mean and variance of the distribution are es-
timated from time measurement of a sequential execution. The
mean and variance of are used to determine and

as given by (6) and (7) when the communication delays are
known.

G. Estimation of Communication Delay with Contention

For the communication delay, we assume a constant channel
bandwidth with a constant initial setup delay. The parameters of
the channel are estimated by an actual time measurement over
the channel with different message size. We find that a linear
model is applicable for processor-to-processor communication
in systems such as the IBM SP2 [25] and the TMS320C80 [26].
To send a message of size , let be the communication
delay without contention, be the initial setup delay and
be the channel bandwidth, we have

(8)

As the frame data is served centrally, it is reasonable to expect
a queue of requests pending on the server, which is served one
by one. Assume a statistical queueing model [27], letbe the
number of requests in the queue, be the request arrival
rate, and be the request service rate, where both and

are random variables with exponential distribution. Further

LEUNG et al.: PARALLELIZATION METHODOLOGY FOR VIDEO CODING—AN IMPLEMENTATION ON THE TMS320C80 1419

assume that all the processors generate requests at the same rate
, and that a processor with a pending request in the queue

does not generate requests until its pending request is served.
Then the arrival rate at the queue is proportional to the number
of processors that do not have pending request in the queue, or

(9)

Let be the probability of having requests in the queue. At
equilibrium, there is a set of local balance equations by equating
the sum of flow of probability flux between adjacent states to
zero, which are given as

(10)

Solving this recursive equation for gives

(11)

To calculate , we equate the sum of all probabilities to 1,
which gives

(12)
By Little’s Law [31], the mean delay of a request in the queue
is given by

(13)

From (13), is the message transfer delay under contention.
In general, is greater than , especially for large . Fig. 6
depicts the ratio of to versus at different . For
small , the ratio increases almost linearly and is
large. It is because the request rate is larger than the service rate,
resulting in long queue length. For large , the request rate
is smaller than the service rate, hence the server is able to keep
the queue length short, and small.

To apply the above to the communication delay estimation,
we first use the message size and the raw channel bandwidth
without contention to estimate [or]
and then apply the queueing theory to obtain [or

]. This requires an estimate of the average request
generation rate and the service rate. As request is gen-
erated at the start of each task, the request generation rate is
therefore the reciprocal of the mean task execution delay, and
the service rate is equal to the reciprocal of the service delay

[or].
After each synchronization point, all the processors issue re-

quests to the DS almost simultaneously. This transient period
causes the longest loading delay when the DS serves the pro-
cessors sequentially. In this estimation, the initial loading delay

and the final saving delay are
multiplied by to account for this transient period.

Fig. 6. Communication delay increases with contention.

H. Limitations and Applicability

This method assumes independent processing between MBs
in a frame, which is not entirely true in some cases. For ME in
H.263, if the long-vector feature is used under theunrestricted
motion vectoroption, the search area of the ME is relative to the
motion vector predictor. Since the predictor is obtained from the
motion vectors of three nearby MBs, the ME of these MBs must
be performed in a particular spatial order. This limitation only
occurs if long vector of range is used.

When bit-rate control is concerned, none of the coding stan-
dards specifies how it is done. A commonly adopted method is
to adjust the quantizer(s) base on factors such as discrepancy
between the target and actual number of bits generated, and the
estimated content of each MB in terms of variance. For parallel
coding, the current number of bits can be placed in the DS so
that all the processors can reference and update it. The gran-
ularity of quantizer adjustment can be at the MB, MB row or
frame level. However, in H.263, there is a limit of plus or minus
2 on the quantizer relative to the left neighboring MB such that
the validity of the quantizer is not known, until the neighboring
MB quantizer has been determined. This restricts the coding of
MBs in certain order.

