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Multiplierless Perfect Reconstruction Modulated
Filter Banks with Sum-of-Powers-of-Two Coefficients

S. C. Chan, W. Liu, and K. L. Ho

Abstract—This paper proposes an efficient class of per- filter A(n) by cosine modulation, ,, (k. n)
fect reconstruction (PR) modulated filter banks (MFB) using
sum-of-powers-of-two (SOPOT) coefficients. This is based on a fi.(n) =h(n)ckn, gr(n) = h(n)ek »
modified factorization of the DCT-IV matrix and the lossless lat- k=0,1,---M—1; n=0,1,---.N—1 (1)
tice structure of the prototype filter, which allows the coefficients - ’ —

to be represented in SOPOT form without affecting the PR con- . .
dition. A genetic algorithm (GA) is then used to search for these where M is the number of channels, ad is the length of

SOPOT coefficients. Design examples show that SOPOT MFB the filter. Two different modulations (the CMFB in [1] and the
with a good frequency characteristic can be designed with very extended lapped transform [ELT] in [6]) can be used. Here, we
low implementation complexity. The usefulness of the approach is will consider the fo||owing modulation proposed in [1]
demonstrated with a 16-channel design example.

Index Terms—Fast implementation, modulated filter bank, mul- ¢, . =2cos <(2k + 1)l <n _ E) + (_1)k f)
tiplierless, perfect reconstruction, sum-of-powers-of-two. ’ 2M 2

Cr.n =2c08 <(2k + 1)% <n — %) — (—1)"%) . (2
l. INTRODUCTION
ECENTLY, there has been an increasing interest in deet H(z) = LY 279H, (**) and F(z) be the type-|
signing filter banks with low implementation complexity.pPolyphase decomposition 6{») and thez-transform off.(n).
Such filter banks are useful in discrete multitone transmissidircan be shown that the analysis filters can be expressed in ma-
(DMT) systems and many other applications. Approaches baggy form as follows:
on the sum-of-power-of-two (SOPQOT) coefficients [2], [3] are

— T
particularly attractive because coefficient multiplications can pef (2) =0 (), Fl(z)Q’A'l' “ Par-a(7)]
implemented with simple shifts and additions only. In this paper, N [ 7%)(2 s } en(z) = EGMem(z)  (3)
a new family of modulated filter banks (MFBs) with SOPOT co- z M hi ()

efficients, called SOPOT MFB, is developed. The modulatiof,are

matrix and prototype filter are derived from a fast DCT-IV al-

gorithm of Wang [5] and the lattice structure in [1], respectivelyl'y = (—1)IVMCLY [(Ly+(=1)™ " dn) (1) L y—Jdar)]
The SOPOT coefficients are obtained using a genetic algorithm

(GA). Design examples show that SOPOT MFB with good frég = m/2) for m even andm — 1)/2 for m odd [1])

quency characteristic can be designed with very low implemen- " —(M=1)

tation complexity. An example of 16-channel SOPOT MFB with em(?) =1 -7 T ]

33.60 dB stopband attenuation is given, which requires only 328 fo(z) =diag[Ho(—z), Hi(=z), -+, Hy—1(—2)]

additions and 222 shifts for the analysis side. This paper is or- hy(z) =diag[Hp(—2), Hyr41(—2), - -, Hopr 1(—2)].
ganized as follows. The theory of the proposed modulated filter ) ) o ) )

banks is given in Section II. The construction of the SOPOfns @nd.J,; are the identity and anti-identity matrices, respec-
modulation matrix and the design of the SOPOT MFB are dlively. E(z) is the polyphase matrix, and

scribed in Sections Il and IV, respectively, followed by a design v -y )
example in Section V. (Ol = V2 M cos((k +1/2)(n+ 1/2)m [2M)

is the type-1V discrete cosine transform (DCT). Similarly, the
II. THEORY OF MFB polyphase matrix in the synthesis side can be written as

In cosine modulated filter banks (CMFB), the analysis filters

_ 90(2%) -
fx(n) and synthesis filterg;, (n) are derived from a prototype R(z) =Cs [ g with

