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Parallelization Methodology for Video Coding—
An Implementation on the TMS320C80

Kwong-Keung LeungStudent Member, IEEBNelson H. C. YungSenior Member, IEEEand
Paul Y. S. CheungSenior Member, IEEE

Abstract—This paper presents a parallelization methodology for by ITU to deal with video coding for low bitrate communica-
video coding based on the philosophy of hiding as much commu- tion [3], and the MPEG-2 standard for generic coding of moving
nications by computation as possible. It_mo_dels the tas_k/data size, pictures and audio was also introduced by I1SO in the same year
processor cache capacity, and communication contention, through 41 1N 1997 the I1SO d the MPEG-4 for int tina th
a systematic decomposition and scheduling approach. With the aid [4]-In o _e A _announce e O”r? egra mg .e
of Petri-nets and task graphs for representation and analysis, item- Production, distribution and content access paradigms of digital
ploys a triple buffering scheme to enable the functions of frame TV, interactive graphic applications, and World Wide Web [5],
capture, management, and coding to be performed in parallel. The and the MPEG-7 for standardizing descriptions of various types

theoretical speedup analysis indicates that this method offers ex- ot jtimedia information to allow fast and efficient searching
cellent communication hiding, resulting in system efficiency well . :
of such information [6].

above 90%. To prove its practicality, a H.261 video encoder has
been implemented on a TMS320C80 system using the method. Its ~ Apart from these standards, there are also other video-coding
performance was measured, from which the speedup and efficiency methods [7]-[9] that offer a high compression rate at accept-

figures were calculated. The only difference detected between the able visual quality and performance. Whichever method one
theoretical and measured data is the program control overhead

that has not been accounted for in the theoretical model. Even with ChOPSeS’ the tremendous computational Comp'exn}’ Of. Vi.deo
this, the measured speedup of the H.261 is 3.67 and 3.76 on fourcoding has pushed single processor technology to its limit. It
parallel processors (PPs) for QCIF and352 x 240 video, respec- has been widely accepted that the high complexity of video

tiVely, which Correspond to frame rate of 30.7 and 9.25 frames per Coding demands mu|t|p|e high_speed processors, fast Cache,

second, and system efficiency of 91.8% and 94%, respectively. This ;. jedicated bus or network to work in parallel. In reality.
method is particularly efficient for platforms with small number of h b f | df . N
parallel processors. supercomputers have been frequently used for experimentation

Index  Terms—Efficiency, H.261, H.263, parallel coding, or verification of methodologies, while special_hardwarg ch_ips,
petri-net, speedup. boards or systems have been built for real-time applications.
Both these technologies are either too expensive or dedicated.

With the advances in desktop multiprocessor computers and

. INTRODUCTION parallel digital signal processor (DSP) technology, there is a

N THE PAST decade, the proliferation of video and auditgal opportunity for practical implementation of programmable
applications has been substantial and widespread, to say@@-time video encoder at an affordable price. However, this
least. Technologies such as DVD, VCD, VoD, digital TV, an@emands a parallelization strategy that can exploit the potential
video phone, among OtherS, are gradua”y emerging as Consuﬁfy]a-”ensm a-nd utilize the Computing reSOUrCES EfﬁCiently. In
products or services, offering multimedia communications, iRarticular, this strategy should perform well with small pro-
formation access and entertainment. A vital link in the su€essor number if itis to find applications in desktop systems.
cess of these applications lies in how the video information isOn this issue, there have been a number of implementation
being communicated. To ensure such success, the Internatieamples of the H.261, H.263, MPEG-1, and MPEG-2 on var-
Telecommunication Union (ITU) introduced the H.261 recomeus parallel systems. These approaches may be broadly clas-
mendation in 1990, which is designed to standardize the vidsified into three categories according to their implementation
codec for audiovisual servicesgatx 64 kbits [1]. Three years platforms: supercomputers [10]-[14], network of workstations
later, the MPEG-1 coding standard for moving pictures to {BlOW) [15]-[17], and dedicated DSP [18]-[21]. In terms of
stored on digital storage media was announced by the Interparallelization techniques, spatial [11],[21], temporal [12], [17],
tional Organization for Standardization (ISO) [2]. In 1995, builbr both [10], [13] have been commonly considered. Only a few
upon the earlier H.261, the H.263 standard was recommendagdployed function decomposition on dedicated hardware [20].
From these examples, it can be observed that for the imple-
Manuscript received October 6, 1998; revised March 16, 2000. This pag@€ntations on supercomputers, real-time performance is often
was supported by the Texas Instrument Tsukuba Research and Developraghievable on large number of nodes with system efficiency
Center, Japan, by the University Grants Committee, Area of Excellence in peedup/nodes) ranging from 32% [10] to 40% [11]. On the
formation Technology, Hong Kong, under Grant AOE98/99.EGO01, and by t her hand. impl : hi b .ff' .
Centre of Urban Planning and Environmental Management, the Universityg er hand, implementations on NOW achieve better efficiency
Hong Kong. This paper was recommended by Associate Editor N. Ranganatf®2%) on small number of nodes (12-16), but the actual frame
The authors are with the Department of Electrical and Electronic Engineeringie jg usually low [3-4.5 frames per second (fps)] [17]. On ded-
the University of Hong Kong, Pokfulam Road, Hong Kong SAR, China (e-mail; ; . ) . .
kkleung@eee.hku.hk: nyung@eee.hku.hk; cheung@eee.hku_hk). |c§ted DSP, ignoring those simulated cases, the best implemen-
Publisher Item Identifier S 1051-8215(00)10627-5. tation reported so far was an H.263 on a TMS320C80 system,

