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Experimental Stabilization of Chaos in a Voltage-Mode
DC Drive System

J. H. Chen, K. T. Chau, S. M. Siu, and C. C. Chan

Abstract—This paper first presents experimental evidence on the
use of delayed self-controlling feedback to stabilize chaos in a practical
voltage-mode dc drive system. Also, a new analytical approach to compute
the domain of stabilization is proposed. Based on a simple feedback
loop, chaotic behavior can be successfully stabilized to fundamental or
subharmonic operation using the same time delay.

Index Terms—Bifurcation, chaos, dc motor drives, delay effects, stability,
voltage control.

I. INTRODUCTION

In the past decades, chaos was misinterpreted in industrial practice:
it was deemed a noise when the bounded range of chaotic behavior was
narrow, whereas it was classified as an unstable phenomenon when the
bounded range was wide. Starting from the late 1980’s, chaos has been
identified to be a real phenomenon in power electronics. Then, many
investigations into chaotic behavior of dc-dc converters were conducted
in the 1990’s. In 1999, the investigation was extended to industrial dc
drive systems [1].

Control of chaos has received much attention in recent years. In [2],
an approach was proposed in which the feedback control signal is gen-
erated by the difference between the current state of the system and the
corresponding state delayed by one period of the desired periodic orbit.
This delayed self-controlling feedback approach and its variants have
the advantage that the only information needed about the desired orbit
is its period and no intensive computation is necessary to generate the
control signal. Recently, this approach has been theoretically applied
to stabilize chaotic behavior of a dc-dc buck converter [3].

The purpose of this paper is first to apply the delayed self-controlling
feedback to stabilize chaos in an industrial power electronic system,
namely, the voltage-mode dc drive. Different from [2] and [3], chaotic
behavior will be stabilized to fundamental (period 1) or subharmonic
(periodp) operation using the same time delay. Moreover, a new analyt-
ical approach to compute the domain of stabilization will be proposed.
Finally, theoretical derivation will be supported by both computer sim-
ulation and experiment measurement.

II. DC DRIVE SYSTEM

A schematic of the experimental dc drive system is shown in Fig. 1.
In principle, there are three main subsystems, namely, a power elec-
tronic dc chopper, a motor-generator set, and an analog electronic con-
troller. The dc chopper, consisting of a dc power supplyVs, a power
MOSFET switch IRFI640G, a power diode BYW29E200, and an in-
ductorL, functions to regulate the input power flowing into the drive
system. The value ofL is chosen in such a way that the armature current
i of the motor is always the positive so-called continuous conduction
mode of operation. The motor generator set includes a dc motor, a dc
generator, a coupler, and an electronic load, where the mechanical load
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torqueTl is electronically controlled by the current sink of the elec-
tronic load. The electronic controller involves simple hardware, namely
an encoder M57962L, a frequency-to-voltage (F/V) converter LM331,
three op amps (OA1, OA2, and OA3) LM833, a bucket-brigade delay
(BBD) line MN3004 and its clock MN3101, a ramp-signal generator,
a comparator (CM) LM311, and a MOSFET driver DS0026. Based on
the encoder and an F/V converter, the motor speed is converted into an
analogue signalv! with gain), which is then compared with the com-
mand speed signalv�! to produce the error signalve via OA1 with gain
�. Hence, the speed feedback gaing equals�. According to the prin-
ciple of delayed self-controlling feedback [2],ve and its delayed ver-
sionv� = ve(t��) are fed into OA2 with gain� to produce the pertur-
bation signalvp, which is then compared withve to generate the desired
control signalvc via OA3 with gain unity. Finally,vc is compared with
the ramp signalvr (with periodT and upper and lower bound voltages
vu andvl) via CM to produce the PWM switching signal for driving
the power MOSFET. The core of this controller is the BBD line and the
associated clock. By tuning the clock frequency via its externally con-
nectedR1�R2�C network, the BBD line can allow for a time delay
varying from 2.56 to 25.6 ms. In the controller, the time delay� is set
to the switching periodT which, in fact, corresponds to fundamental
operation (the period-1 orbit).

The dynamics of the dc drive system using delayed self-controlling
feedback can be described by a Poincaré mapP : R2

! R2. This map
is defined as an iterative function that maps the state vector solution
X(t) at t = nT to its successive one att = (n + 1)T : Xn+1 =
P (Xn). Thus, the fundamental solution corresponds to a fixed point
X

� of the Poincaré map is given by

X
� =�A�1

E1 + (1� �(T ))�1

� (1� �(T � �1T ))A
�1(E1 �E2)

h(�1) =E3[�A
�1
E1 + �(�1T )(1� �(T ))�1

� (1� �(T � �1T ))A
�1(E1 �E2)�E4]

� vr(�1T ) = 0 (1)

whereX = (!; i);�(t) = exp(At); �1 is the duty cycle and
A;E1;E2;E3;E4 are matrices depending on the system parameters.
The fixed point is stable if and only if the eigenvalues of its Jacobian
matrix J1 = DP (X�) all lie within the unit circle in the complex
plane. This matrix is given by

J1 = �(T � �1T )(1+ (1� �)C+ �C�(�T ))�(�1T ) (2)

whereC is a matrix dependent onX�; �1;A;E1;E2;E3 andE4. It
indicates that the period-1 orbit can be stabilized by selecting a suitable
� using (1) and (2).

