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Lane Detection by Orientation and Length
Discrimination

Andrew H. S. Lai, Member, IEEE,and Nelson H. C. Yung, Senior Member, IEEE

Abstract—This paper describes a novel lane detection algorithm
for visual traffic surveillance applications under the auspice of
intelligent transportation systems. Traditional lane detection
methods for vehicle navigation typically use spatial masks to
isolate instantaneous lane information from on-vehicle camera im-
ages. When surveillance is concerned, complete lane and multiple
lane information is essential for tracking vehicles and monitoring
lane change frequency from overhead cameras, where traditional
methods become inadequate. The algorithm presented in this
paper extracts complete multiple lane information by utilizing
prominent orientation and length features of lane markings and
curb structures to discriminate against other minor features.
Essentially, edges are first extracted from the background of a
traffic sequence, then thinned and approximated by straight lines.
From the resulting set of straight lines, orientation and length
discriminations are carried out three-dimensionally with the aid
of two-dimensional (2-D) to three-dimensional (3-D) coordinate
transformation and -means clustering. By doing so, edges with
strong orientation and length affinity are retained and clustered,
while short and isolated edges are eliminated. Overall, the
merits of this algorithm are as follows. First, it works well under
practical visual surveillance conditions. Second, using -means
for clustering offers a robust approach. Third, the algorithm is
efficient as it only requires one image frame to determine the
road center lines. Fourth, it computes multiple lane information
simultaneously. Fifth, the center lines determined are accurate
enough for the intended application.

Index Terms—Camera parameter estimation, center line detec-
tion, edge detection, lane detection.

I. INTRODUCTION

I T IS commonly believed that the smooth operations of
future intelligent transportation systems (ITS) rely heavily

on the amount of vehicle and road information acquired. At
present, different sensors have been deployed for this purpose,
e.g., buried loop detectors for detecting vehicle counts and
signatures, radar/laser sensors for tracking vehicle speed,
and video cameras for general surveillance. Moreover, other
electronic and optical sensors have also been developed for
detecting weight, vehicle registration, surface friction, presence
of vehicles, etc. [1]. Among those, video or CCTV technology
presents an exciting option as they can potentially extract
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a rich set of information in the most unobtrusive manner
compared with the other sensors. The argument is that from
video sequences taken from roadside or overhead mounted
cameras, valuable information such as travel time, speed, count,
queue length, and class may be estimated using an image/video
processing technique [2]. However, the pitfalls of employing
image/video processing in visual traffic surveillance is that it
is susceptible to effects created by natural outdoor phenomena
such as day-night changes, shadows, rain, fog, dust, etc. Even
under a normal and benign outdoor environment, current
image/video processing techniques do not guarantee robust
solutions.

One of the major challenges in surveillance is to detect the
presence of vehicles and their trajectories (speed and direction)
from which the estimation of other parameters and conditions
may be based. To do so, motion estimation and vehicle mod-
eling are two typical approaches reported in literatures [3]–[5].
Usually, lane direction is assumed known and used for refining
motion estimation and tracking [6], or not needed in cases where
the viewing angle is not along the lane direction. However, if
further information such as driver characteristics (how well a
vehicle follows the lane) and lane change traits (how often a
vehicle changes lanes) are to be determined, our knowledge of
lane direction and center lines becomes crucial. Although there
are sensors that can detect the camera’s tilt angle and distance
from the vehicle, which can roughly then estimate the lane di-
rection, they are mostly inaccurate and inadequate to determine
the characteristics as described above. As such, we are moti-
vated to find a robust lane detection algorithm that can accu-
rately extract complete multiple lane information including the
center lines from an image or a video sequence.

The goal of lane detection in this case is to locate the center
line of each lane from a multilane digital road image. To achieve
this goal, lane markings may be used to differentiate the lanes
from other features such as trees, bushes, humans, and others
that may possibly be in the image. The major difficulties in de-
tecting the lane markings correctly are that first, they are not al-
ways clearly visible due to their print quality and the changes in
environmental conditions. Second, the geometry of the mark-
ings cannot be used as a discriminating factor as there is no
governing standard. Further, road splitting or merging and the
interference from roadside objects or shadows could worsen the
detection. In this paper, we propose a novel lane detection algo-
rithm that is capable to deal with the above difficulties. As long
as the lane markings have reasonable print quality and the road-
side curb structures can be seen, environmental changes, varia-
tion in marking geometry, splitting, merging, roadside objects,
and shadows can all be tolerated in the algorithm. In principle, it
employs an edge-based approach to extract a set of edge features

