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Next, the overall loopT3; T10; T1; T2; T11; T4 is analyzed

(I + Io) � [Iin + Iout � Io � Id � Id ] � Io

= Iout � [ic + (I + Io)� Io � Id ] � Io:

Substituting (21), reduces to the simple result

I � Iin = ic � Iout: (22)

The capacitor voltageVc is the difference of the gate-source voltages
of T4 andT11 which have equal gate voltages. It follows from (5) that
Vc is given byUT ln(Iout=Io). The capacitor currentic = C � dVc=dt
therefore becomes

ic =
CUT

Iout
�

dIout
dt

: (23)

Substituting (23) into (22) yields the same linear integrator function as
before (20):

Iout =
I

CUT

Iin � dt: (24)

It follows that the unity-gain bandwidth is

fUG =
I

2�CUT

(25)

which is tunable by dc bias currentI . This result is independent of the
body-effect. The class AB companding integrator circuit proposed in
[9] can be modified for minimum supply voltage in the same way as
described here.

VI. CONCLUSION

The present drive toward low-voltage, low-power electronics will
require translinear circuits capable of operating at minimum supply
voltage. This is made possible by exploiting the symmetry of nonsatu-
rated MOS transistors, together with the exponential MOS-character-
istic in weak inversion. A technique of developing translinear circuits
for low-supply voltage by allowing transistors to go below saturation
was proposed. The forward and reverse modes then become equiva-
lent to saturated transistors. This transforms all TL loops into alter-
nating loops, providing two improvements. First, operation is extended
to low-supply voltage. Second, accurate realization in a single substrate
is enabled since theI (Vg)-terms which represent the body-effect will
cancel for the oppositely connected transistor-pairs in the loops.

The following three basic circuit topologies were modified for low-
supply voltage operation: 1) the balanced TL loop; 2) the alternating
TL loop; and 3) the instantaneous-companding integrator. The min-
imum value of supply voltage required for these circuit structures is
given by the sum of the transistor threshold voltage and the drain-source
saturation voltage. Since the circuits will operate in weak inversion,
bandwidth will be limited and the circuits will be sensitive to threshold
matching.

The techniques proposed in this paper are presently being developed
further for low-voltage static and dynamic analog signal processing.
Important properties with respect to bandwidth, noise, and errors due
to transistor mismatching need to be studied. Experimental results of
fabricated circuits employing these techniques will be published in a
future paper.
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Least Mean -Estimate Algorithms for Robust Adaptive
Filtering in Impulse Noise

Yuexian Zou, Shing-Chow Chan, and Tung-Sang Ng

Abstract—This paper proposes two gradient-based adaptive algorithms,
called the least mean -estimate and the transform domain least mean

-estimate (TLMM) algorithms, for robust adaptive filtering in impulse
noise. A robust -estimator is used as the objective function to suppress
the adverse effects of impulse noise on the filter weights. They have a com-
putational complexity of order ( ) and can be viewed, respectively,
as the generalization of the least mean square and the transform-domain
least mean square algorithms. A robust method for estimating the required
thresholds in the -estimator is also given. Simulation results show that
the TLMM algorithm, in particular, is more robust and effective than other
commonly used algorithms in suppressing the adverse effects of the im-
pulses.

Index Terms—Adaptive filter, impulse noise suppression, least mean
-estimate algorithm (LMM), orthogonal transform, system identifica-

tion, robust statistics.

I. INTRODUCTION

The performance of conventional linear adaptive filtering algorithms
can deteriorate significantly when the desired or the input signal is
corrupted by impulse noise [1]–[8]. Nonlinear techniques are usually
employed to reduce the adverse effects due to impulse noise. For ex-
ample, in the order statistic least mean square (OSLMS) [1] and the
order statistic recursive least square (OSRLS) [2] algorithms, the esti-
mation of the instantaneous gradient weight vector is replaced by the
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output of the median filter. Another class of nonlinear techniques re-
lies on nonlinear functions to limit the transient fluctuation in the esti-
mation error. Typical examples in this class are the adaptive threshold
nonlinear algorithm (ATNA) [3] and the nonlinear RLS (N-RLS) [4] al-
gorithm. In the ATNA, a clipper function is applied to the error signal
in the LMS algorithm to reduce its influence on the filter weights when
the error signal is abnormally large, while in the N-RLS, a Huber func-
tion is applied to the error signal in the RLS algorithm. In [5], a robust
mixed-norm (RMN) adaptive algorithm using a combination ofL1 and
L2 norms as the objective function and the stochastic gradient method
was proposed.

