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Channel Capacity and Error Exponents of
Variable Rate Adaptive Channel Coding

for Rayleigh Fading Channels
Vincent K. N. Lau, Member, IEEE

Abstract—We have evaluated the information theoretical per-
formance of variable rate adaptive channel coding for Rayleigh
fading channels. The channel states are detected at the receiver
and fed back to the transmitter by means of a noiseless feedback
link. Based on the channel state informations, the transmitter can
adjust the channel coding scheme accordingly. Coherent channel
and arbitrary channel symbols with a fixed average transmitted
power contraint are assumed. Thechannel capacityand the error
exponent are evaluated and the optimal rate control rules are
found for Rayleigh fading channels with feedback of channel
states. It is shown that the variable rate scheme can only increase
the channel error exponent. The effects of additional practical
constraints and finite feedback delays are also considered. Fi-
nally, we compare the performance of the variable rate adaptive
channel coding in high bandwidth-expansion systems (CDMA)
and high bandwidth-efficiency systems (TDMA).

I. INTRODUCTION

ERROR correction codes have been widely used to combat
the effect of Rayleigh fading in mobile radio channels.

In traditional FEC schemes [1], [2], fixed rate codes were
used which failed to explore the time varying nature of the
channel. To keep the performance at a desirable level, they
were designed for the average or worst case situation. To
better exploit the time varying nature of the channel, adaptive
channel coding based on feedback channel state has been
proposed. The performance of uncoded variable rate and power
transmission schemes for Rayleigh fading channel based on
the feedback of channel state information has been considered
in [3]–[7]. Many practical adaptive error correction codes
have been proposed in recent years to reduce the bit error
rate and to increase throughput of the mobile radio channels
[8]–[14], [15]. In this paper, we model a general scheme
of variable rate adaptive channel coding which varies the
code rate according to the channel condition and explore the
fundamental reasons why there is a performance improvement
over fixed-rate coding.

We investigate the information theoretical performance,
namely the channel capacity and the error exponent, of
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Rayleigh fading channels using variable rate adaptive channel
coding (VRAECC) with constant transmitted power.1 Channel
capacity describes the maximum allowable bit rate for reliable
transmission across a channel. Error exponent describes
how fast error probability drops w.r.t. block length. The
channel states are detected at the receiver and fed back to
the transmitter by means of a noiseless feedback link. Based
on the channel state informations, the transmitter can adjust
the rate of the channel coding scheme accordingly. We try to
answer the following questions in this paper.

• Is channel capacity or error exponent increased by using
VRAECC?

• What are the optimal rate control functions that maximize
the error exponent?

• Does VRAECC perform better in high or low bandwidth
expansion?

An equivalent discrete time channel model is developed in
Section II. For simplicity, coherent detection and ideal inter-
leaving are assumed. The error exponent and channel capacity
of a Rayleigh fading channel with feedback of channel state
usingconstant inputVRACE are evaluated in Sections III and
IV, respectively. Numerical results are presented and discussed
in Section V. Finally, we conclude with a brief summary in
Section VI.

II. CHANNEL MODELING AND INDUCED STATE DISTRIBUTION

A. Physical Channel Model

The physical Rayleigh fading channel is a bandlimited
continuous-time channel in which the channel input can be
modeled by a bandlimited complex random process. The ran-
dom process is segmented into a number of channel symbols
with the th channel symbol having a variable duration

as shown in Fig. 1. To maintain generality, no modulation
format is specified. Variable rate channel encoder is integrated

1In particular, channel capacity of downlink fading channels with variable
power schemes has been investigated in [16]. It is shown that the optimal
power distribution that maximize the channel capacity is achieved by water-
filing in time domain. However, due to the rapid power control required to
compensate for the channel fading in the scheme, it is not feasible with
nowadays power-amplifier technology. Variable rate transmission, on the
other hand, is more feasible and hence, we focus on the optimal variable
rate schemes in this paper. As shown in Section IV, variable rate schemes
cannot increase the channel capacity. Instead, we aim at increasing the error
exponent with variable rate schemes. Optimal rate control rule is in the sense
of maximizing the error exponent.

0090–6778/99$10.00 1999 IEEE
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Fig. 1. Segmentation of a bandlimited random process~X(t) into a channel symbol~X .

Fig. 2. Equivalent discrete-time channel model forvariable duration scheme.

into variable throughput modulator with an average power
constraint only. The th channel output (in complex low-
pass equivalent) is given by

(1)

where and are channel fading attenuation2 and
complex white Gaussian noise for theth channel symbol,
respectively.