1051-8215/00$10.00 © 2000 IEEE
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achieving 4.26 fps and an efficiency of 81% (MP not consider agactly Np equal workload tasks that can be executed in par-
a processor) [18]. As not many can have exclusive access to allel without any other overhead, and all the processors start and
percomputers for coding purpose, it becomes obvious that tt@mplete their work simultaneously without any idling. If we
focus should be on a viable parallelization method that workigfine system efficiency as the ratio between speedup\gnd
well on NOW or parallel DSP. Besides, many supercomputeuch parallelization is said to have linear speedup and 100%
implementations have low system efficiency, meaning thatsgstem efficiency. In reality, algorithms usually contain a se-
high percentage of the system’s time is not doing useful taskgiential component and a parallel component, in which only
The goal of this parallelization method must be to bring ththe parallel component can be decomposed into parallel tasks.
efficiency up to 100%. Furthermore, one-off or dedicated aploreover, these parallel tasks may have certain dependency that
proaches limit their expandability and flexibility. As the fourequires communication between them during execution. This
coding standards share a basic framework, it would be attraommunication overhead cannot be completely ignored even
tive if the new method is sufficiently general in describing thig fast network is used. Furthermore, task decomposition and
framework and allows performance analysis to be carried adheduling create constant overhead that can be substantial too.
before any practical implementation. Adding these up, the true performance of a parallel implementa-

In this paper, we present a new parallelization method ftion would be determined by how well the sequential component
video coding. It stems from the concept of performing compand various overheads can be minimized or hidden.
tation and communication in parallel such that communicationsLet « be the probability that the system is used in a pure se-
appear to be hidden by computation. The expected effect of thisential mode on one processor. The probability of using all
approach is that computations occupy most of the processés processors in a fully parallel mode is thus- « [23]. Am-
cycles, giving extremely high system efficiency. In essencéahl’'s Law states “If the sequential component of an algorithm
this method models the task size, processor cache capaaitgounts fokx of the program’s execution time, then the max-
and communication contention, through a systematic decommum possible speedup that can be achieved on a parallel system
position and scheduling approach, with the aid of Petri-ndtsl/«.” This can be interpreted as when an algorithm is paral-
and task graphs for representation and analysis. With the téslized by Np processors, the sequential component execution
and data size known, typical problems such as cache migse remains unchanged, while the execution time of the other
may be avoided by imposing restrictions on the task and datamponents are reduced b time. If 77 andZ}, represent the
size during decomposition. By considering communicaticgxecution times on 1 anfp processors, respectively, we have
contention on the network, task scheduling, and execution may

T

be modeled more accurately to reflect actual events. The use Th=(1—a)——+od. 1)
of Petri-nets and task graphs help to visualize and analyze the Np
model and enable theoretical study and practical refinemeft.n, — oo, then the speeduf; /7, — 1/a. Here, the

The theoretical speedup analysis of this method indicates tBgkedup is upper bounded by no matter how largévp is. If
it offers excellent communication hiding, resulting in system — ¢, then7; /7,, — Np, which is the ideal case. In general,
efficiency well above 90%. To prove its practicality, a H.261, is also called the sequential bottleneck in a program.
video encoder has been implemented on a TMS320C80 systergor communication, ifVp is large, the delay through the in-
according to the model. Its performance was measured, fregiconnection network grows proportionally. To reduce this ef-
which the speedup, frame rate, and efficiency were calculat@gt, one can either reduce the communications between pro-
The only difference detected between the theoretical apéssors, or use high-speed network to shorten the delay. The
measured data is the program control overhead that has p@iblem is that the communications may be difficult to reduce,
been accounted for in the theoretical model. Even with this, tead if this is the case, no matter how fast the network is, net-
measured speedup of the H.261 is 3.67 and 3.76 on four paraligkk delay could still be substantial. Another possible and yet
processors (PPs) for QCIF and 352240, respectively, which more attractive approach is to incorporate a dedicated commu-
correspond to frame rate of 30.7 and 9.25 fps, and systef@ation unit working in parallel with a computation unit, in
efficiency of 91.8% and 94%, respectively [22]. each processor. The whole idea is that when computation is in
This paper is organized as follows. Section Il describgfiogress, there can be communication in the background. Rather
the parallelization method and the estimation of computati@han trying to reduce the absolute communication delay, this ap-
and communication delays. Section Ill demonstrates how tggoach attempts to hide all or part of the communication.
method is applied to implementing the H.261 encoder on theFurthermore, decomposition and scheduling are crucial to the
TMS320C80. Section IV presents the measurement conditiaffole parallelization approach. How the problem is decom-
as well as the detailed results and discussions. This papepd$ed into tasks determines the granularity of the paralleliza-

concluded in Section V. tion. To arrive at an appropriate granularity, task and data de-
pendencies must be knovanpriori. The general rule is that
II. PARALLELIZATION METHODOLOGY the tasks of a sequential component have strong dependency,

whilst the tasks of a parallel component have weak dependency.
Similarly, data could be exclusive to a task or shared by others.
Ideally, parallel processing witlV,> number of processors Once it is allocated, the shared data between processors cre-
should have a speedup & times in performance. However,ates the basic communication needs. When performing sched-
this is possible only if the problem can be decomposed intding, granularity plays a major role. Scheduling is simpler for