The approach to compute the domain of stabilization for the period-p

(p > 1) orbit using� = T is exemplified by the period-2 case. Con-
sidering�1 � �2, the corresponding period-2 orbit(X�

1;X
�

2) and Ja-
cobian matrixJ2 = DP (2) (X�

1) are given by

X
�

1 =A�1
E1 + (1� �(2T ))�1[�(T )(1� �(T � �1T ))

+ (1� �(T � �2T ))]A
�1(E1 �E2)

X
�

2 =�A�1
E1 + (1� �(2T ))�1[(1� �(T � �1T ))

+ �(T )(1� �(T � �2T ))]A
�1(E1 �E2) (3)
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Fig. 1. Schematic of experimental setup.

h1(�1; �2) =E3[�A
�1
E1 +�(�1T )

� (1� �(1� �(�T )))(X�

1 +A
�1
E1)

+ �(1� �(�1T � T ))A�1(E1 �E2)�E4]

� vr(�1T ) = 0

h2(�1; �2) =E3[�A
�1
E1 +�(�2T )(X

�

2 +A
�1
E1)

� ��(�2T )(X
�

2 �X
�

1)�E4]� vr(�2T ) = 0 (4)

J2 =�(T � �2T )(1+ (1� �)C2)�(�2T )�(T � �1T )

� (1+ (1� �)C1 + �C1�(�T ))�(�1T )

+ �(T � �2T )(1+ �C2)�(�2T ) (5)

whereC1 andC2 are matrices dependent on(X�

1;X
�

2), (�1; �2),
A;E1;E2;E3 andE4. Hence, the domain of stabilization for the
period-2 orbit can be determined by using (3)–(5).

III. RESULTS

The default parameters of the experimental dc drive system areVs =
60V,L = 25mH,Tl = 0:5Nm,vu = 2:2V, vl = 0V, T = 6:667ms,
v�! = 7 V (which corresponds to 105 rads�1), andg = 1:4 V/rads�1.
The value ofg or Vs is selected as the variable to create chaotic oper-
ation (called the bifurcation parameter) while the other parameters are
fixed. Based on (1)–(5), the domain of stabilization for both bifurcation
parametersg andVs are shown in Fig. 2, in which the regionsD1 and
D2 stand for the domains for successful period-1 and period-2 stabi-
lization, respectively.

In order to illustrate the stabilization of chaos, the system initially
operates in chaos without employing the delayed self-controlling feed-
back (simply setting� to zero). Wheng is 1.6 V/rads�1, the resulting
chaotic behavior can be described by two state variables, namely,i and
vc. Fig. 3(a) shows the simulated chaotic phase portrait as character-
ized by a random-like but bounded trajectory whose boundaries arevc
2 [0V; 3:3V ] andi 2 [1:3A; 6:8A]. As shown in Fig. 3(b) and (c), the
chaos can be stabilized to the period-1 and period-2 orbit when� is
set to 0.15 and 0.1, respectively. The corresponding boundaries arevc

Fig. 2. Domain of stabilization. (a) Delayed feedback gain versus speed
feedback gain. (b) Delayed feedback gain versus dc supply voltage.
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Fig. 3. Simulated phase portraits. (a) Chaotic orbit. (b) Period–1 orbit. (c)
Period-2 orbit.

2 [0:66V; 1:9V ] andi 2 [2:2A; 5:8A] for the period-1 orbit, whereas
vc 2 [�0:5V; 3:6V ] andi 2 [1:4A; 7:4A] for the period-2 orbit.

Based on experiments, the measured chaotic period-1 and pe-
riod-2 phase portraits are shown in Fig. 4. It can be found thatvc
2 [�0:3V; 3:5V ] and i 2 [1:1A; 7:2A] are the boundaries for the
chaotic orbit,vc 2 [�0:5V; 2V ] andi 2 [2:1A; 6:7A] for the period-1
orbit, whereasvc 2 [�1V; 4V ] andi 2 [1:1A; 7:5A] for the period-2
orbit. Comparing Figs. 3 and 4, the simulated and measured results
have a good agreement. Nevertheless, the boundaries of those phase
portraits still have some discrepancies and the stabilized orbits are
slightly shaking, which is due to some inevitable imperfections of the
dc drive system, such as the uneven contacts of the dc commutator,
the torsional oscillation of the coupler and the phase distortion of the
BBD line.

IV. CONCLUSION

In this paper, the experimental stabilization of chaos in a practical
voltage-mode dc drive system is presented. Based on the implementa-
tion of delayed self-controlling feedback, the chaos occurring at high
values ofg orVs can be stabilized to the fundamental period-1 and sub-

Fig. 4. Measured phase portraits. (a) Chaotic orbit. (b) Period-1 orbit. (c)
Period-2 orbit.

harmonic period-p orbits by tuning various values of�, while keeping
� constant. Moreover, a new analytical approach to compute the do-
main of stabilization is proposed. Since the approach is so general, it
can readily be extended to stabilize the chaos due to other bifurcation
parameters, such asTl; vu; vl andT .
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