Apart from the above limitations, this method does not im-
pose any restrictions on the list of tasks performed when coding.
Different coding standards in general may be represented by the
task allocation scheme shown in Fig. 2, where precedence re-
lationship could be accommodated using appropriate synchro-
nization points. Similarly, the Petri-net representation as de-
picted in Fig. 3 can be applied to all four standards. The only
difference between them would be. Moreover, Figs. 4 and 5
are equally applicable to all cases disregarding the actual list of
tasks performed in individual coding standards. Table I lists the
possible tasks for each of the four coding standards. Out of the
list, there may also be tasks such as coding mode determination,
rate control and scalability options, which can be incorporated
into the model without any restrictions.

III. I MPLEMENTATION ON THE TMS320C80

A. Development Board and Internal Architecture

To verify the methodology, the implementations were carried
out on a TMS320C80 Software Development Board (SDB) [28].
It consists of 8 Mbytes on-board memory, called EXTMEM,
that is used to store program code and data, hardware for video
frame grabbing, video display, audio, interrupt control and PCI

1420 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000

TABLE I
POSSIBLETASKS FOR THE4 VIDEO CODING STANDARDS

interface to the host PC. Both the hardware video frame grab-
bing and display can be done in real-time (30 fps) on different
frame sizes.

Inside the TMS320C80 chip, there are four parallel processors
(PPs) for number crunching and one master processor (MP) for
programcontrol,systemmanagement,andI/O.Allof themaccess
EXTMEMandtheotherhardwaredeviceson theSDBthroughan
on-chip communication processor: the transfer controller (TC).
Requests to the TC from the processors and the video controller
(VC)arequeued in the formofpacket transfer,where theyarepri-
oritized and serviced one at a time. The role of the VC is to handle
all the framegrabbinganddisplay facilities.HavingaseparateTC
fitswellwith thecommunicationhidingconceptemployedbyour
methodology,andthepresenceoftheMPandVCallowsthePPsto
bededicatedtoperformingthecodingtasks.Thereisalsoatotalof
50-kBcachememory,which isdivided into252-kBcacheblocks.
These cache blocks are classified into parameter RAM (PRAM),
instruction cache (IC), and data RAM. The PRAM is mainly used
to store system parameters, such as the TC packet transfer table,
system stack and interrupt vectors. Part of the PRAM is available
foruserapplicationstoo.ThePPsandMPhaveaPRAMeach.The
purpose of the IC is to store recently accessed instruction codes.
Each PP has one IC, whereas the MP has two. The data RAM is
the working space of user programs. The two data RAM blocks
in the MP work as data cache with automatic cache replacement
mechanism.For thePPs,eachhas threedataRAMblockswithout
cache replacement facility. They rely on the application program
to handle all the data caching. This is, in fact, advantageous for
parallel program analysis as the programmer would have more
control over data movement. Finally, the communication of the
MP, PP, TC, and cache blocks are through a dedicated crossbar
switch. This crossbar switch enables random access of the cache
blocksbytheMPorPPswithinacoupleofcycles.Thismechanism
enablesthetriplebufferingideatobeimplementedeasily.

In general, inter-processor communication between the PPs
and MP is performed through different levels of the memory
hierarchy. The first level is the on-board memory that can hold
a large amount of data from which all the processors can access
through the TC. The penalty for doing so is the slow access rate
due to the initialization of the TC. The second level is through
the on-chip data RAM, which can be accessed in two cycles
by any one of the processors. The third level is through the use
of the communication register (COMM). It is a very fast and
effective way to provide an inter-processor signaling, but not

data transfer. Since only a local register is accessed, there is no
burden on the crossbar switch or the TC.

For the internal architecture of the PP [29], there is a cer-
tain degree of parallelism per instruction cycle. The main com-
ponents of a PP are one data unit and two address units. The
data unit composes of a splitable 32-bit ALU and a splitable

-bit integer multiplier. Using specific assembly language
instruction, the ALU can be configured as one 32-bit unit, two
16-bit units, or four 8-bit units. The multiplier can be configured
to work similarly. In the extreme, the data unit can be configured
to deliver up to six 8-bit integer operations per cycle. For the
two address units, the global address unit covers a greater range
of the memory address space than the local address unit. They
can work simultaneously to allow two parallel data transfer of
64-bit word between the local cache memory and registers in
one cycle. For accesses to other memory, such as the EXTMEM,
the transfer must be done through the TC.