A. Preliminary Considerations
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coarse granularity because of the smaller number of tasks and L ME, | | ME,
less communication between them. However, task workloads v v

are more difficult to be balanced, and efficiency is expected to [ Mc, | [ Mc, |
be poorer. In addition, if the tasks/data allocated to a processor v v

is larger than its cache size, then the cache misses would cause | DCT, | DCT, J
unexpectedly long task delays. Conversely, fine granularity re- v

sults in numerous smaller tasks and probably more communi- LQU,L\NTl }_ [ QUANT,
cations between them. It would usually be easier to balance the
workload in each processor, giving better efficiency and smaller [zi6zaG, | | [z16zAG, |
cache miss problem. However, more communication means that
a match in the cache size and task size is not an issue to be over-
looked if one strives for true performance.

| IQUANT, ¢ | IQUANT, ¢

B. Computation Characteristics of Video-Coding Algorithms

[ ocr, | | mcr, |
Existing video-compression standards rely on the reduction | n»fc | | IMLC |
1 2

of temporal and spatial data redundancy existing among digital
video data. Temporal data redundancy corresponds to data ¢Qr-;
relation between pixels across different frames and it is reduced
by motion compensation between frames. In a macroblock
(MB), pixels are coded as the motion-compensated residues 4—— M MB (per frame)———»
after subtracting by the pixels in the reference frames. Since
the residues are usually smaller in magnitude than the pixels
themselves, compression is achieved by coding the residue data
and the motion vectors. Usually, there is one motion vector per
MB, although some standards support more than one motion
vector per MB by distinguishing motion vectors between
forward and backward directions and between odd and even

picture field references. % { 11 :
To determine the motion field, motion estimation (ME) is j: _Eil___é_.é____gé
s
é{ :

Task graph for video coding.

usually performed. Assume that the current and reference frame
data are supplied from a global data server (DS), which can be
a video capturing processor or a communication processor, ME
is a process of searching for the closest MB from the reference
frames within a search area. The search area is a bounded and
enlarged area in a spatial position offset from the position of the
currently coded MB. Different standards have different sizes.
Theoretically, there is no specific ordering of the MBs in a pic- L : N | Gl |
ture regarding ME, it can be parallelized over all the MBs if so Node 1 Node 2 Node N,
desired.

After motion compensation, the frame of residues is dividdd®
into a number of blocks o8 x 8 pixels for transform coding,
quantization, zigzag traversal, and variable-length coding. Sim- .
ilar to ME, there is no specific ordering of the blocks in a picS: Task Decomposition
ture regarding these coding steps. Therefore, in theory, codingn this paper, a task is defined as a data unit together with
of a frame can be parallelized spatially with granularity of MBa piece of function or code that operates on the data. The data
as long as the required input data and reference frame datainctudes the variable space for the input, output and any side ef-
available. fect involved. For example, the ME of an MB is a task with the

The final step in coding a frame is the generation of thaput MB, all referenced pixels in the search area, and the re-
output bitstream. This step includes the construction of tlséllting motion vector as data. Its function is to find the motion
bitstream structure by inserting headers of various levels thatctor giving the smallest sum-absolute-error. The side effect is
often use differential coding to reference the previous tie error statistic, which can be used for future MB type deter-
neighboring headers. For this reason, the bitstream constrognation.
tion is inherently sequential. In the following discussion, we In determining the size of a task, several criteria should be
consider the bitstream construction for a frame to be a singlensidered. Firstly, data size of a task is restricted to be smaller
nondivisible task calletieader-VLC than or equal to the processor cache. Second, the execution time

2. A task-allocation scheme.
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Fig. 3. Petri-net representation of the hiding scheme

of a task at a remote processor should be greater than the datarask Memory Access and Allocation
communication time for loading the task and saving the results
from the processor. Otherwise, it is better to execute the tasklThe mapping of tasks to the processors has two constraints.
locally. Third, a task should possess certain generalized furitie first is that the precedence relation established in the task
tional meaning, as they have higher possibility of being reusgdaph must be followed. If two tasks with precedence relation
in a class of applications. In general, if not all three criteria caare mapped to different processors, there must be at least a
be satisfied in each case, the first two should take precedenceyichronization point in time between the two processors such
the third. that the precedence relationship is satisfied. It should be noted
Usually, it is desirable to have large number of parallel taskifiat the synchronization point introduces processor idling time,
which can be grouped according to data access locality aasithe processors that complete their execution faster than the
temporal locality. To satisfy this, we argue data decompositiathers would have to wait for those that are still executing. To
is better than functional decomposition because within avoid unnecessary synchronization, tasks should be allocated
function, data accessed usually has high temporal locality. Iach that there is a minimum number of synchronization points.
function is split into two tasks, the data shared between taskise second is the matching of task data to processor memory.
may cause more communication overhead. Conversely, tWhis constraint is not a necessary condition, but it allows the
tasks with shared data may be merged to form a bigger taskue of triple buffering to hide communication overhead. To do
reduce such overhead. that, the basic requirement for triple buffering is that the local
The above considerations were applied to video coding amimory of a processor can at least hold two tasks simultane-
Fig. 1 depicts a general task graph. It consists of nine tasks pesly. When a task is being executed, the result of the last task
MB in each column. Tharc between two tasks represents thé saved to the global buffer while the next task is being loaded.
precedence relation between them. If a frame consisis bfB,  If the saving and loading of data complete earlier than the com-
there are9M tasks per frame, where there is no precedenpatation of the current task, the processor can proceed to the
constraint between tasks of different MBs. next task without idling. Strictly, the first constraint is for cor-
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rectness and therefore must be satisfied. The second constraint
is for achieving better performance, which can be sacrificed if
necessary.

Mathematically, a sequence of tasks allocated to a pro-
cessor should be constructed on the condition that every
pair of successive tasks have the union of their data access
smaller than or equal to the processor memory size. Let
S=A{Lli=1,2,---, Nr} be a sequence of tasks allocated
to a processot¥y be the number of tasks ifi, M (T;) be the
data accessed 1, andC be the size of processor memory.