1083–4419/00$10.00 © 2000 IEEE
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of all the objects in the image, which include the lane mark-
ings, curbs, roadside objects, and many other meaningful or
meaningless features. These edges are then thinned and approx-
imated by straight lines. From the resulting set of straight lines,
orientation and length discriminations are carried out three-di-
mensionally with the aid of two-dimensional (2-D) to three-di-
mensional (3-D) coordinate transformation and-means clus-
tering. The basis for this approach is that edge lines describing
the lane markings and curbs are long and are almost parallel in
the 3-D space. Given a correct clustering condition, these lines
will cluster together, while other short and isolated edge lines
will cluster into a different class, which can subsequently be
discarded. From the lane/curb edge lines, center lines of lanes
can be determined. Overall, the merits of this algorithm are as
follows. First, it works well under practical visual surveillance
conditions. Second, using -means for clustering offers a ro-
bust approach. Third, the algorithm is efficient as it only requires
one image frame to determine the center lines. Fourth, it com-
putes multiple lane information simultaneously. Fifth, the center
lines determined are accurate enough for the intended applica-
tion.

This paper is organized as follows. Section II outlines some
of the previous works in region-based and edge-based lane de-
tection. Section III gives an overview of the proposed solution.
Section IV briefly describes the edge detection, while Section V
discusses how the camera parameters are estimated and being
used in the 2-D to 3-D coordinate transformation. Section VI
details the heuristics used for orientation and length discrimi-
nation and Section VII describes the lane analysis. Section VIII
evaluates the algorithm using a practical freeway image, and the
paper is concluded in Section IX.

II. PREVIOUS WORK

Over the years, many road lane detection methods have
been developed for vehicle navigation. Algorithms reported
so far [7]–[17] all focused on detecting segments of single
lane road markings from an on-vehicle camera, using spatial
masks to isolate the left and right lane markings. In some cases,
the perspective image mask is transformed into 3-D before
heuristics are applied to identify regions defining the lane,
whereas in others, edge detection is applied to multiple window
strips directly. When processing the masks, region-based and
edge-based methods are both popular. From the results, the
road center line is then determined. The following paragraphs
describe some of these methods.

For instance, Schaaser and Thomas [7] employed a re-
gion-based method to segment road markings and modeled
them by circular arcs. Two markings are linked together
if they are concentric. The linked arcs are approximated
by second-order quadratic curves that described the road
boundaries. As only circular arcs are used for modeling the
road markings, this method lacks flexibility. Moreover, the
modeling and linking complexity increased exponentially with
the number of dashed markings per lane boundary, which is
worse for multiple-lane detection.

Jochem and Baluja [8] used the Hough Transform to extract
road boundaries from an image, where the extracted boundaries
are classified into road or nonroad regions by a single trained
perceptron, which required extensive training before it can be

used. From the road regions, they relied on a trapezoidal road
model to determine the center lines. Due to its computing com-
plexity, parallel computation is a basic requirement for this al-
gorithm.

Thorpeet al.[11] proposed a different region-based approach
for road detection in the Navlab. They assumed that the road has
no road markings at all. Image pixels are classified into road
and nonroad pixels according to their colors, based on known
road colors. Naturally, any change in outdoor illuminations may
change the road colors perceived by the camera and introduce
errors in the classification. This method works well on a road
image with good contrast between the road and roadside objects.
Whether it works for other type of images with roadside objects
having similar colors to the road colors is yet to be seen.

Kasprzaket al. [12] presented a road parameter estimation
method which classifies edges into three classes. Vanishing
point is used to define the horizontal ground. Edges above
the horizontal ground are eliminated while edges below the
horizontal ground are further classified as road and nonroad
edges. The stability of the algorithm seems to be highly
dependent on the vanishing point detection while the accuracy
of the detection is generally low and depending on the image.

Tang and Kasturi [13] developed a runway detection algo-
rithm for aircraft. They used Canny’s edge detection to extract
edges from the image. These edges are classified into straight
edges, circular arcs, and various types of junctions, which are
then described by marking models to form the basis of recog-
nition. The algorithm enjoys certain success because runways
usually have very clear and well-defined markings.

Kluge and Lakshmanan [15] described a deformable template
approach that is based on an image intensity gradient. A likeli-
hood function was used to provide a relative measurement of
how well a given set of shape parameters matched the pixels.
The algorithm uses an iterative method in which given suffi-
cient number of iterations have been performed; the detected
road matches closely with the actual road. However, the number
of iterations required to achieve this can be up to 703 000, as
mentioned in their paper.