B. Implementation Issues

When implementing the H.261, is set to 2 such that there
are 2 synchronization points for each frame. The number of
MBs is evenly distributed over the PPs, and the video capture,
Header-VLC calculation and other system functions are done
in the MP. The TC and EXTMEM together act as a data server
for handling input frames, decoded frames and output bitstream.
The task consists of just ME, whereas the other eight
tasks from MC, DCT to IMC for each MB are grouped together
to form the task termed ENC. The reason for choosing

and in this way is mainly due to memory access
locality.

For ME, out of the nine referenced MBs, six of them are
also referenced by a neighboring MB. Therefore, maintaining
MB data locality can save considerable communication delay.
Overlapping of computation and data transfer is also allowed
with a cache size of 12 referenced MBs plus two MBs for triple
buffering of the MB under coding. The ME tasks are ordered
by raster scan order and then partitioned into even sequences
for allocation to each PP. Each PP has to follow the same or-
dering in processing the sequence of ME tasks allocated to it.
With this arrangement, each task data communication involves
loading three reference MBs, one input MB and saving a motion
vector and the MB attributes, i.e., approximately

or 1024 bytes. For the ENC task, there is no overlap
in memory access between different MBs. As such, the order

LEUNG et al.: PARALLELIZATION METHODOLOGY FOR VIDEO CODING—AN IMPLEMENTATION ON THE TMS320C80 1421

(a) (b)

(c)

Fig. 7. Implementation scheme on the TMS320C80. (a) Task allocation to MP and VC. (b) Task allocation to PPs and TC. (c) Detailed task allocation to PPs and
TC.

Fig. 8. A tested QCIF sample.

of ENC task processing has no influence on the communication
cost. The task data communication involves saving a decoded
MB, loading an input MB and a referenced MB, i.e., a total of

, or 1152 bytes. Fig. 7 depicts the
mapping of the model onto the TMS320C80 system.

IV. RESULTS AND DISCUSSIONS

A. Measurement Criteria and Conditions

The results presented in this section have been obtained from
timestamps taken from the actual implementation on the PPs.

1422 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000

Fig. 9. Serial coding time break down.

Fig. 10. TC data transfer time

Fig. 11. Frame rate of QCIF.

All the PPs use a common clock tick generated once every 10s
by the MP TIMER to make timestamps at various instances of
program execution. At each clock tick, an interrupt is gener-
ated to the MP, which writes the updated clock tick value to a
specified location in the PRAM of each PP. As it is, this incurs
overhead to the MP, and the PPs may experience contention in
accessing their PRAM if the MP is writing the clock tick value
simultaneously. To reduce this contention to a negligible level,
consecutive clock ticks are separated by 10s, which is equiv-

alent to 400 instruction cycles on the PP. To achieve more accu-
rate timestamps, finer clock tick may be used with the penalty
of more frequent MP interrupts and PP PRAM contentions.

B. Serial Performance

As a baseline reference, a serial encoder was first executed
on one PP and its average frame time was measured over 50
frames. A typical frame of the video captured is depicted in
Fig. 8, which consists of a typical head-and-shoulder view of
a person. The average frame time measured at frame sizes of

and QCIF were 406.5 and 119.5 ms, re-
spectively, i.e., 2.46 and 8.37 fps, respectively. The average per-
centage time breakdown for QCIF is shown in Fig. 9. The most
time-consuming task is the ME as expected (27.1%), followed
by the DCT (19.4%), IDCT (16%), and TC_VLC (10.2%). It
should be noted that these figures are obtained after the as-
sembly codes have been manually optimized. The rest ranges
from 8.1% (QUANT), 6.5% (IQUANT), to just below 1%. On
the chart, INIT_TC (1.5%) is the time spent on initialization of
packet transfer table, and WAIT_TC (0.9%) is the time spent
on waiting for data transfer to complete. Furthermore, there is
a component called IDLE (2.5%) which is the time spent on
doing neither communication nor computation. This is caused
by the imbalance of workload among the PPs in the multiple PP
case, plus the waiting time for the MP initialization. Since there
is only one PP in this case, 2.5% represents mainly the waiting
time for the MP initialization.