If the tasks inS are executed in the order of increasihghe
condition is that

|M(T;) UM (T;41)| < C, t1=1,2,---,Npr—1. (2)

To illustrate these points, Fig. 2 depicts one possible task al-
location scheme, in which the MBs are decomposed infg,>
subsets of\/ /N MBs each when allocated to each processor.
Under this scheme, each processor can perform a sequence of
tasks before a synchronization point and start another sequence
of tasks after a synchronization point.

E. Communication Hiding

Let Nr be the number of frames to be coded as a unit. For
MPEG-1/2,Nr is the number of B-frames between successive
I- or P-frames, plus the trailing I- or P-frame. For H.261 and
H.263, N is 1 and 2, respectively, which H.263 allows two
frames to be coded as a unit called a PB-frame. The Petri-net
representation in Fig. 3 depicts the buffering scheme. In the net,
a circle represents placelabeled ag; [24]. The rectangular
boxes represertansitionslabeled ag;. If a transition is asso- Fig 4. Ppetri-net for parallel coding of a frame.
ciated with a time delay, it is labeled dg else it is represented

by abar. Thearcsbetween places and transitions carry aweight ] ]
of unity unless specified. A transition is enabled and fired if afid vice versa. The delays for swapping buffer pointéssds,

ofits inlet places have the number of tokens specified in the cék) areé considered insignificant compared with the coding time.

responding arc. Once fired, the tokens enabling the transition Sf@te that in this scheme, the coding of a frame is divided into

consumed while new tokens are generated in the outlet plad¥§ parallel transitionst,; and, with delayd; andds, respec-

The solid black circle and number inside a place represent fi¢ly- Itis because the Header-VLC task is inherently sequential

number of tokens in that place. The tokens currently shown &§"0Ss the MBs while all the other functions from ME to IMC

Fig. 3 represent the initial marking, where omlyis enabled for ¢an be decomposed into parallel tasks.

capturing a frame. This overlapping of video capturing and coding repeats and
In this scheme, there are three sets of logical buffers. The fitgere is a delay a2 Ny frames in the coded bitstream. It can be

logical buffer is called theapture buffeCB) which is used to shown thata new frame in the CB is skip only if the coding time

hold the frame currently being captured. Its size is equivaleistionger than the capture time. Therefore, the resulting average

to a single frame buffer. The second logical buffer is called tfieame rate is determined either by or dg, depending on how

transit buffer(TB), which hasNy frame buffers. Its purpose isWell ¢ is parallelized.

to keep a set olVy recently captured frames. The third logical The transitiortg is further expanded in Fig. 4. This Petri-net

buffer is called the@rocess buffe(PB), which is the same as theconsists of rows of parallel transitions separated by synchro-

TB and it is used to hold th&/r frames that are being codednization points. The number of parallel transitions in each

currently. The utilization of these buffers is such that the physsw equalsNp. The number of rows equal§s, which is the

ical frame memory corresponding to a logical frame buffer isumber of synchronization points. In the net, eatf, j)

not fixed. For instance, when a new frame is captured into tdenotes the sequence of tasks executed by procgdsefiore

CB, its buffer pointer is swapped with the pointer of a free framtheith synchronization point. There is no other synchronization

buffer in the TB. This allows the capturing hardware to accessenS(i, j) is executed.

the free buffer and load the next frame. This continues Uil The details ofS(¢, j) is expanded in Fig. 5. In this Petri-net,

frames are stored into the TB. Then tig: pointers of the PB Nr (i, j) is the number of tasks in the sequeritié, ;). These

are swapped with those of the TB such that the physical memaagks are executed in one processor, which is assumed to have

associated with the TB is now associated with the PB instedidhited data cache size. Before execution of a task, the task data
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is loaded into the cache from a global data server. After execl +
tion, the result is saved back to the server. Tl )| Load first task data
F. Theoretical Speedup Estimation 2N, J)

From Fig. 3, ignoring the time delays @f, ds, d, andd; as
they involve only swapping of pointers and skipping of frames /
the significant delays aré (frame capture)d; (Header-VLC)
anddg (parallel task execution). As they are executed in paralle!
the resulting frame coding time is i

1O

T Data communication
Al Computation T(ijk-1) | 1. Save previous
Tk | o current task +T,(ijk+1)|  task output

Ty =max{dy, ds, ds} . 3 { | 2. Load next task data

From the expansion df, and denoting the delay ¢f(¢, 7)

by d(i, j), we have ° (o)
]\TS A
dg = ;jeﬁ{%ﬂ{d(%, N} @

To determined(s, ), let us denote the computation delay,
task loading delay, and saving delayBy(, 7, k), Tr.(¢, j, k)
andT7s(4, j, k), respectively, for théth task inS(¢, j). From
the expansion of (4, j), d(i, j) equals to the sum execution
delays ofNr (i, j) tasks inS(¢, j) plus the leading task loading

and trailing result saving delays, which is given by TIiiN f. .~ | Save last task
slid NN output
d(i, ) =Te(i, j, 1) +Ts(i, j, Nr(i, )+ Tp(, j, 1) *
Nr(i,5)—1 Fi . o
o o g.5. Petri-net of task sequensé:, j).
+TP(1’a Js NT(Z’j))+ Z

o h=2 a critical path between two synchronization points, that deter-
-max[Tp(i, j, k), Ts(z, 3, k—1) minesdg. Thereforedg is the smallest if workload is evenly
+17.(i, J, k+1)). (5) distributed across the processors between each pair of synchro-
nization points.