It has been shown that a continuous-time complex signal
which is approximatelytime-limited to and bandlimited to

can be represented by a -dimensional vector in the
signal space spanned by the Prolate spheroidal wave functions
[17]. Hence, theth channel symbol is represented by a -
dimensional vector . Assume that and are both much
smaller than the coherence time, and the coherence bandwidth3

can be considered as a constant in every dimension of
the signal space. Hence, the continuous-time model is reduced
to a discrete-time model.

2Since coherent detection is assumed, channel phase variation is corrected
by the receiver and hence, WLOG, the channel phase reference is set to zero.

3We have a flat fading channel.

B. Equivalent Discrete-Time Channel Model

The equivalent channel is a discrete-time, continuous-input
and continuous-output channel with feedback. There is a
channel state associated with theth channel symbol. The
channel state is available to the receiver and known to the
transmitter via a feedback channel with a certain unavoidable
delay, seconds. For each , there is a corresponding
prediction, denoted by , at the transmitter. The channel states

and (and hence, and ) are correlated but through
ideal interleaving, they become i.i.d. and the channel becomes
a memoryless channel.

The th channel output is given by

(2)

where is an uncorrelated Gaussian noise variable with
variance and is the white noise spectral
density. We assume .

For thevariable durationscheme, symbol duration of the
th channel symbol is varying according to the predicted

channel state . The channel model is illustrated in Fig. 2.
Each channel symbol carries a constant number of information
bits with a varying dimension , which is a function
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Fig. 3. Equivalent discrete-time channel model forvariable input scheme.

of predicted channel state . Random block coding [18]
with block length is used. An index is
fed into thevariable dimensionchannel encoder, giving out
a codeword of channel symbols. Each channel symbol in a
codeword is generated randomly according to a continuous
distribution . This forms a random codebook of size

which is known both to the transmitter and the receiver.
The channel can be described by a channel transition density

. The dependence of and on comes
from the dependence of the symbol dimension on .

For thevariable inputscheme, theth symbol duration
is a constant given by . Fig. 3 illustrates the equivalent
discrete-time channel model. Theth channel symbol carries

information bits and variable throughput is achieved by
varying w.r.t. the predicted state . Random block coding
is used and theth channel symbol is generated randomly
according to a continuous time distribution, . The
overall size of the random codebook is which is
both known to the transmitter and the receiver. The channel
can be described by a transition probability .
Note that due to the constant symbol duration, the channel
transition probability is independent of the predicted state.

For both schemes, channel outputs, together with channel
states and predicted states, are fed into a deinterleaver and
a maximum-likelihood decoder at the receiver.4 The decoder
produces an estimate of the transmitted indexand an error
occurs when .

C. Induced State Distribution

For thevariable durationscheme, the sequence of symbol
duration is varying according to the

4Note that because of the variable throughput, the interleaving task is
nontrival. For thevariable durationscheme, interleaving is done byparallel
interleavingas illustrated in [19]. For thevariable inputscheme, interleaving
is illustrated in [20]. For the sake of simplicity, we assumed ideal interleaving
without further discussing the actual schemes.

sequence of predicted channel states , and

hence, it induces a probability density on which is different
from the original fading density in general. For simplicity, we
assume a simple prediction rule . Hence, is
an ergodic random process and it is shown in Appendix A that

the induced probability density on , denoted by ,
is given by

(3)

where

(4)

is the number of symbols with in a
sequence of symbols, is the fading density and

. Furthermore, is shown to be
the average symbol rate (number of channel symbols per
second). Since given , the symbol duration is constant,
the conditional density is not affected by the varying
symbol duration and is given by [21]

(5)

where is the Doppler spread, is
the zeroth-order Bessel function, and is the zeroth-order
modified Bessel function.

For the variable input scheme, the symbol duration is
constant and hence, theinduced densityreduces to original
standing fading density.

III. ERROR EXPONENT FORVARIABLE RATE SCHEMES

We shall bound the average codeword error probability by
an average error exponent using Gallager’s approach [22].
Given a sequence of channel states and a sequence of
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predicted channel states , the channel is equivalent to an
additive white Gaussian noise (AWGN) channel. Hence, the
conditional codeword error probability is bounded
by [22]

(6)

for all and . is called the
Gallager’s error exponent and is given by

(7)

To determine the average error probability, we have to
uncondition (6) w.r.t. and . The average codeword error
probability is given by

(8)

where is the joint density of and .
By symmetry, the th channel symbol has i.i.d.

components . Hence, and
can be expressed using product forms as

(9)

(10)

Separating (8) into product of integrals and using (6),
(9), and (10), the average error probability is given by

(11)

for all and where is given by

(12)

A. Variable Duration Scheme

Since is an i.i.d. sequence and by
the weak law of large numbers [23]

will converge in probability to , where the
expectation is taken w.r.t. the induced density . The
average information bit rate (bits per second) is given by

(13)

Hence, we have

(14)

Expressing (11) and (12) in terms of , the average error
probability is given by

(15)

where is given by

(16)

To obtain a tight error bound, we have to minimizew.r.t.
and . Since is a parameter which is not measurable

in practice, the functions and are independent
of the parameter and hence, the optimization is decoupled.