The bandwidth of the TC without contention was esti-
mated by measuring the time for transferring messages from
EXTMEM to the on-chip RAM and vice versa. For different
message sizes, a number of measurements were conducted and
the average time was taken. As depicted in Fig. 10,and
are estimated to be 153 Mbytes/s and 0.8s, respectively.

C. Parallel Performance

For the parallel performance, the theoretical performance was
first predicted based on Section II-F and II-G, while the ac-
tual performance of the implementation was measured under
the criteria mentioned in Section IV-A and compared with the
predicted and ideal linear performance. Figs. 11–13 depict the
frame rate, speedup and efficiency for coding the QCIF video.
In Fig. 11, the predicted and measured frame rate rises almost
linearly up to four PPs. The measured frame rate achieved is
30.7 fps using four PPs, while the speedup is 3.67, as shown in
Fig. 12. The almost linear speedup indicates that the system has
successfully hidden most of the communications and has negli-
gible processor idling delay. This may be explained as the mean
computation delay being around 300 and 800s for the ME and
ENC tasks, respectively. The communication delay without TC
contention is about 9.5 and 13.4s for the two tasks, respec-
tively, (with contention, they are 10.3 and 14.0s, respectively,
for four PPs). In both cases, the communication delay is sub-
stantially smaller than its computation delay, which can be ef-
fectively hidden for each PP. It should also be noted that the
measured performance is slightly less than the predicted perfor-
mance. This is due to the fact that parallelization overhead has
not been taken into account in the theoretical model.

LEUNG et al.: PARALLELIZATION METHODOLOGY FOR VIDEO CODING—AN IMPLEMENTATION ON THE TMS320C80 1423

Fig. 12. Speedup of QCIF.

Fig. 13. Efficiency of QCIF.

Fig. 14. Projected speedup for QCIF.

In Fig. 13, the efficiency is calculated as the percentage
ratio between the measured or predicted speedup and the linear
speedup. Practical parallel algorithms would have efficiency
less than 100% due to parallelization and communication
overheads. In this case, the predicted efficiency is over 90%
for up to eight PPs, whereas the measured efficiency for up
to four PPs is also over 90%. This is some 10% better than
any parallel implementation reported so far for small or large

. However, if the measured efficiency is projected for larger

Fig. 15. Frame rate of352 � 240.

, the trend seems to be a more rapid decrease beyond four
PPs. Even with this behavior, the method presented here still
compares favorably with other published methods.

To illustrate how the model behaves beyond , Fig. 14
depicts the predicted speedup up to 100 PPs. As can be seen,
the estimated speedup rises steadily and almost linearly up to
10 (), beyond which the shape of the curve becomes
stepwise. This is due to the small number of MBs,, integrally
divided by the number of PPs. As a result, there tends to be un-
even distribution of MBs on the PPs if is not divisible by the
number of PPs. For this reason, some PPs complete computation
earlier than the others and have to wait. This reduces the speedup
and becomes worse when the number of PPs having to wait is
in majority. This stepwise characteristic may be smoothed and
improved if the workload is balanced [30]. In fact, when the
number of PP approaches the number of MBs, i.e., 99, the initial
and final communication delays dominate and there will be no
benefit in using more PPs. In theory, a finer granularity should
give smoother speedup and extend farther with more processors.
However, this is not true in practice since the communication
overhead increases rapidly with the number of processors be-
cause, first, due to the contention of communication channel,
the communication delay increases with the number of proces-
sors. Second, with finer granularity, data sharing between tasks
will increase which results in duplicated communication. In our
current implementation, we find that the TC can support finer
granularity since the current computation delay is greater than
the communication delay (between 30–60 times). For tasks with
larger data size, due to the limitation of the cache size, finer
granularity may be necessary.