Therefore, the resulting frame time is expressed as To further simplify the estimation, we assume the computa-

Ty = max tion delay '»(¢, j, k)) to be a random variable with Gaussian
dy, ds, distribution. The mean and variance of the distribution are es-
Tr(i, 4, 1) + Ts(i, 4, Np(i, 7)) timated from t_ime measurement of a sequential ex.ecution. The

N Toli. i DAToli 5 Noli. 4 mean and variance (¢, j, k) are used to determiri§ and

s (i, J, V+Tp@E j, Nr(i ) L Ty as given by (6) and (7) when the communication delays are
Zg’cf?%ﬂ Nr(i, j)—1 Tp(t, 7, k), known.
=1 + Z max|Ts(i, j, k—1)

=2 T, (i, 7, k+1) G. Estimation of Communication Delay with Contention

(6) For the communication delay, we assume a constant channel
Given the sequential frame time in (7), the speedup is the raq.,gndedth with a co_nstant initial setup del_ay. The parameters of
the channel are estimated by an actual time measurement over
betweenl; and?’ . . ) .
the channel with different message size. We find that a linear
Np=1- (7) model is applicable for processor-to-processor communication
_ N in systems such as the IBM SP2 [25] and the TMS320C80 [26].
From the above equations, there are two conditions undgy send a message of siaé, let T, be the communication

which the scheme exhibits better performance. First, from (@elay without contentiory be the initial setup delay anid”
there is a constant delay due to the initial task loading and thg the channel bandwidth, we have

trailing task saving, and there is further overhead if the task com- M

munication delay is larger than the task computation delay. The TL = —< 4 Tp. (8)

former delays cannot be hidden as such, but the latter communi- w

cation delay can be hiddenTp (i, 4, k) > Tr(¢, 4, k—1) + As the frame data is served centrally, itis reasonable to expect

Ts(4, 4, k+ 1), which depends on the communication channel queue of requests pending on the server, which is served one

bandwidth and the data size. by one. Assume a statistical queueing model [27]nl&e the
Secondly, the overall performance also depends on whethember of requests in the queug;n) be the request arrival

the loading is evenly distributed across the processors. From (4te, and.. be the request service rate, where bath) and

it is the sum of a series of maximum delays, each represeptare random variables with exponential distribution. Further

T =Ty
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assume that all the processors generate requests at the same rate 25
Ao, and that a processor with a pending request in the queue 20 WA=5
does not generate requests until its pending request is served. 107
Then the arrival rate at the queue is proportional to the number [": 15 ~ 157
of processors that do not have pending request in the queue, or
~ 10 207
Aln) = (Np —n)- Ao. 9) 5 /251
Letp, be the probability of having requests in the queue. At 0
equilibrium, there is a set of local balance equations by equating 0 10 N, 20 30
the sum of flow of probability flux between adjacent states to
zero, which are given as Fig. 6. Communication delay increases with contention.
pepn=AMn—1) pr1. (10) . N
( ) H. Limitations and Applicability
Solving this recursive equation foy, gives This method assumes independent processing between MBs

\ Nl in a frame, which is not entirely true in some cases. For ME in
] po = K_O) —P} po. (11) H.263, if the long-vector feature is used under timeestricted

p/) (Np—n) motion vectooption, the search area of the ME is relative to the
motion vector predictor. Since the predictor is obtained from the
motion vectors of three nearby MBs, the ME of these MBs must

i=1 H

- lH A(i—1)

To calculatepy, we equate the sum of all probabilities to 1

which gives be performed in a particular spatial order. This limitation only
_ 1 _ 1 occurs if long vector of range-32, +31] is used.
Po= > A — 1) T [Ne W\" N ' When bit.—rate cont.rc?l is concerned, none of the coding stan-
I+ ZH Z <—) —_— dards specifies how it is done. A commonly adopted method is
n=ti=1 M —— (Np —n)t to adjust the quantizer(s) base on factors such as discrepancy
. . (12) between the target and actual number of bits generated, and the
.By I__|ttle S Law [31], the mean delay of a request in the AU€Ustimated content of each MB in terms of variance. For parallel
is given by coding, the current number of bits can be placed in the DS so
°0 that all the processors can reference and update it. The gran-
B Zn " Pn ularity of quantizer adjustment can be at the MB, MB row or
Te =2 = n=1 ] (13) frame level. However, in H.263, there is a limit of plus or minus
iz 2 on the quantizer relative to the left neighboring MB such that
nz:l“ P the validity of the quantizer is not known, until the neighboring

MB quantizer has been determined. This restricts the coding of

From (13),1¢ is the message transfer delay under contentiofiBs in certain order.
In general I, is greater thaff., especially for largeéVp. Fig. 6 Apart from the above limitations, this method does not im-
depicts the ratio of - to 7¢, versusNp at different./Ao. For - pose any restrictions on the list of tasks performed when coding.
small i/ Mo, the ratioZ-/T¢. increases almost linearly and isDifferent coding standards in general may be represented by the
large. Itis because the request rate is larger than the service naisk allocation scheme shown in Fig. 2, where precedence re-
resulting in long queue length. For largg ), the request rate |ationship could be accommodated using appropriate synchro-
is smaller than the service rate, hence the server is able to keggation points. Similarly, the Petri-net representation as de-
the queue length short, aff@: /7. small. picted in Fig. 3 can be applied to all four standards. The only

To apply the above to the communication delay estimatiogifference between them would lbg Moreover, Figs. 4 and 5
we first use the message size and the raw channel bandwigith equally applicable to all cases disregarding the actual list of
without contention to estimatd’(i, j, k) [or 17 (%, j, k)] tasks performed in individual coding standards. Table | lists the
and then apply the queueing theory to obtdi(i, j, k) [or possible tasks for each of the four coding standards. Out of the
T7.(¢, 4, k)]. This requires an estimate of the average requégit, there may also be tasks such as coding mode determination,
generation rate\y and the service ratg. As request is gen- rate control and scalability options, which can be incorporated
erated at the start of each task, the request generation rat@ts the model without any restrictions.
therefore the reciprocal of the mean task execution delay, and
the service rate is equal to the reciprocal of the service delay . | MPLEMENTATION ON THE TMS320C80
T4, j, k) [or T4(i, j, k)], .