1) Optimization w.r.t. : Define theaverage error expo-
nent as

(17)

We first prove the following lemmas.
Lemma 1: For any and in (16) satisfies

the following properties:

(i) . Equality holds iff .

(ii) .

Proof: Refer to Appendix C-1.
Let

(18)

(19)

The following summarizes the general result of the opti-
mization w.r.t. .

Lemma 2: For any and , the optimal error
exponent is given by

(20)

where , a function of , is given by

(21)

Proof: Refer to Appendix C-2.
Collecting the above results, we have the following theorem.
Theorem 1: For any and , if ,

then .
Proof: Consider

for . for .
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Hence, is strictly decreasing w.r.t. . At
and . If , we have

and hence from (15), as
.

2) Optimization w.r.t. : For simplicity, take to
be a capacity achieving distribution,5 , which maximizes the
mutual information. Given a channel state and a predicted
state , the channel is memoryless and is equivalent to
an AWGN channel. By symmetry, the capacity achieving
distribution [22], [1] would be a zero-mean
Gaussian density with variance . Since the
variance is independent of is independent
of ; we shall drop the conditional notation of in
hereafter.

The remaining problem is to minimize w.r.t. .
3) Optimization w.r.t. : In this section, we minimize

w.r.t. . For any given , take as in
(21) and . Two situations, namely negligible
feedback delay and significant feedback delay, are considered
as follows.

a) Small feedback delay:We assume feedback delay is
small relative to the channel coherence time. Therefore,

and

(22)

By (22), rewrite in (15) as

(23)

The optimization problem is equivalent to choosing
that minimize in (23) under the

constraints

(24)

(25)

(26)

Constraint (24) is due to the fact that total area under the
induced density should be equal to one. Constraint (25)
is to set a lower limit on so that . Constraint
(26) is to set a peak limit on so that symbol duration is
smaller than the channel coherence time.

By the Calculus of Variations, it is shown in Appendix B
that the optimal6 is given by

(27)

5Although the capacity achieving distribution will not, in general, optimize
�E(9)(��; Q) for all �Rb (and hence��), the obtained error bound can serve

as an upper bound.
6Since�� is a function of �Rb; T (ẑ) is a function of �Rb as well.

where is given by the solution of

(28)

is given by the solution of

(29)

Intuitively, a longer symbol duration should be used to encode
information bits when the predicted stateis small.
Substituting (27) into the constraints (24), (25), and (26),

the constant is given by

(30)

The optimal error exponent is found by solving
the simultaneous equations of (20), (21) in Lemma 2, as well
as (27) numerically for any given .

b) Large feedback delay:When feedback delay is large,
(22) no longer holds. Since the integrand ofis not separable
w.r.t. and , it is not possible to obtain a closed-form
expression for the optimal . We shall investigate the effect
of feedback delay on the performance using the control rule
in (27) instead.

4) Overall Result of Optimizations for Variable Duration
Scheme: Given , take and to be
the optimal parameter, the capacity achieving distribution and
the optimal symbol duration control rule, respectively. The
solution of the average error exponent with
delay is given by the following.

i) : Using in (27) with , the
solution is given by

(31)

ii) : Using in (27), the solution is
given by the following nonlinear parametric equations:

(32)

B. Variable Input Schemes

Because of the constant symbol duration, theinduced den-
sity in Section II-C is reduced to the standard fading density

. Using similar techniques to Section III-A, the average
codeword error probability is bounded by

(33)
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where

(34)

(35)

To obtain a tight error bound, we have to minimize
w.r.t. , and . Since and
are independent of each other, the optimization problem is
uncoupled.

1) Optimization w.r.t. : Minimization of is equivalent
to maximization of . Define theoptimal error
exponent as

(36)

We first introduce the following lemma.
Lemma 3: For any for all .

Proof: Refer to Appendix D-1.
The result of the optimization is summarized in Lemma 4.
Lemma 4: For any , let be the roots of the equation

(37)

The optimal parameter is given by

(38)

Proof: The necessary condition for to be the optimal
parameter is . By Lemma 3,

, and hence, the stationary point obtained,
, corresponds to the absolute maximum point. Furthermore,

is a decreasing function of. Suppose ,
we have . Therefore, is an
increasing function w.r.t. for . Since the error bound
in (33) is valid only when , the optimal parameter
is given by if .