Zlyl(ZQ)LMxM
Cs =(-1)""C4dapy
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wherec is a nonzero constant ang are positive integers. It is and

interesting to note that the PR condition (4) remains unchanged 1 0 O
if we replaceC 4 andC's by M 4 andM ,, respectively, as fol- 0 1
lows: 0 1 0 )
po_]0 - - . . .10
MAI\/MU]w[I]w:|:J]\4,:|:(I]\4:FJ]\4)], M= . . . . . . . . ?
Ms =VMUV) Um £ Int, 2T ps F In)d20s- (5) 8 . 0 10
U, and (U3})T (nonsingular) are the prototype or modula- LO 100 0 0l
tion matrices of the analysis and synthesis banks, respectively. 10 - 07
Without loss of generality, we will consider the case 0 . 01
0 0 1 0 0
Ma=vVMUyIy+ Iy Iy — I, Q. =
Mg =vVMU N I+ Toas, Ing — Jar)Tonr- 0 0 0 1 0 0
. . . L oo . . . .10
Using (5), itis possible to replace the type-IV DCT matrix with 010 0 0
its SOPOT approximatioly ;, as we shall see in the next sec- ) T
tion. P, is obtained by reversing both the rows and columns of
Py;. Q,, is a permutation matrix that changes the odd-num-
1. SOPOT MODULATION bered components of the vector into a reversed oddey.(7),
' i1=1,2,---,v— 1 are block diagonal matrices given by

The simplest way to derive the SOPOT modulation is to quan- ‘ _ . . . .
tize directly the coefficients of the type-IV DCT in (3). Its in- K (i) = (1/v/2) - diag (B(3), B(i), -, B(1), B(i))
verse, however, cannot in general be expressed in SOPOT igRere
resenation. To overcome this problem, we first decompose the
DCT-IV matrix using a fast algorithm of Wang [5] into a set of B(i) = [127' Iy } )

rotation-like matriced?, as shown in the following: I, —I
R, — |:C089 sin @ } o1 [1 —tan(&/z)} Vi (7) is given by
6 sinf —cosf ¢ 0 1 Vu(y) =diag (T ans, Tsyans - Tonv—3)/amm
[ 1 0] [1 tan(6/2) () Where
sinfd 1 0 -1 :

T, - {

cosrm  sinrmw
Ry is related to the conventional rotation matrix by multiplying sinrm  —cos 7’7& )

the second column by 1. Using the fact a complex rotation ) _

can be implemented as three shears in three multiplications ditf other matrice¥ ,(¢),i = 1,2, --,y— 1, are obtained by
three additions, a similar factorization &, as shown in (6), alternating the submatricds; and7’(¢) in the main diagonal as
can also be obtained. This factorization can also be used in cB{lOWs:

structing other SOPOT sinusoidal transformﬂ?]. It can be seen V(i) = diag (I, T(i), Iy, - - -, T(4))

that the proposed factorizations fé; and E, " involve the

same set of coefficients, i.@an(#/2) andsin 6. They can there- Where

fore be quantized directly into SOPOT representation without ;) — djag (Ty 00, Tsjosns - Tiarin gy a1 ).
affecting their inverse relationship. As mentioned earlier, our

SOPOT modulation is based on the fast algorithm of [5]. It fadd order to obtainU,,, the SOPOT approximation of the
torizes a DCT-IV matrix of sizé2" x 27) with M = 27 intoa DCT-IV matrix, we can replac#’, in the matrixV ;s with

product of2v + 1 sparse matrices, as shown in the following: P 1 -8, 1 0][1 8.
=10 e 8 A
~v—1
Y =Qy,Vuly) Ky —Va(y — )| Har, as in (6), witha,- and 3, in SOPOT form. LetRy,(¢) be the
M M };[1 matrix obtained by replacin@, in V () with S,.. As §;! =
v =log, M (7) S.and R} (i) = Rp(9), the SOPOT prototype matriéd s

and its inverse can be derived from (7) and are given as follows:

where 1
_ Un =QpRy(v) [H K (y —i)Ry(y — L)] Hy,

Hyr =Pri(Prij2 @ Pry2) i=1
-diaQ(Prs/as Pasjas Prsja, Paiya)

~~~diag(P4,ﬁ4,~~~,P4,?4), N >4

v—1

U, =Hy [H RAf(i)KM('i)] Ry(7)Q - (8)

=1
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Fig. 1. Lossless lattice structure of the prototype filter. Onlydtielattice is shownd, = 177} (1 + aZ )702).

IV. DESIGN OF THEMFB TABLE |
SOPOT @EFFICIENTS FOR THEPROTOTYPEFILTER OF THE 16-CHANNEL MFB

To design the prototype filter with SOPOT coefficients, we

use the lossless lattice structure proposed in [1] (FigiVl)s q| a1 a,,
therefore equal t8m M. The lattice coefficients are represented ol 22 o 1o
in SOPQOT form as follows: — P
1] 2'+27'42 -2°-2°-2
Pn - - -
2| 2'4+2" -2 -2°-2"'-27
Qgn = Z ak2bk7 ar € {-1,1}, 3] 2 93 _190
k=1 0 -1 -4 4 2
bpe{l,--,1,0,—1,---,—1}. 9) 451 ;+22_1+22_6 _zs_;
+27 ~ -2° +
[ is a positive integer, which determines the range of the coef- 6 2°+27 —2¢-2
ficient, andp,, is the number of terms used in each coefficient. Tl 2°+2 25 —2¢
The following minimax objective function is used in the design
of the prototype filter: TABLE I
) ) SOPOT ©EFFICIENTS FOR THEPROTOTYPE MATRIX
Dy, = max ||H(e’<)| — |Hy(e"“))|| (10) OF THE 16-CHANNEL MFB
where H(z) and H,(z) are, respectively, the actual and ideal r(S,) a, B,
frequency responses of the prototype filter. The modulation ma- 1/64 2 2’
.. . . . . .. . . . - -6 -7 -3 -7
trix is designed using a similar minimax objective function 3;2: 27-27-2 -2
27t 2% _96 _2-7
= = Jew 13/64 | 27 +27* 427427 2742742
Dy = 0<kERi-1 { By = max|[Fi(e™)] 17/64 | 274272 +27° 427 2 -2 +27
_ |Fk(ef‘“)||} (11) 21/64 20 -2 97 27 424 =27
’ 25/64 2° -2 2" +272 -2
where Fi(e/~) and Fj(¢’“) are, respectively, the actual 2664 2-a7 ) 2-27o0r
and ideal frequency responses of ttil analysis filter. The ;22 2 ;f" 2*_22 2:2 ;_f;_,
SOPOT coefficients of the prototype filter are first obtained by 78 2: " 2: g : P
minimizing D;, using the GA. The SOPOT coefficients for the U4 | 29227 2912~ | 2_o4_2%_27

modulation is then obtained by minimizing,; using again

the GA. In our GA, the bit-string representation is used becausa

it is easier to represent the SOPOT coefficients. Also, fgfnere

simplicity, single-point crossover with a randomly generated Ri6(4) =diag{S1 64,55/64,50/64,513/64;

crossover point is employed. The mutation rate is set to 0.5 (a - S17/64, 821 /64: S23/64: S29/64)

fairly high value to introduce more randomness into the GA) Ri6(3) =diag{Ts, S1,16, 55,16, So/16, S13/16}

and the gene chosen for mutation is determined randomly. . '
R16(2) :dlag{I4,51/8,55/8,14,31/8,35/8}, and

V. DESIGN EXAMPLES Ri6(1) =diag{I>,S81/4,12,81/4, 12,51 /4, 12,51 4}

Table | shows the coefficients of the prototype filter for af'S mentioned earlier, eadsi. is characterized by two parame-
16-channel SOPOT MFB. The cutoff frequency of the protd€rsc. andg.. Noting that
type filter isw; = 0.0757. Because the prototype filter is linear-» —7 . { 0 1} and S -5 . { 0 1}
phase, there are altogether eight different lattices. Polyphas“éfrl/2 Tol-1 0] et1/2 -1 0
components?,(z) and H,416(2) are derived from theth lat- = = 1/16, 5/16, 1/8Sy,16, S13/16, andS;,1¢ can be derived
tice, and all of them have two lattice coefficients; anda, 2, from S, ,i6, S5/16, andSy s, respectively. Table Il shows the

i.e.,(m = 2). The prototype matri¥/¢ is given by result for the SOPOT prototype matrix, and Fig. 2 shows the
frequency responses of the analysis filters. The stopband atten-
Uis = Q6R16(4)K16(3)Ri6(3) K16(2)Ri6(2) uation is 33.60 dB. The arithmetic complexity of the analysis

-K16(1)R16(1)H 16 (12) side is 328 additions and 222 shifts. On the other hand, the
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Fig. 2. Frequency responses of the 16-channel SOPOT MFB: analysis filters

stopband attenuatiod; = 33.60 dB. Prototype filter length is 64;, =
0.075r, and stopband attenuatioh, = 37 dB).
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fied factorization of the DCT-IV matrix and the lossless lattice
structure of the prototype filter, which allows the coefficients to
be represented as SOPOT form without affecting the PR con-
dition. A GA is used to search for these SOPOT coefficients.
Design examples show that SOPOT MFB with good frequency
characteristic can be obtained. The usefulness of the approach
is demonstrated with a 16-channel example.
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