Recently, a new class of adaptive filtering algorithms based
on the concept of robust statistics has been proposed [6], [7].
Instead of minimizing the weighted least squares error criterion
JLS(n) = n

i=1
�n�ie2(i), where0 < � � 1 is the forgetting

factor ande(i) is the estimation error, a weighted leastM -estimate
function criterionJ�(n) = n

i=1
�n�i�(e(i)) was proposed. In [6],

�(�) is chosen as a modified Huber function [9] and an RLS-liked
algorithm, called the M-RLS algorithm, is derived. Later, in [7],
using the more general Hampel’s three-part redescendingM -estimate
function [10], the recursive leastM -estimate (RLM) algorithm was
derived. Simulation results and mean convergence analysis showed
that these two algorithms are effective in suppressing the adverse
effects of impulse noise. The convergence speed and steady-state error
are relatively unaffected by impulses, and the performance is similar
to that of the RLS algorithm in Gaussian noise alone. However, the
main drawback of such RLS-like algorithms is the large computational
complexity ofO(N2) per iteration.

Motivated by the robustness of the M-RLS and RLM algorithms,
we propose in this paper a new family of gradient-based adaptive al-
gorithms for suppressing impulses with a lower computational com-
plexity of orderO(N).

Instead of using the mean square objective functionJMSE =
E[e2(n)] to develop the LMS-type algorithms, the meanM -estimate
error objective functionJM�

�
= E[�(e(n))] is used. Here,E[�] and

�(�) are, respectively, the expectation operator and theM -estimate
function. Two stochastic gradient based algorithms, called the least
mean M -estimate (LMM) and the transform-domain least mean
M -estimate (TLMM) algorithms, are derived. They can be viewed,
respectively, as the generalization of the conventional LMS and the
transform-domain LMS (TLMS) algorithms. The proposed algorithms
have a computational complexity of orderO(N). Simulation results
show that they are more robust than the ATNA, OSLMS, and RMN
algorithms in impulse noise environment.

This paper is organized as follows. The LMM algorithm and the
TLMM algorithm are derived in Sections II and III, respectively. Sec-
tion IV briefly describes the threshold parameter estimation and the
computational complexity of the LMM and TLMM algorithms. Their
performances are evaluated and compared with other algorithms by
simulations in Section V. Conclusions are drawn in Section VI.

II. L EAST MEAN M -ESTIMATE (LMM) A LGORITHM

Let us consider the system identification problem shown in
Fig. 1. The signalsx(n) and y(n) are, respectively, the input
and output signals of the linear transversal adaptive filter. The
estimation error is given bye(n) = d(n) � wwwt(n � 1)XXX(n),
where www(n) = [w1(n); w2(n); . . . ; wN(n)]t and XXX(n) =
[x(n); x(n � 1); . . . ; x(n � N + 1)]t are the weight vector and
the input signal vector, respectively. Signald(n) is the reference or
the desired signal, and the superscriptt is the transpose operator. In
practical applications,x(n) andd(n) may be corrupted by interfer-
ence signals�s(n) and �o(n), respectively, which can be modeled

Fig. 1. System identification structure.

as contaminated Gaussian (CG) noise or alpha-stable noise. Based
on robust statistical estimation, the following objective function for
adaptive filter is proposed:

JM�
�
= E[�(e(n))] (1)

where�(�) is a robustM -estimate function for suppressing impulse
noise. In this paper,�(�) is chosen as the more general Hampel’s
three-part redescendingM -estimate function, which is given as
follows [10]:

�(e) =

e2=2; 0 � jej < �

�jej � �2=2; � � jej < �1

�

2
(�2 +�1)�

�2

2
+
�

2

(jej ��2)
2

�1 ��2

; �1 � jej < �2

�

2
(�2 +�1)�

�2

2
; �2 � jej

(2)

where�; �1 and�2 are the threshold parameters. Function�(�) is
a real-valued even function. The advantage of thisM -estimate func-
tion is that it is a piecewise approximation of the maximum likelihood
estimator when the input and additive noises are modeled as a con-
taminated Gaussian noise. Moreover, it reduces to the modified Huber
function when�1 is equal to�2, which was studied in [6]. The op-
timal weight vector can be determined by setting the first-order partial
derivatives ofJM� in (1), with respect towww, to zero. This yields