In summary, most of the region-based methods used road
markings to differentiate the road regions from the other
nonroad regions. They can only handle one lane, and the
images must fit under a set of conditions, such as illumination,
color, and contrast, which limits the application of them in
visual surveillance. For the edge-based methods, they employ
sophisticated techniques on top of edge detection to improve
the quality of the detection. Unfortunately, these techniques
either incur heavy computing overhead or the environment has
to be very well defined. It is also observed that other useful
criteria are seldom considered. For instance, roadside curbs
usually give a fairly good description of the road boundary and
direction and are consistent with the lane markings, but have
not been taken into account. Therefore, for surveillance, these
features can potentially be utilized as additional parameters in
differentiating the road/lane edges from nonroad edges.

III. OVERVIEW OF SOLUTION

From the above observations, our solution is based on edge
detection and the discrimination of edge lines by orientation and
length. As depicted in Fig. 1, the road image may be acquired
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Fig. 1. Block diagram of the lane detection algorithm.

from a still or video camera. For the still image, it has to be taken
when there are no vehicles on the road. For video, a normal se-
quence with moving vehicles may be used from which the back-
ground can be estimated. In this research, the road image was
determined from a normal traffic video with moving vehicles
through background estimation [16], using a small number of
frames. Once the background has been estimated, feature pre-
serving filtering is employed to remove additive white noise due
to quantization or transmission [17], [18] to minimize the blur-
ring of edges due to filtering. Then, edges are extracted, thinned,
and approximated by straight lines where each line has an asso-
ciated orientation and length [19].

These edge lines are first clustered according to their ori-
entation using the -means clustering technique. As images
taken from roadside cameras are usually in a 2-D perspective
view, orientation clustering must be done in 3-D to make sense.
To perform this transform, camera parameters including focal
length, mounting height, and its distance to the focused point on
the road must be known. When viewed from the-axis, edges of
lane markings and curbs appear to be parallel and will cluster as
a result. In contrast, edges of roadside objects, uneven road color
or surfaces, or noise, are dissimilar in orientations, which may
be discarded. From the orientation discrimination results, edge
lines are linked and clustered according to their length using the

-means technique again. The purpose of linking is to connect
those short edge lines with similar orientations, which could be
part of a broken line or a poorly detected solid line. The clus-
tering further isolates the short edge lines, which may be dis-
carded. Up to this point, it is possible that some of the lane
markings are poorly detected and, therefore, missing in the re-
sulting edge set. However, curb features may be relied upon as
they are usually prominent in most road images. For lane anal-
ysis, center lines are calculated based on an assumed road width
and the separation between two detected lines adjacent to each
other. As it is, the approach is capable to estimate missing lanes
in multilane cases.

IV. EDGE DETECTION

As depicted in Fig. 2, lane markings are either solid or broken
lines painted white or yellow. Other markings such as direction
arrows and instructions painted on the road are also common. In
addition, slightly elevated curb structures are often used to sep-

(a)

(b)

Fig. 2. City road. (a) Original image. (b) Extracted background.

arate roadside objects such as bushes, lampposts, and buildings
from the road. To detect all these edges, a reliable and accurate
edge detector is preferred, as further discriminations will elim-
inate the unwanted ones. In this case, the Sobel edge detector
was chosen for its differencing and smoothing property [19].
The edge map is thinned as shown in Fig. 3(a). As can be seen
in Fig. 3(a), local color variations in the image are all detected as
edges, e.g., the white spots on the leftmost lane, the different sur-
face color of the lane right of the double white line, and the in-
structions on the road. The edge pixels are then linearly approx-
imated into straightline segments as depicted in Fig. 3(b). As a
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(a)

(b)

Fig. 3. Edge maps of Fig. 2. (a) Thinned-edge map. (b) Straight-line
approximated edge map.

result, the approximated edges become smoother and some of
the small local edge variations have now disappeared, although
the edge map remains complex.

Mathematically, each edge point is approximated by
. Given an image , the set of edge lines is defined as a

collection of straight lines satisfying the following:

(1)

where , and ,
denotes a line segment defined by two points (first
end point of the th edge) and (second end point of
the th edge), and is the number of edge lines in the set.