Collecting the results from the two lemmas, we have the
following theorem.

Theorem 2: For any , if the average code rate
, is less than or equal to ,

then .
Proof: Refer to Appendix D-2.

2) Optimization w.r.t. : Similar to Section III-A-
1, take as the capacity achieving distribution ,
which is a Gaussian distribution with variance .
The remaining problem is to minimize w.r.t. .

3) Optimization w.r.t. : In this section, we minimize
w.r.t. . Using a normalized rate control,

, we find the optimal normalized rate control func-
tion, . For any given , take as in (37) and

. Unlike Section III-A3, a general expression
for the optimal rate control function for both negligible and
nonnegligible feedback delays is derived.

Using the normalized rate control, in
(33) is given by

(39)

The optimization problem is equivalent to choosing
that minimizes in (39) under the

constraints

(40)

(41)

By the Calculus of Variations, it is shown in Appendix E
that the optimal control rule is given by

(42)

where is given by

(43)

and is given by the solution of

(44)

Intuitively, at small feedback delay, is an increasing
function of and the control law implies that more information
bits per symbol should be carried if the predicted stateis
good. On the other hand, at large feedback delay,and are
independent and tends to be independent of, suggesting
that fixed-rate control will be optimal if the predicted state is
not accurate.

4) Overall Result of Optimizations for Variable Input
Scheme: Given an average code rate, take , and

to be the optimal parameter, the capacity achieving
distribution, and the optimal rate control law, respectively.
Let and be the solution of
the equation

(45)

The optimal error exponent at a feedback delay
is given by the following.

i) : Using the rate control rule in (42) with
, the solution is given by

(46)
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ii) : Using the rate control rule in (42), the
solution is obtained by solving the following system of
three nonlinear simultaneous equations7 numerically

(47)

IV. CHANNEL CAPACITY FOR VARIABLE RATE SCHEMES

In this section, we derive a general expression for chan-
nel capacity of Rayleigh fading channel with variable rate
transmission. Channel capacity is defined as follows.

Definition 1: A channel is said to have a channel capacity
, if

(i) for every and a channel code of rate8

with block length such that the error
probability is bounded above by for some

.
(ii) for every , all codes with rate cannot

have asymptotically zero error probability as .

Lemma 5 (Converse): The channel capacity (in
bits/symbol) of a Rayleigh fading channel, with feedback
of channel states to the transmitter using variable rate
transmission, is upper bounded by

(48)

Proof: Refer to Appendix C-3.
Lemma 6 (Achievability): The channel capacity (in

bits/symbol) of a Rayleigh fading channel, with feedback
of channel states to the transmitter using variable rate
transmission, is lower bounded by.

Proof: Assume that and let . For
thevariable durationscheme, by Theorem 1, there is at least a
code of rate that has asymptotically zero error probability as

. However, this contradicts the definition of channel
capacity which states that no such code exists with .
For the variable input scheme, by Theorem 2, there is at
least a code of average rate that has asymtopically zero
error probability as . However, this contradicts the
definition of channel capacity which states that no such code
exists with . Hence, the result follows.

Combining the above two lemmas, we have the following
theorem.

Theorem 3: For any symbol duration control law or
rate control law , the channel capacity of a Rayleigh fad-
ing channel with feedback of channel states to the transmitter
using variable rate transmission is equal toin (48).

7The unknowns are��; ẑl, and �E�

r .
8Code rate is expressed as number of information bits per channel symbol

and is given byR in our system.

Using the capacity achieving distribution , the mutual
information is given by

(49)

For the variable duration scheme, the feedback channel
capacity (in bits/sec) becomes

(50)

where is the fixed-duration channel capacity without
feedback. For thevariable input scheme, (in bits/sec) be-
comes , which is equal to the fixed-rate
channel capacity, as well. Hence, the variable rate
schemes cannot increase the channel capacity of Rayleigh
fading channels.

V. RESULTS AND DISCUSSIONS

In a microcellular environment at 2 GHz with mobiles
moving at a maximum speed of 75 km/h, the coherence time
is around 1 ms and the coherence bandwidth is around 2
MHz. We choose the symbol rate to be 40 ksym/s and the
system bandwidth to be 800 kHz. Hence, the system bandwidth
is smaller than the coherence bandwidth and the average
symbol duration ( ms) is much smaller than
the coherence time. These justify the flat-fading assumption
made in the channel model. Since kHz, s
is sufficient to ensure . For a fixed-duration system,
the symbol duration is constant and is equal to .
Hence, is taken to be the reference symbol
duration. The channel normalized fading rate is

.