For , the measured and predicted performance have
similar trend to that of QCIF. The frame rate and speedup fig-
ures are depicted in Figs. 15 and 16, respectively. A frame rate
of 9.25 fps has been achieved for . Extending our pre-
diction, 30 fps is achievable at around , i.e., if paral-
lelization overhead is included, four C80 will probably give 30
fps. The measured speedup for four PPs is 3.76. In general, the
speedup for the video is better than QCIF because of
the larger amount of data involved in the former case. From the
percentage efficiency depicted in Fig. 17, it is observed that the
predicted efficiency remains well over 90% up to . The

1424 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 8, DECEMBER 2000

Fig. 16. Speedup of352 � 240.

Fig. 17. Percentage efficiency of352� 240.

measured efficiency however, showed the same tendency as in
QCIF where the parallelization overhead becomes more signif-
icant with large . Although the measured efficiency is 94%
at , if the curve is extended, the projected measured ef-
ficiency would be down to 85% for .

In Fig. 18, the predicted speedup is almost linear up to
, beyond which the increase is stepwise and reaches a max-

imum of 48, as compared with 27.5 for QCIF. The reasons why
this figure is larger than the QCIF case are, firstly, for
video, there are more tasks in the sequence. As a result, the ini-
tial task loading and final saving delays in each task sequence
constitute a smaller proportion of delay to the overall sequence
execution time, giving a higher speedup. Second, as there is a
synchronization point between the PPs at the end of each task
sequence, the expected overall execution time is the expected
maximum of the sequence execution time. A large standard
deviation in sequence execution time implies a large maximum
time among sequences and a large proportion of processor
idling time. Assume each task has a mean execution time
and standard deviation. When such tasks are executed, the
overall mean and standard deviation becomesand re-
spectively. Therefore, the standard deviation increases in pro-
portion to and is slower than the increase in the mean. As
such, the variation relative to the mean decreases with increasing

Fig. 18. Projected speedup for352� 240.

number of tasks in the sequence. Therefore, the expected per-
centage idling time should be smaller with sequences having
larger number of tasks.

V. CONCLUSION

In conclusion, a new parallelization methodology for video
coding using the concept of communication hiding has been
successfully developed and implemented in this paper. It con-
siders task/data size, processor cache capacity and communica-
tion contention in a practical manner, through the application
of Petri-nets and task graphs. From that, the performance of
the parallel method can be theoretically studied and analyzed.
This approach is appropriate because, firstly, when task and/or
data decomposition is oriented toward matching the capacity of
the cache, substantial number of cache misses can be avoided.
Secondly, communication contention often contributes signifi-
cantly and realistically to the delay in accessing remote data.
Being able to take this into consideration helps to come up with
a closer prediction of the actual performance of the implementa-
tion, which further enables us to refine the implementation. As
the parallel method is reasonably independent from the target
video-coding standard, it is fair to assume that the method is
equally applicable to the remaining three standards. In fact, full
implementation has been tested on H.261, and the H.263 stan-
dard was also implemented based on this method with very sim-
ilar performance characteristics.

From the measured results, it can be observed that first,
the predicted performance and measured performance are
very similar. Second, frame rates of 30.7 and 9.25 fps have
been achieved for QCIF and video, respectively,
with only one TMS320C80. Comparing with other practical
implementations (excluding simulations), these results are very
respectable. Third, system efficiency of over 90% has also been
achieved. Both the speedup and efficiency are due to the paral-
lelization method as well as how optimized the serial encoder
codes are. We noticed a marked performance increased after
the assembly codes have been manually optimized. Fourth, this
parallelization method is particularly suitable for small .
For QCIF, the measured speedup is almost linear for ,
whereas for video, the measure speedup is almost
linear for .