E[ (e(n))XXX(n)] = 0 (3)

where (e)
�
= @�(e)=@e is called the score function, which is illus-

trated in Fig. 2. For notational convenience, we define the weight func-
tion q(e) asq(e)

�
=  (e)=e. Substitutinge(n) = d(n)�wwwtXXX(n) into

(3) and after some manipulations, the followingM -estimate normal
equation is obtained:

RRRXXX�www = PPP � (4)

where

RRRXXX�
�
= E[q(e(n))XXX(n)XXXt(n)]



1566 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 12, DECEMBER 2000

Fig. 2. Score function of Hampel’s three-part redescendingM -estimate
function.

and

PPP �
�
= E[q(e(n))d(n)XXX(n)] (5)

are theM -estimate correlation matrix ofXXX(n) and theM -estimate
cross-correlation vector ofd(n) andXXX(n), respectively. They serve a
similar purpose as the conventional correlation matrix ofXXX(n) and the
cross-correlation vector ofXXX(n) andd(n) in the Wiener filter. Since
q(e(n)) depends onwww, (4) is a system of nonlinear equations. In what
follows, two robust stochastic gradient-based adaptive algorithms with
O(N) computational complexity are derived to solve this normal equa-
tion.

In the proposed LMM algorithm, the meanM -estimate objective
functionJM� in (1) is minimized by updating the weight vectorŵww(n)
in the negative direction of the gradient vectorr(JM�) of JM�, which
can be approximated by

rw(JM�) =
@JM�

@www

�r̂w�

=
@

@www
(�(e(n))

=�q(e(n))e(n)XXX(n): (6)

The weight vector is then updated as

ŵww(n) = ŵww(n� 1)� �r̂www� = ŵww(n� 1) + �q(e(n))e(n)XXX(n):

(7)

where� is the step size parameter. Equation (7) can be viewed as a gen-
eralization of the LMS algorithm and is called the least meanM -esti-
mate algorithm. It can be seen that whene(n) is smaller than�, the
weight functionq(e(n)) is equal to one and (7) becomes identical to
the LMS algorithm. Whene(n) is larger than�, q(e(n)) starts to re-
duce and is equal to zero whenje(n)j > �2. Thus the LMM algorithm
effectively reduces the effect of large signal error during the updating

of the filter weights. The problem of how the threshold parameters�,
�1, and�2 should be chosen will be addressed in Section IV.

III. T RANSFORM-DOMAIN LEAST MEAN M -ESTIMATE (TLMM)
ALGORITHM

The limitation of the LMS-type algorithms is their slow convergence
speed, especially when the input signal is heavily colored. The TLMS
algorithm proposed in [12] greatly improves the convergence speed of
the LMS algorithm. Various aspects of the TLMS algorithm and the
analysis of its performance can be found in [13]. The input signalx(n)
is first transformed by an(N � N) orthogonal matrixQQQ to produce
N transform coefficients or outputsxT (n; i), i = 1; . . . ; N . The
subscriptT indicates the variables in the transform domain. Each of
the outputs is then normalized by its power estimatep2i (n), which is
estimated asp2i (n) = �pp

2
i (n� 1) + (1� �p)x

2
T (n; i), where�p is

a forgetting factor. LetXXXT (n) = [xT (n; 1); . . . ; xT (n; N)]t be the
(N�1) vector containingxT (n; i). Then, one gets

XXXT (n) = (�2)�1=2XXXT (n) = ��1QXQXQX(n) (8)

whereXXXT (n) is the normalized input vector.�2 is an(N�N) diag-
onal matrix whose(i; i)th element is equal top2i (n). This normaliza-
tion is a simple and effective approach to reduce the eigenvalue spread
of the autocorrelation matrixRRRE;XXX = E[XXX(n)XXXt(n)] of XXX(n). From
(8), the autocorrelation matrix ofXXXT (n) is

RRRE;XXX =E[XXXT (n)XXXt
T (n)]

=��1QQQE[XXX(n)XXXt(n)]QQQt��1

=��1QRQRQRE;XXXQQQ
t��1: (9)

If QQQ is chosen as the Karhunen–Loeve transform (KLT) ofXXX(n) [13],
we haveRRRE;XXX = IIIN�N . It indicates thatRRRE;XXX is diagonalized
byQQQ. Unfortunately, in practical applications, it is very computational
expensive to compute the KLT. Some suboptimal transforms such as
the discrete cosine transform (DCT), the discrete Fourier transform,
and the discrete Hartley transform are generally employed.