After each synchronization point, all the processors issue f&- Dévelopment Board and Internal Architecture
quests to the DS almost simultaneously. This transient periodTo verify the methodology, the implementations were carried
causes the longest loading delay when the DS serves the mraton a TMS320C80 Software Development Board (SDB) [28].
cessors sequentially. In this estimation, the initial loading delétyconsists of 8 Mbytes on-board memory, called EXTMEM,
T5(¢, 4, 1) and the final saving dela¥s (¢, j, Nr(¢, j)) are thatis used to store program code and data, hardware for video
multiplied by N to account for this transient period. frame grabbing, video display, audio, interrupt control and PCI
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TABLE |
POSSIBLE TASKS FOR THE4 VIDEO CODING STANDARDS
H.261 H.263 MPEG-1 MPEG-2

ME P-MB MV PREDICTION P-MB ME FRAME/FIELD ME
PREDICTION (MC) P-MB ME B-MB ME DUAL-PRIME FRAME/FIELD ME
ENC (DCT, QUANT, ZIGZAG) | B-MB MVD SEARCH PREDICTION PREDICTION
TC_VLC P-MB PREDICTION ENC DCT TYPE ESTIMATION
RECONSTRUCTION B-MB PREDICTION TC_VLC ENC
(IQUANT, IDCT, IMC) ENC RECONSTRUCTION | TC_VLC
HEADER-VLC P-MB RECONSTRUCTION HEADER-VLC RECONSTRUCTION

TC_VLC

HEADER-VLC

interface to the host PC. Both the hardware video frame gratata transfer. Since only a local register is accessed, there is no
bing and display can be done in real-time (30 fps) on differebtirden on the crossbar switch or the TC.
frame sizes. For the internal architecture of the PP [29], there is a cer-
Inside the TMS320C80 chip, there are four parallel processaasn degree of parallelism per instruction cycle. The main com-
(PPs) for number crunching and one master processor (MP) faments of a PP are one data unit and two address units. The
program control, systemmanagement,and|/O. Allofthemaccekta unit composes of a splitable 32-bit ALU and a splitable
EXTMEM andthe other hardware devices onthe SDB through a6 x 16-bit integer multiplier. Using specific assembly language
on-chip communication processor: the transfer controller (TGhstruction, the ALU can be configured as one 32-bit unit, two
Requests to the TC from the processors and the video controllérbit units, or four 8-bit units. The multiplier can be configured
(VC)are queuedinthe form of packet transfer, where they are pia-work similarly. In the extreme, the data unit can be configured
oritized and serviced one atatime. Therole ofthe VCis to handte deliver up to six 8-bit integer operations per cycle. For the
allthe frame grabbing and display facilities. Having a separate T®o address units, the global address unit covers a greater range
fits wellwith the communication hiding conceptemployed by ouwsf the memory address space than the local address unit. They
methodology, andthe presence ofthe MP and VC allowsthe PPs&m work simultaneously to allow two parallel data transfer of
be dedicatedto performingthe codingtasks. Thereisalso atotabdfbit word between the local cache memory and registers in
50-kB cache memory, whichis divided into 25 2-kB cache blocksne cycle. For accesses to other memory, such as the EXTMEM,
These cache blocks are classified into parameter RAM (PRANIe transfer must be done through the TC.
instruction cache (IC), and data RAM. The PRAM is mainly used
to store system parameters, such as the TC packet transfer tdbledmplementation Issues

system stack and interrupt vectors. Part of the PRAM is available\when implementing the H.261\s is set to 2 such that there
foruserapplicationstoo. The PPsand MP haveaPRAMeach. Tt 2 synchronization points for each frame. The number of
purpose of the IC is to store recently accessed instruction cod@®s is evenly distributed over the PPs, and the video capture,
Each PP has one IC, whereas the MP has two. The data RANHisader-VLC calculation and other system functions are done
the working space of user programs. The two data RAM block$the MP. The TC and EXTMEM together act as a data server
in the MP work as data cache with automatic cache replacemgiythandling input frames, decoded frames and output bitstream.
mechanism. Forthe PPs, each hasthree data RAM blocks withpHe S(1, ;) task consists of just ME, whereas the other eight
cache replacement facility. They rely on the application progragsks from MC, DCT to IMC for each MB are grouped together
to handle all the data caching. This is, in fact, advantageous fgfform theS(2, ;) task termed ENC. The reason for choosing
parallel program analysis as the programmer would have mayer ;| ;) andS(2, ) in this way is mainly due to memory access
control over data movement. Finally, the communication of thgcality.
MP, PP, TC, and cache blocks are through a dedicated CrOSSbgor ME, out of the nine referenced MBs, six of them are
switch. This crossbar switch enables random access of the cagiy@ referenced by a neighboring MB. Therefore, maintaining
blocks bythe MP or PPswithinacoupleofcycles. Thismechanis@B data locality can save considerable communication delay.
enablesthetriple bufferingideatobeimplementedeasily. Overlapping of computation and data transfer is also allowed
In general, inter-processor communication between the RRigh a cache size of 12 referenced MBs plus two MBs for triple
and MP is performed through different levels of the memomyyffering of the MB under coding. The ME tasks are ordered
hierarchy. The first level is the on-board memory that can hol}; raster scan order and then partitioned into even sequences
a large amount of data from which all the processors can accgssallocation to each PP. Each PP has to follow the same or-
through the TC. The penalty for doing so is the slow access r@fgring in processing the sequence of ME tasks allocated to it.
due to the initialization of the TC. The second level is througiith this arrangement, each task data communication involves
the on-chip data RAM, which can be accessed in two cycl@sading three reference MBs, one input MB and saving a motion
by any one of the processors. The third level is through the uggctor and the MB attributes, i.e., approximatédyx 16 x 3+
of the communication register (COMM). It is a very fast andg x 16 or 1024 bytes. For the ENC task, there is no overlap
effective way to provide an inter-processor signaling, but ng{ memory access between different MBs. As such, the order
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| S(1,1) | | S(1,2) |
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\