V. ESTIMATION OF CAMERA PARAMETERS

With roadside or overhead mounted cameras, road images
are usually taken in perspective view, in which roads appear
as trapeziums and parallel lines appear as converging lines. To
utilize the parallel line relationship, we need to restore the image
to its original 3-D coordinates, which requires the knowledge
of the camera parameters, such as height, tilt angle, and focal
length. In theory, camera height may be measured by infrared or
laser range sensor. However, commodity sensors’ measurement
accuracy decreases with measurement distance. In surveillance,
the camera may be mounted more than 30 m above the road
surface and some hundreds of meters from the vehicles, in which
case sensor measurement may incur many errors. On the other

Fig. 4. Camera model.

hand, gimbal angle sensors can be employed to measure the tilt
angle too. As its measurement is relative to the horizon instead
of the road surface, this introduces error as the road surface may
not be parallel to the horizon. To alleviate this problem, it is
decided to estimate these parameters using the camera model
depicted in Fig. 4 [7], [14], [20]. It describes the transformation
of the image coordinates from 2-D to 3-D and vice versa. We
term this2-D–3-D coordinate transformation.

In this model, the road is assumed flat and the camera is
mounted at a height of and focused at , which is on the

plane with focal length , while the distance between
and the camera is and the tilt angle is . The transforma-

tion, , of a point, , from the 2-D image coordinates to a
point, , in the 3-D coordinates may be defined as

(2)

where

(3)

Since the road is on the plane, (3) can be simplified to

(4)

From (4), if the camera parameters, , and are known,
then every point on the– plane has a one-to-one correspon-
dence on the – plane. Conversely, if certain feature points
have a known relationship on both planes, then the camera pa-
rameters may be estimated. Such features can be specific pat-
terns or shapes [21]–[23] intentionally placed on the road or
some known line relationships [20]. As placing specific patterns
or shapes on the road is rather impractical, the later case presents
a possible alternative. However, using a pair of parallel lines (or
more) does not provide enough independent equations to solve
all three unknowns. In theory, as long as there is a third line
that is independent to the parallel line pair, it will enable the un-
knowns to be found. In practice, the simplest way is to rely on
a line perpendicular to the parallel lines. The estimation of the
camera parameters is illustrated in the following.
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(a)

(b)

Fig. 5. Camera parameter estimation. (a) Image onx–y plane. (b) Image on
u–v plane.

Consider Fig. 5(a). Let the two parallel lines in 2-D beand
, and the perpendicular line be , where the corresponding

lines in 3-D are , , and , respectively, as depicted in
Fig. 5(b). The point on the - plane is given by , and
the point on the - plane is given by . In 3-D, the
slope of is given by

(5)

Substituting (4) into (5), we have

(6)

where

As lines and are parallel and their slopes are iden-
tical, therefore

(7)

From (7), we have

(8)

The perpendicular line is used to establish the following
condition:

(9)

Substituting (6) into (9) and expand, we have, , and
estimated as

(10)

(11)

Using these three parameters, Fig. 5(b) depicts the 3-D trans-
formation of Fig. 5(a), viewing from the-axis.

VI. ORIENTATION AND LENGTH DISCRIMINATION

A. Orientation Discrimination

Let us first define a road lane to have the following charac-
teristics: locally flat, defined by parallel road markings or curb
lengthwise and without sharp bends or roundabouts. Other than
those, a road can have multiple lanes. For orientation discrimi-
nation, let define a set of edge lines as follows:

(12)

where denotes the orientation of theth edge line on
the - plane in 3-D and is bounded between 0 and. Consider
the length of each line to be defined by . For each orienta-
tion , we can obtain a length value , representing the sum
of the length of all the edge lines having the same, as given
by

for all (13)

As this is carried out on the– plane, parallel lines defining
lanes and curbs have large , while other edge lines have
small . We then apply the -means clustering [24] with

to divide into two sets: and , according
to . The purpose of using the -means in this case is that it
identifies a “natural break” in the data set, to partition the data
into two sets. The subset contains orientation elements
that have large , meaning that they either have a few long
edge lines (curbs, solid lines) or a large number of short edge
lines (broken lines). Conversely, contains orientation el-
ements that have small representing minor features in the
image. From , we may define a new set of edge lines by

(14)

Fig. 6 depicts the resulting edge maps of Fig. 3(b) in–
and – planes after orientation discrimination. It can be seen
that most edges due to roadside objects, uneven road colors, and
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(a)

(b)

Fig. 6. Orientation discrimination result (city road). (a) Edge map onx–y
plane. (b) Edge map onu–v plane.

painted instructions have been eliminated. It should be noted
that the short broken lines dividing two lanes have also been
removed.