We now consider the derivation of the transform domain least mean
M -estimate algorithms. For an arbitrary weight vectorwww, the gradient
vector ofJMSE = E[e2(n)] is

rwww(JMSE) = �2E[e(n)XXX(n)] = 2RRRE;XXXwww � 2PPPE (10)

whereRRRE;XXX = E[XXX(n)XXXt(n)] andPPPE = E[d(n)XXX(n)] are autocor-
relation matrix ofXXX(n) and cross-correlation vector betweend(n) and
XXX(n), respectively. The optimal solutionwwwopt of JMSE satisfies

wwwopt = www � 1

2
RRR
�1
E;XXXrw(JMSE): (11)

Premultiplying both sides of (11) byQQQ and simplifying, one gets

QwQwQwopt =QwQwQw� 1

2
QRQRQR

�1
E;XXXrw(JMSE)

=QwQwQw� 1

2
��1(��1QRQRQRE;XXXQQQ

t��1)�1

� (��1QQQrw(JMSE)): (12)

Assuming that the autocorrelation matrixRRRE;XXX is approximately di-
agonalized byQQQ and normalized by the normalization process, we
have(��1QRQRQRXXX�QQQ

t��1) � IIIN�N and(��1QRQRQRXXX�QQQ
t��1)�1 �

IIIN�N . LettingwwwT = QwQwQw and using (12), the following is obtained:

wwwT; opt �wwwT �
1

2
��2QQQrw(JMSE) � wwwT +��2QQQe(n)XXX(n)

=wwwT +��2e(n)XXXT (n) (13)
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where the gradient vectorrw(JMSE) is estimated from the instan-
taneous MSE error asrw(JMSE) � �2e(n)XXX(n). LettingwwwT =
wwwT (n) and denoting the stepsize for the gradient vector by�T , the
following weight-updating equation for the conventional TLMS algo-
rithm is obtained:

wwwT (n+ 1) = wwwT (n) + �T�
�2e(n)XXXT (n): (14)

In the proposed TLMM algorithm, the gradient vector is estimated from
the instantaneous robust distortion�(e(n)) as in the LMM algorithm,
rw(JM�) � �q(e(n))e(n)XXX(n). Using the first equation in (13), we
then arrive at the following TLMM algorithm:

XXXT (n) = QXQXQX(n) (15)

e(n) = d(n)�wwwt
T (n� 1)XXXT (n) (16)

wwwT (n) = wwwT (n� 1) + 1

2
�T�

�2q(e(n))e(n)XXXT (n): (17)

Like the LMM algorithm, the weighting functionq(e(n)) in (17) will
reduce the effects of impulses in either the input or the desired signals
on the filter weight update, resulting in better performance.

IV. PARAMETER ESTIMATION AND COMPUTATIONAL COMPLEXITY

The choice of the threshold parameters�, �1, and�2 for the func-
tion �(�) is now addressed. Though the distribution of the estimation
error e(n) is in general unknown, it is assumed, for simplicity, to
be Gaussian distributed but corrupted with additive impulse noise.
By estimating the variance ofe(n) without impulses, it is possible
to detect and reject the impulses ine(n). More specifically, the
probability of e(n) greater than a given thresholdTh is given by
[6], �T (n) = Prfje(n)j > Thg = erfc(Th=(

p
2 �̂e(n))), where

ercf(x) = (2=
p
�)

1

x
e�x dx is the complementary error function

and �̂e(n) is the estimated standard deviation of the “impulse free”
error. Using different threshold parametersTh, one can detect im-
pulses with different degree of confidence. Let��

�
= Prfje(n)j > �g,

��
�
= Prfje(n)j > �1g, and ��

�
= Prfje(n)j > �2g be the

probabilities thate(n) is greater than�, �1, and�2, respectively. By
appropriate choice of��, �� , and�� , the values of�, �1, and�2

can be determined. The remaining problem is the robust estimation
of �̂e(n). In [11], we examined a number of methods for estimating
�̂2e(n). Simulation shows that the following robust recursive estimator
for �̂2e(n) is both effective and computational inexpensive

�̂2e(n) = ���̂
2

e(n� 1) + C1(1� ��)med(Ae(n)) (18)

whereC1 = 1:483(1 + 5=(Nw � 1)) is a finite sample correction
factor [9],Ae(n) = fe2(n); . . . ; e2(n � Nw + 1)g, and�� is the
forgetting factor. Interested readers are referred to [7] and [11] for a
detailed comparison of the various estimation methods for�̂2e(n).

The computational complexity of the proposed LMM and the
TLMM algorithms is now briefly discussed. For the RLS algorithm,
O(N2) arithmetic operations per iteration are required [14]. For the
RLM algorithm [7], O(Nw log

2
Nw) more operations per iteration

are needed to computê�2e(n). The LMM algorithm, on the other
hand, is an LMS-type algorithm that hasO(N) arithmetic complexity.
Likewise,O(Nw log

2
Nw) more operations are needed to compute

�̂2e(n) per iteration. The(N � N) orthogonal transformation in the
TLMM algorithm will require in generalO(N2) operations. However,
fast recursive algorithm for computing the running DCT requires only
O(N) operations per iteration [12]. Therefore, the computational
complexity of the TLMM algorithm is of the orderO(N) together
with O(Nw log

2
Nw) more operations for computinĝ�2e(n) when

the running DCT is used.

V. SIMULATION RESULTS

The performances of the proposed LMM and the TLMM al-
gorithms are evaluated for the system identification problem
shown in Fig. 1 with impulsive interferences. The unknown
system is modeled as an FIR filter with impulse response
www� = [0:2; �0:4; 0:6; �0:8; 1; �0:8; 0:6; �0:4; 0:2]t. The
input signalx(n) is colored and is generated by passing a zero-mean
unit variance white Gaussian process through a linear time-invariant
filter with coefficients [0.3887, 1, 0.3887] [14]. The length of the adap-
tive filter is set to nine (N = 9) and the initial values of the weights
are set to zeros (www(0) = 0 andwwwT (0) = 0). The DCT is used as the
orthogonal transformation in the TLMS and the TLMM algorithms.
The interference�o(n) at the desired signal is modeled as a CG noise,
which is given by�o(n) = �g(n)+ �im(n) = �g(n)+ b(n)��w(n),
where�im(n) is the impulse noise,�g(n) and �w(n) are modeled
as independently identically distributed (i.i.d.) zero-mean Gaussian
noise with variance�2g and �2w, respectively, andb(n) is a switch
sequence of ones and zeros, which is modeled as an i.i.d. Bernoulli
random process with occurrence probabilityPr(b(n) = 1) = pr and
Pr(b(n) = 0) = 1 � pr. The ratioim = �2im=�

2

g = pr�
2

w=�
2

g

determines the impulsive characteristic of�o(n) [4], [15]. For a
fixed value of�2g , the larger the value ofim, the more impulsive
�o(n) becomes. In the following simulations,��, �� , and ��
are chosen to be 0.05, 0.025, and 0.01, respectively, so that we
have, respectively, 95% and 97.5% confidence to down weight the
error in the intervals[�; �1] and [�1; �2], and 99% confidence
to reject it whene(n) > �2. The threshold parameters are ob-
tained according to�T (n) = erfc(Th=(

p
2 �̂e(n))) as follows:

� = k��̂e(n) = 1:96�̂e(n), �1 = k� �̂e(n) = 2:24�̂e(n),
and �2 = k� �̂e(n) = 2:576�̂e(n), where �̂e(0) = 0. The
signal-to-noise ratio (SNR) at the system output is defined as
SNR= 10 log

10
(�2d =�2g), where�2d is the variance ofd0(n).