Data communication
1. Save previous task output
2. Load next task data

J

Fig. 7. Implementation scheme on the TMS320C80. (a) Task allocation to MP and VC. (b) Task allocation to PPs and TC. (c) Detailed task allocatioh to PPs a
TC.

of ENC task processing has no influence on the communication
cost. The task data communication involves saving a decoded
MB, loading an input MB and a referenced MB, i.e., a total of
(16 x 16 + 2 x 8 x 8) x 3, or 1152 bytes. Fig. 7 depicts the
mapping of the model onto the TMS320C80 system.

IV. RESULTS AND DISCUSSIONS

A. Measurement Criteria and Conditions

The results presented in this section have been obtained from
Fig. 8. A tested QCIF sample. timestamps taken from the actual implementation on the PPs.
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Fig. 11. Frame rate of QCIF.

alent to 400 instruction cycles on the PP. To achieve more accu-
rate timestamps, finer clock tick may be used with the penalty
of more frequent MP interrupts and PP PRAM contentions.

B. Serial Performance

As a baseline reference, a serial encoder was first executed
on one PP and its average frame time was measured over 50
frames. A typical frame of the video captured is depicted in
Fig. 8, which consists of a typical head-and-shoulder view of
a person. The average frame time measured at frame sizes of
352 x 240 and QCIF(176 x 144) were 406.5 and 119.5 ms, re-
spectively, i.e., 2.46 and 8.37 fps, respectively. The average per-
centage time breakdown for QCIF is shown in Fig. 9. The most
time-consuming task is the ME as expected (27.1%), followed
by the DCT (19.4%), IDCT (16%), and TC_VLC (10.2%). It
should be noted that these figures are obtained after the as-
sembly codes have been manually optimized. The rest ranges
from 8.1% (QUANT), 6.5% (IQUANT), to just below 1%. On
the chart, INIT_TC (1.5%) is the time spent on initialization of
packet transfer table, and WAIT_TC (0.9%) is the time spent
on waiting for data transfer to complete. Furthermore, there is
a component called IDLE (2.5%) which is the time spent on
doing neither communication nor computation. This is caused
by the imbalance of workload among the PPs in the multiple PP
case, plus the waiting time for the MP initialization. Since there
is only one PP in this case, 2.5% represents mainly the waiting
time for the MP initialization.

The bandwidth of the TC without contention was esti-
mated by measuring the time for transferring messages from
EXTMEM to the on-chip RAM and vice versa. For different
message sizes, a number of measurements were conducted and
the average time was taken. As depicted in Fig.1¥0andZj
are estimated to be 153 Mbytes/s and @s8respectively.

C. Parallel Performance

For the parallel performance, the theoretical performance was
first predicted based on Section II-F and II-G, while the ac-
tual performance of the implementation was measured under
the criteria mentioned in Section IV-A and compared with the
predicted and ideal linear performance. Figs. 11-13 depict the
frame rate, speedup and efficiency for coding the QCIF video.
In Fig. 11, the predicted and measured frame rate rises almost
linearly up to four PPs. The measured frame rate achieved is
30.7 fps using four PPs, while the speedup is 3.67, as shown in
Fig. 12. The almost linear speedup indicates that the system has
successfully hidden most of the communications and has negli-
gible processor idling delay. This may be explained as the mean
computation delay being around 300 and @80dor the ME and

All the PPs use a common clock tick generated once eveps10ENC tasks, respectively. The communication delay without TC
by the MP TIMER to make timestamps at various instances obntention is about 9.5 and 13.4 for the two tasks, respec-
program execution. At each clock tick, an interrupt is genetively, (with contention, they are 10.3 and 14§, respectively,
ated to the MP, which writes the updated clock tick value tofar four PPs). In both cases, the communication delay is sub-
specified location in the PRAM of each PP. As it is, this incurstantially smaller than its computation delay, which can be ef-
overhead to the MP, and the PPs may experience contentioffieatively hidden for each PP. It should also be noted that the
accessing their PRAM if the MP is writing the clock tick valuemeasured performance is slightly less than the predicted perfor-
simultaneously. To reduce this contention to a negligible levehance. This is due to the fact that parallelization overhead has
consecutive clock ticks are separated bydQwhich is equiv- not been taken into account in the theoretical model.
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Np, the trend seems to be a more rapid decrease beyond four
PPs. Even with this behavior, the method presented here still
compares favorably with other published methods.