LEUNG et al.: PARALLELIZATION METHODOLOGY FOR VIDEO CODING—AN IMPLEMENTATION ON THE TMS320C80 1425

REFERENCES

[1] “ITU-T recommendation H.261: video codec for audiovisual services at
p� 64 kbits,” International Telecommunication Union, 1990.

[2] “MPEG-1: Coding of moving pictures and associated audio for digital
storage media at up to about 1.5 Mbit/s,” ISO/IEC 11172, 1993.

[3] “ITU-I recommendation H.263: video coding for low bitrate communi-
cation,” International Telecommunication Union, 1995.

[4] “MPEG-2: Generic coding of moving pictures and associated audio,”
ISO/IEC 13 818, 1995.

[5] “Overview of the MPEG-4 standard,” ISO/IEC JTC1/SC29/WG11
N1730, 1997.

[6] “MPEG-7: context and objectives (v.5 - Fribourg),” ISO/IEC
JTC1/SC29/WG11 N1920, 1997.

[7] L. Torres and M. Kunt,Video Coding: The Second Generation Ap-
proach. Norwell, MA: Kluwer, 1996.

[8] C. Huang and J. L. Wu, “New generation of real-time software-based
video codec: Popular video coder II (PVC-II),”IEEE Trans. Consumer
Electron., vol. 42, pp. 963–973, Nov. 1996.

[9] K. Li and H. Yuen, “A high performance image compression technique
for multimedia applications,”IEEE Trans. Consumer Electron., vol. 42,
pp. 239–243, May 1996.

[10] F. Sijstermans and J. Van der Meer, “CD-I full-motion video encoding
on a parallel computer,”Commun. ACM, vol. 34, no. 4, pp. 81–91, 1991.

[11] S. M. Akramullah, I. Ahmad, and M. L. Liou, “Performance of soft-
ware-based MPEG-2 video encoder on parallel and distributed systems,”
IEEE Trans. Circuits Syst. Video Technol., vol. 7, pp. 687–695, Aug.
1997.

[12] K. Shen, L. A. Rowe, and E. J. Delp, “Parallel implementation of an
MPEG-1 encoder: faster than real time,”SPIE, vol. 2419, pp. 407–418,
Feb. 1995.

[13] K. Shen and E. J. Delp, “A spatial-temporal parallel approach for
real-time MPEG video compression,” inPro. 25th Int. Conf. Parallel
Processing, 1996, pp. II100–II107.

[14] N. H. C. Yung and K. K. Leung, “Parallelization of the H.261 video
coding algorithm on the IBM SP2 multiprocessor system,” inProc.
IEEE Int. Conf. Algorithm, Architectures and Parallel Processing,
1997, pp. 571–578.

[15] S. M. Akramullah, I. Ahmad, and M. L. Liou, “Software-based H.263
video encoder using a cluster of workstations,”SPIE, vol. 3166, pp.
266–273, Jul. 1997.

[16] Y. Yu and D. Anastassiou, “Software implementation of MPEG-II
video encoding using socket programming in LAN,”SPIE, vol. 2187,
pp. 229–240, Feb. 1994.

[17] I. Agi and R. Jagannathan, “A portable fault-tolerant parallel software
MPEG-1 encoder,”Multimedia Tools and Applic., vol. 2, pp. 183–197,
1996.

[18] H. Mooshofer, A. Hutter, and W. Stechele, “Parallelization of a H.263
encoder for the TMS320C80 MVP,” Texas Instruments, Paris, France,
SPRA339, Sept. 1996.

[19] W. Lee, J. Golston, R. J. Gove, and Y. Kim, “Real-time MPEG video
codec on a single-chip multiprocessor,”SPIE, vol. 2187, pp. 32–43, Feb.
1994.

[20] T. Akiyama et al., “MPEG-2 video codec using image compression
DSP,” IEEE Trans. Consumer Electron., vol. 40, pp. 466–472, 1994.

[21] C. Bouville, P. Houlier, J. L. Dubois, I. Marchal, B. Thebault, and M.
Klefstad, “DVFLEX: A flexible MPEG real time video codec,” inProc.
IEEE Int. Conf. Image Processing (ICIP’96), vol. II, 1996, pp. 829–832.