Example 1: Robustness and Convergence Performance:This ex-
periment is carried out to evaluate the convergence speed and robust-
ness of the proposed LMM and TLMM algorithms under contaminated
Gaussian noise. Performances of these algorithms are compared with
the ATNA [3], RMN [5], OSLMS [1], and TLMS [12] algorithms. In
addition, the unknown system transfer functionwww� is suddenly changed
to�www� at time instantn = 7000 to evaluate the behavior of the algo-
rithms when the system parameters change suddenly. Step sizes for the
various algorithms were chosen such that each algorithm produces the
same average excess mean squared error at convergence. The resulting
step sizes for all algorithms are illustrated in Fig. 3. For the LMM and
TLMM algorithms, the forgetting factor�� and the window length
Nw are set to 0.99 and 14, respectively. The window lengthNw for
the OSLMS algorithm is set to seven. For the TLMS and the TLMM
algorithms,�p is set to 0.98. For illustration purposes, fromn = 1
to 1490 and2801 to 9000, the interference consists of only Gaussian
noise; whereas fromn = 1500 to 2800, the contaminated Gaussian
noise is used, which is generated by�o(n) = �g(n) + b(n) � �w(n)
with pr = 0:005 andim = 300. To visualize more clearly the effect
of impulses ind(n), their locations generated byb(n) are fixed and
marked in Figs. 3 and 4 but their amplitudes are varied according to
�w(n), which is generated independently in each run. Also, for sim-
plicity in visualizing the effect of impulses inx(n), only one impulse
is added tox(n) at n = 3350. The SNR is set to 35 dB. The mean
squared errors (MSE) are obtained by averaging over 100 independent
runs. The MSE results for the TLMM, LMM, TLMS, ATNA, RMN,
and OSLMS algorithms are plotted in Figs. 3 and 4. It can be seen that
the LMM and the TLMM algorithms are robust to impulses appearing
in either the desired or input signals. The LMM algorithm, however,
converges slower than that of the TLMS and TLMM algorithms due to
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Fig. 3. MSE results versus time (n) (Example 1).p = 0:005, N = 14,
SNR= 35 dB. (1) ATNA (plus); (2) RMN (square); (3) LMM (bold circle); (4)
TLMM (bold diagonal); (5) TLMS (triangle) and (6) OSLMS (hexagram) (D
(n), and I (n) indicate the locations of the impulses in the desired and the input
signals at time instantn, respectively. S (n) indicates the time instant when the
system changes suddenly).� = � = � = � = 0:016,
� = 0:01, � = 0:011, and� = 0:022.

Fig. 4. MSE results (n = 1500 to 4200) (Example 1).p = 0:005,N =

14, SNR= 35 dB. (1) ATNA (plus); (2) RMN (square); (3) LMM (bold circle);
(4) TLMM (bold diagonal); (5) TLMS (triangle), and (6) OSLMS (hexagram).

its LMS nature. The TLMM algorithm provides a much faster rate of
convergence compared to the RMN, OSLMS, and ATNA algorithms.
The TLMM algorithm is also more robust to sudden system parameter
changes (n = 7000) than other algorithms. It is also found that the
performance of the OSLMS algorithm is degraded significantly by the
impulse in the input signal atn = 3350. Under the experiment condi-
tions, the performance of the RMN algorithm is rather poor.

Example 2: MMSE Versus Probability of Occurrence of Im-
pulses: This example evaluates the performance of various algorithms
under different probability of occurrence of impulses. The parameter
settings are identical to those in Example 1 except that the locations
of impulses are not fixed, there is no impulse in the input signal, and
Nw is set to nine for the LMM and TLMM algorithms. The mean
MSE (MMSE) performance of various algorithms as a function of

Fig. 5. MMSE versus probability of the impulse of Example 2.N = 9 and
SNR = 35 dB.

Fig. 6. MMSE versus SNR of Example 3.N = 9 andP = 0:02.

the probability of impulsespr in the desired signald(n) is plotted
in Fig. 5. The following are observed: the MMSE performance of
the TLMM, LMM, ATNA, OSLMS, and RMN algorithms are only
slightly impaired when the percentage of impulse noise is increased.
The performance of these algorithms demonstrates the effectiveness
of the robust statistics approach in suppressing the adverse influence
of the impulse noise. The TLMM algorithm has the best MMSE
performance compared with other algorithms considered under the
experimental conditions, and there is about 10 dB improvement over
other algorithms.