B. Length Discrimination

As also noted in Fig. 6, some of the remaining short and iso-
lated edge lines have been wrongly clustered to . To fur-
ther eliminate those lines, the edge lines in are first linked
according to their orientations and locations. The link conditions
are set as follows [25], [26]:

and (15)

where , , and , are their orientation, respectively.
Both and are predefined limits. If two edge lines satisfy
the above conditions, they are connected as given by (16), and
Fig. 7 depicts the connected edge map of Fig. 6:

(16)

where

and

As can be seen in Fig. 7, the edge map after edge linking still
contains a number of short and isolated lines. This problem can

(a)

(b)

Fig. 7. Edge linking result (city road). (a) Edge map onx–y plane. (b) Edge
map onu–v plane.

be dealt with by length discrimination. First, let us define the set
of connected edge lines by

(17)

Again, we apply -means clustering with to de-
compose the edges segments into two sets: and ac-
cording to . In this case, only is retained, with
discarded. The final set of edge lines can be described by (18)
and the corresponding edge maps are depicted in Fig. 8:

(18)

From Fig. 8, it can be seen that almost all the short and iso-
lated edges have been eliminated through length discrimination.
The remaining edge lines correspond to long parallel lines that
define the lane and curb positions. It should also be noted that
the lines due to the arrow remain, while the curb on the left is
now represented by two lines instead of one. These lines will be
eliminated during lane analysis.

VII. L ANE ANALYSIS

In general, a road lane consists of two parallel edge lines with
an almost constant perpendicular distance between them. As de-
picted in Fig. 8(b), after the discrimination of orientation and
length, all the lines are almost parallel to each other. To deter-
mine which pair of lines defines a lane, let the perpendicular
distance, , between a parallel edge line pair, , be

(19)
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(a)

(b)

Fig. 8. Length discrimination result (city road). (a) Edge map onx–y plane.
(b) Edge map onu–v plane.

where

and

If is similar to , a predefined lane width, a single lane is
detected. If is smaller than , then there is no lane between
the pair. If is larger than , there is possibly more than
one lane between the pair, and the number of lanes,can be
estimated by

(20)

To estimate the rest of the lanes, the other edge lines inare
evaluated. Those edge lines that do not belong to a pair forming
one or more lanes are discarded at the end.

Finally, the center line of each lane is calculated as the arith-
metic mean of the two lines defining a lane. These lines could
be edge lines or deduced from (20). Fig. 9(a) depicts the center
lines calculated from Fig. 8(b) and Fig. 9(b) depicts the center
lines overlaid onto the background image. It can be observed
that the center lines are reasonably accurate, particularly for
those lanes nearer to the camera.

(b)

Fig. 9. Lane analysis result (city road). (a) Broken lines showing the center
lines. (b) Center lines overlaid on the background image.

VIII. PRACTICAL EVALUATION

To further illustrate the effectiveness of the lane detection
algorithm, a practical multilane freeway scenario was used for
evaluation. The original traffic sequence was supplied by the
Transport Department of the Hong Kong SAR government,
from one of their overhead mounted CCTV cameras situated
at a busy freeway in Hong Kong. The image as depicted in
Fig. 10 was background extracted from less than 30 frames
( 1 s) of the video that contains a few moving vehicles. The
image shows an eight-lane freeway with four lanes in each
direction, together with an entrance lane on the left and an exit
lane on the right. Lane markings and curbs are reasonably clear,
although they suffer from blurring. Roadside objects such as
containers, bushes, and other roads below are also visible. In
line with normal practice, each frame is stamped with date,
time, and a camera identification code for reference purposes.
Since the background estimation was done in less than 1 s, the
date/time stamps appear to be stationary and, therefore, not
removed from the image. They present no major problem as
they will be eliminated later by the discrimination processes.
As a whole, the image contrast and resolution are poor, and
there are intensity and spatial variations on the road such as
broken central partition and different surface colors.

A. Edge Detection and Line Approximation

The thinned edge map using the Sobel edge detection is de-
picted in Fig. 11(a). The approximated edge map is shown in
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Fig. 10. Freeway background image.

(a)

(b)

Fig. 11. Thinned and approximated edge maps (freeway). (a) Thinned edge
map. (b) Line approximated edge map.