[22] K. K. Leung, “Parallelization methodology for video coding - an imple-
mentation on the TMS320C80,” Dept. Elect. and Electron. Eng., Univ.
Hong Kong, Hong Kong, Res. Rep., May 1998.

[23] K. Hwang,Advanced Computer Architecture: Parallelism, Scalability,
Programmability. New York: McGraw-Hill, 1993.

[24] David and Rene,Petri Nets and Grafcet: Tools for Modeling Discrete
Event Systems. Englewood Cliffs, NJ: Prentice-Hall, 1992.

[25] C. B. Stunkelet al., “The SP2 high-performance switch,”IBM Syst. J.,
vol. 34, no. 2, pp. 185–204, 1995.

[26] (1995, Mar.) TMS320C80 (MVP) Transfer Controller User’s Guide.
Texas Instruments, USA, Doc. Code: SPRU105A. [Online] Available:
http://www.ti.com

[27] T. G. Robertazzi,Computer Networks and Systems—Queuing Theory
and Performance Evaluation. New York: Springer-Verlag, 1994.

[28] TMS320C8x Software Development Board Technical Reference: Texas
Instruments, USA, Doc. Code: SPRU178, 1996.

[29] TMS320C80 (MVP) Parallel Processor User’s Guide: Texas Instru-
ments, USA, Doc. Code: SPRU110A, 1995.

[30] N. H. C. Yung and K. C. Chu, “Fast and parallel video encoding by
workload balancing,” inProc. IEEE SMC’98, Oct. 1998, pp. 4642–4647.

[31] J. D. C. Little, “A proof of the queuing formulaL = W ,” Oper. Res.,
vol. 9, pp. 383–387, 1961.

Kwong-Keung Leung (S’97) received the B.Sc. and
M.Sc. (with distinction) degrees in 1990 and 1997,
respectively, from the Department of Electrical and
Electronic Engineering, University of Hong Kong,
where he is currently working toward the Ph.D.
degree.

His research interests include multiprocessor
scheduling, dynamic load balancing, heterogeneous
computing, and parallelization of multimedia
systems.

Nelson H. C. Yung (S’82–M’85–SM’96) received
the B.Sc. and Ph.D. degrees from the University of
Newcastle-Upon-Tyne, U.K., in 1982 and 1985, re-
spectively.

He was Lecturer at the same university from 1985
to 1990, involved in the R&D of digital image pro-
cessing and parallel processing. From 1990 to 1993,
he was Senior Research Scientist with the Depart-
ment of Defence, Australia, where he headed a team
on the R&D of military-grade signal analysis sys-
tems. He joined the University of Hong Kong in late

1993 as an Associate Professor, where he leads a research group in Digital Image
Processing and Intelligent Transportation Systems. He is the founding Director
of the Laboratory for Intelligent Transportation Systems Research, and has pub-
lished over 90 research papers.

Dr. Yung serves as Reviewer for the IEEE TRANSACTIONS ONSYSTEMS, MAN,
AND CYBERNETICSPART B, IEEE TRANSACTIONS ONSIGNAL PROCESSING, IEE
PROCEEDINGSPART G, SPIE Optical Engineering, HKIE Proceedings, and the
Microprocessors and Microsystems Journal. He is a Chartered Electrical Engi-
neer, and a Member of the HKIE and IEE. His biography is published inMar-
quis’ Who’s Who in the World.

Paul Y. S. Cheung(M’82–SM’92) was born in Hong
Kong. He received the B.S. and Ph.D. degrees in elec-
trical engineering from Imperial College, University
of London, London, U.K., in 1973 and 1977, respec-
tively.

After working for two years, he returned to Hong
Kong in 1978 and taught at Hong Kong Polytechnic.
In 1980, he joined the University of Hong Kong,
where he is currently the Dean of the Faculty of
Engineering. In addition, he instructs three courses
and supervises undergraduate and postgraduate

students.