Example 3: MMSE Versus Signal-to-Noise Ratio:The experimental
conditions are identical to those of Example 2 except that the parame-
terspr andim are set to 0.02 and 300, respectively. The MMSE per-
formance of various algorithms as a function of the SNR is plotted in
Fig. 6. It can be seen that the TLMM algorithm has the lowest MMSE.
The improvement in the MMSE for the TLMM and the LMM algo-
rithms decreases when the SNR is reduced, whereas for the OSLMS
and RMN algorithms, the MMSE performance improves slightly with
the increase of the SNR.
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Due to page limitations, simulations regarding the sensitivity of the
LMM and the TLMM algorithms to the choice of the threshold param-
etersk�, k� , andk� for �, �1 and�2 are omitted in this paper.
Interested readers are referred to [11], where extensive simulations
were performed with the threshold parameters chosen from the ranges
1:287 � k� � 2:576, 1:43956 � k� � 3:091, and1:6449 �
k� � 3:481. This corresponds to (80–99)% and (85–99.98)% confi-
dence to down weight the error in the intervals[�; �1] and[�1; �2],
respectively, and (90 99.98)% confidence to reject it whenje(n)j >
�2. It was found that the performance of the LMM and the TLMM al-
gorithms together with the proposed threshold parameter estimation is
robust to impulse disturbances within a wide range of threshold values
for impulses appearing in the desired signal. Moreover, it is also not
sensitive to the choices ofk�, k� , andk� when the input signal is
corrupted by impulses provided that they are not at the tail part of the
signal distributions [11].

From the simulation results of the above examples, it can be con-
cluded that under the experimental conditions specified, the TLMM
algorithm is more effective and robust than the ATNA, RMN, LMM,
and OSLMS algorithms in mitigating the adverse effects due to im-
pulses either in the desired signal or in the input signal. It is an attractive
suboptimal algorithm with a much lower computational complexity of
O(N) when compared with other RLS-based algorithms.

VI. CONCLUSION

Two new adaptive filtering algorithms, called the least meanM -esti-
mate and the transform-domain least meanM -estimate, have been pro-
posed for robust adaptive filtering in impulse noise environment. They
can be viewed, respectively, as the generalization of the LMS and the
transform-domain LMS algorithms using the robust statistics concept.
The arithmetic complexity of the algorithms is of orderO(N), which
is much lower than that of the RLS-based algorithms. Simulation re-
sults have shown that the TLMM algorithm, in particular, is more ro-
bust and effective in suppressing the effects of impulsive disturbances
when compared with the ATNA, OSLMS, and RMN algorithms.
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Dynamic Biasing for True Low-Voltage CMOS Class AB
Current-Mode Circuits

G. Palmisano and S. Pennisi

Abstract—This paper presents a dynamic biasing approach for
continuous-time CMOS class AB current-mode circuits. The method
allows low-voltage circuits to be implemented whose supply requirements
are restricted to one threshold voltage plus two saturation voltages.
Fundamental limitations of the approach are analyzed and found to be
compatible with a wide spectrum of analog applications, some of which are
briefly discussed. A complementary current mirror, a current comparator,
and a current amplifier were designed using the proposed technique.
SPICE simulations using a 0.8- m process are provided, which confirm
the overall performance of these circuits especially in terms of low-voltage
capability and speed without compromising linearity.

Index Terms—Biasing, class AB, CMOS, current mirrors, current mode,
low voltage, switched capacitor.

I. INTRODUCTION

In recent years, current-mode (CM) signal processing has been
widely investigated, and several works have demonstrated that this
approach can solve many circuit and system problems. As can be
expected from circuits exploiting CM techniques, performance in
terms of low-voltage capability, slew rate, and bandwidth can in
principle be maximized [1]. However, when class AB topologies
have to be implemented, the need for a complementary structure has
prevented, until now, the achievement of true low-voltage features.
Compared to class A topologies, class AB versions provide better
dynamic range [2] and reduced sensitivity to process tolerances [3]. In
addition, they exhibit extremely high slew-rate values.

Although the well-known switched-current approach has been used
in the past to achieve both class AB and low-voltage operations [4], no
effective continuous-time approach providing the same performance
exists at present.

For instance, a popular class AB CM input stage capable of man-
aging a bipolar current is shown in Fig. 1. This has been used in a
wide range of applications, such as in the input stages of current am-
plifiers [5], current conveyors [6], [7], current comparators [8]–[10],
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