To illustrate how the model behaves beya¥id = 8, Fig. 14
depicts the predicted speedup up to 100 PPs. As can be seen,
the estimated speedup rises steadily and almost linearly up to
10 (Np = 10), beyond which the shape of the curve becomes
stepwise. This is due to the small number of MBS, integrally
divided by the number of PPs. As a result, there tends to be un-
even distribution of MBs on the PPsif is not divisible by the
number of PPs. For this reason, some PPs complete computation
earlier than the others and have to wait. This reduces the speedup
and becomes worse when the number of PPs having to wait is
in majority. This stepwise characteristic may be smoothed and
improved if the workload is balanced [30]. In fact, when the
number of PP approaches the number of MBs, i.e., 99, the initial
and final communication delays dominate and there will be no
benefit in using more PPs. In theory, a finer granularity should
give smoother speedup and extend farther with more processors.
However, this is not true in practice since the communication
overhead increases rapidly with the number of processors be-
cause, first, due to the contention of communication channel,
the communication delay increases with the number of proces-
sors. Second, with finer granularity, data sharing between tasks
will increase which results in duplicated communication. In our
current implementation, we find that the TC can support finer
granularity since the current computation delay is greater than
the communication delay (between 30-60 times). For tasks with
larger data size, due to the limitation of the cache size, finer
granularity may be necessary.

For352 x 240, the measured and predicted performance have
similar trend to that of QCIF. The frame rate and speedup fig-

In Fig. 13, the efficiency is calculated as the percentagees are depicted in Figs. 15 and 16, respectively. A frame rate
ratio between the measured or predicted speedup and the linded.25 fps has been achieved @ = 4. Extending our pre-
speedup. Practical parallel algorithms would have efficiendlction, 30 fps is achievable at aroud> = 14, i.e., if paral-
less than 100% due to parallelization and communicatidelization overhead is included, four C80 will probably give 30
overheads. In this case, the predicted efficiency is over 90s. The measured speedup for four PPs is 3.76. In general, the
for up to eight PPs, whereas the measured efficiency for apeedup for th852 x 240 video is better than QCIF because of
to four PPs is also over 90%. This is some 10% better thére larger amount of data involved in the former case. From the
any parallel implementation reported so far for small or largeercentage efficiency depicted in Fig. 17, it is observed that the
Np. However, if the measured efficiency is projected for larggaredicted efficiency remains well over 90% up/Xg> = 8. The
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100 e number of tasks in the sequence. Therefore, the expected per-
<\" """""""""""""""" centage idling time should be smaller with sequences having
90 larger number of tasks.
. 80 V. CONCLUSION
S
P 70 In conclusion, a new parallelization methodology for video
§ coding using the concept of communication hiding has been
£ 60 N successfully developed and implemented in this paper. It con-
"""" Predicted || siders task/data size, processor cache capacity and communica-
50 —>—Measured| | tion contention in a practical manner, through the application
of Petri-nets and task graphs. From that, the performance of
40 the parallel method can be theoretically studied and analyzed.
1 2 3 4 5 6 7 8 This approach is appropriate because, firstly, when task and/or
No. of PP data decomposition is oriented toward matching the capacity of

the cache, substantial number of cache misses can be avoided.
Secondly, communication contention often contributes signifi-
cantly and realistically to the delay in accessing remote data.
measured efficiency however, showed the same tendency aBéing able to take this into consideration helps to come up with
QCIF where the parallelization overhead becomes more sigrafeloser prediction of the actual performance of the implementa-
icant with largeNp. Although the measured efficiency is 94%tion, which further enables us to refine the implementation. As
at Np = 4, if the curve is extended, the projected measured ghe parallel method is reasonably independent from the target
ficiency would be down to 85% faVp = 8. video-coding standard, it is fair to assume that the method is
In Fig. 18, the predicted speedup is almost linear uyto=  equally applicable to the remaining three standards. In fact, full
20, beyond which the increase is stepwise and reaches a maxplementation has been tested on H.261, and the H.263 stan-
imum of 48, as compared with 27.5 for QCIF. The reasons wltlard was also implemented based on this method with very sim-
this figure is larger than the QCIF case are, firstly,82 x 240 ilar performance characteristics.
video, there are more tasks in the sequence. As a result, the iniFrom the measured results, it can be observed that first,
tial task loading and final saving delays in each task sequertbe predicted performance and measured performance are
constitute a smaller proportion of delay to the overall sequeneery similar. Second, frame rates of 30.7 and 9.25 fps have
execution time, giving a higher speedup. Second, as there iseeen achieved for QCIF angh2 x 240 video, respectively,
synchronization point between the PPs at the end of each tasth only one TMS320C80. Comparing with other practical
sequence, the expected overall execution time is the expedteglementations (excluding simulations), these results are very
maximum of theVp sequence execution time. A large standanegspectable. Third, system efficiency of over 90% has also been
deviation in sequence execution time implies a large maximuachieved. Both the speedup and efficiency are due to the paral-
time amongN > sequences and a large proportion of processletization method as well as how optimized the serial encoder
idling time. Assume each task has a mean execution time codes are. We noticed a marked performance increased after
and standard deviation. Whenn such tasks are executed, thehe assembly codes have been manually optimized. Fourth, this
overall mean and standard deviation becomesand./no re- parallelization method is particularly suitable for small-.
spectively. Therefore, the standard deviation increases in pFmr QCIF, the measured speedup is almost lineaMpr< 10,
portion to+/n and is slower than the increase in the mean. Aghereas for352 x 240 video, the measure speedup is almost
such, the variation relative to the mean decreases with increadingar for Np < 20.

Fig. 17. Percentage efficiency 862 x 240.
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