Fig. 11(b), with a maximum deviation of two pixels. It can be
seen from Fig. 11(a) that the thinned edge map is basically use-
less as it is. Although the strong features of the central partition,
the curbs, the lane split markings, and some of the lane markings
are evident, there are numerous short and disjointed edges repre-
senting some of the weak. It is also noted that the intensity vari-
ations on the road and the information printed on the image in-
troduce substantial interference to the resulting edge map. From
Fig. 11(b), the line approximated edge map is a slight improve-
ment from Fig. 11(a), where edge lines are smoother. However,
further processing is clearly needed.

Fig. 12. Orientation discrimination result (freeway).

Fig. 13. Edge linking result (freeway).

B. Orientation Discrimination

The result of orientation discrimination is depicted in Fig. 12.
Comparing Fig. 12 with Fig. 11(b), it can be observed that edge
lines that fall into the minor orientation set are mainly those
short lines with orientations quite different from those of the
majority of lines. These include the cluster of short lines on the
top left-hand corner and top right-hand corner of the image, the
printed characters, as well as the broken lines for lane sepa-
ration and the lane markings associated with the entrance and
exit lanes. The removal of some of the broken lines defining
the lane separation is undesirable as the lanes have now merged
and some of the strong features such as the curb on the left are
no longer so well defined. Other than that, the removal of the
features associated with the road splitting, roadside objects, and
printed characters on the image are welcome. On the other hand,
it is clear that there are still unwanted edges at various orienta-
tions left on the edge map.

C. Length Discrimination

Fig. 13 depicts the edge map after line linking. The effect
of line linking is well illustrated by the linking of the broken
line at the center of the map into a solid long line. Other than
that, the linked edge map is little different from Fig. 12. On the
other hand, the edge map after length discrimination is much
different from Fig. 13. As depicted in Fig. 14, a large number
of short-edge lines have been eliminated from the edge map.
Even though some of the lines such as those on the far left of the
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Fig. 14. Length discrimination result (freeway).

(b)

Fig. 15. Lane analysis result (freeway). (a) Broken lines showing the center
lines. (b) Center lines overlaid on the background image.

image should be retained, the remaining lines in the edge map
are sufficient to define the lanes nearer to the camera, including
the entrance and exit lanes. It is noted that the far view of the
road is poorly detected, while the near view is well detected.
This is expected and considered acceptable as the near view lane
information is far more important than the far view.

D. Lane Analysis

Finally, center lines of the lanes are calculated from the edge
lines in Fig. 14. Each adjacent line pair is examined, and those
that cannot be paired up are discarded. The width of the parallel
line pairs is analyzed and based on a presumed width of 4 m

per lane; the resulting center lines for the image are depicted as
broken lines on Fig. 15(a), and they are overlaid on the back-
ground image in Fig. 15(b) for inspection. From Fig. 15(b), it
can be seen that the center lines obtained are acceptable. It is also
interesting to note that due to the intensity/spatial variations, the
center lines are broken up into two sets for the six lanes on the
right-hand side. This is probably due to the broken central parti-
tion and the exit lane. These broken lines may be merged to form
complete center lines with additional analysis. As the camera
was looking down these lanes, these center lines extended rea-
sonably far down the road. However, on the left-hand four lanes
and entrance lane, only the near view center lines have been de-
tected, and their accuracy is debatable. As visual traffic surveil-
lance focuses on unidirectional traffic, this effect is probably
tolerable in real application.

IX. CONCLUSIONS

We have presented a lane detection algorithm that can ef-
fectively detect the center lines of multiple lanes under normal
and practical freeway conditions. The crux of the algorithm
is in the discrimination of edge line orientation and length in
3-D. Its first step relies on traditional edge detection, thinning,
and straight-line approximation. After that, the edge lines are
transformed into 3-D based on estimated camera parameters.
As roads and lanes usually have long parallel line features, the
2-D to 3-D transformation helps the orientation discrimination
to eliminate lines with orientations that are not shared by many.
Moreover, the length of curbs and lanes assist in discriminating
short lines due to other features. As-means clustering is used
for the discrimination in both cases, the algorithm is generally
robust. This algorithm was further evaluated using a practical
multilane freeway sequence, which contains spatial and color
irregularities. Our evaluation shows that it is indeed able to ex-
tract the required information with both performance and errors
maintained at an acceptable level, using just one frame of the se-
quence. As it is, the algorithm can potentially be applied to many
visual traffic surveillance problems such as vehicle tracking, red
light runner detection, incident detection, etc.
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