A. Variable Rate Channel Capacity

It is shown in Section IV that channel capacity is not
increased by variable rate control. This is intuitively correct
since in a large block, we have either the total block duration
approaches a constant value of [refer to (13)] for the
variable durationscheme or the total number of information
bits transmitted in a large block approaches the average code
rate, for the variable input scheme. Hence, there is no
difference with fixed-rate coding schemes asymptotically. The
channel capacity in the example is equal to 616 kb/s at
reference SNR, dB.
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Fig. 4. Error exponent ofvariable duration scheme for various feedback
delays. Delays are expressed as number of reference symbols.

Fig. 5. Error exponent ofvariable durationscheme for various peak time
constraints.

B. Variable Rate Error Exponent

Although channel capacity is not increased by variable rate
channel coding, the error exponent is increased significantly
compared with the fixed-duration error exponent. For the
variable duration scheme from Fig. 4, the improvement in
error exponent is three times the fixed-duration case at

kb/s under ideal situations (
s). The performance improvement is degraded to 2.1

times and 1.13 times if the feedback delay is 18 symbols and
25 symbols, respectively. The effect of peak time constraint

is shown in Fig. 5. Define the ratio of peak to average

symbol duration as . With
and , the improvement in the error exponent is 2.46
and 1.40 times, respectively.

For thevariable inputscheme from Fig. 6, the improvement
in error exponent is 2.67 times at kb/s with
negligible feedback delay compared with fixed-rate code. The
performance is degraded to 2.27 times and 1.73 times if the

Fig. 6. Error exponent ofvariable inputscheme atvarious feedback delays
� (in number of symbols).

feedback delay is 18 symbols and 23 symbols respectively. At
a feedback delay of 100 symbols, error exponent ofvariable
input scheme approaches the fixed-rate error exponent because
the optimal rate control rule would be a fixed rate control at
such large feedback delay. The bandwidth expansion used in
the above calculation is . Note that a 2-time
increase in error exponent means a 2-time reduction in coding
complexity (e.g. block length ) to achieve the same error
probability.

C. Bandwidth Expansion Consideration

We consider two extreme cases, a bandwidth expansion of
0.25 which models TDMA systems and a bandwidth expansion
of 20 which models CDMA systems. Error exponents of
the variable durationscheme for small and large bandwidth
expansion systems are shown in Fig. 7(a) and (b). For the
system with small bandwidth expansion (TDMA), there is a
significant 5.62-time increase in error exponent at .
For the system with large bandwidth expansion (CDMA), there
is only a 1.5-time improvement in error exponent relative to
fixed-duration scheme at the same.

The error exponents for thevariable input scheme with
small (0.25) and large bandwidth expansion (20) systems
are shown in Fig. 8(a) and (b). For systems with small
bandwidth expansion (TDMA), there is a significant 5-time
increase in error exponent at . For systems with
large bandwidth expansion (CDMA), there is only a 1.1-time
improvement in error exponent relative to fixed-rate schemes
at the same .

Therefore, variable rate channel coding is more effective
in high bandwidth-efficiency systems. This means that only
a limited gain can be achieved in high bandwidth-expansion
systems when very powerful capacity achieving codes are used
as the component codes in the construction of variable rate
adaptive codes. However, a significant gain should be expected
in high bandwidth-efficiency systems even when very powerful
component codes are used.
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(a)

(b)

Fig. 7. Error exponents ofvariable duration scheme in large and small
bandwidth expansion.

VI. SUMMARY

In this paper, we have evaluated the channel capacity and
the error exponent of variable rate Rayleigh fading channel
using variable durationand variable inputschemes. Optimal
symbol duration control law and optimal input rate control law
are derived taking into account of feedback delay. Performance
degradation w.r.t. feedback delay is also investigated. We
found that channel capacity was not increased by variable
rate coding schemes for any control law. On the other hand,
there was a significant increase in error exponent for both
schemes. This means that less complex codes can be found
to achieve the same using variable rate adaptive coding.
Hence, instead of aiming at maximizing the channel capacity
by previous approaches, we should aim at maximizing
the error exponent with variable rate adaptive channel
coding.

For the dependence of the improvement on bandwidth
expansion, we found that improvement was limited at large
bandwidth expansion. On the contrary, significant gain resulted
when bandwidth expansion was small. This suggests that

(a)

(b)

Fig. 8. Error exponents ofvariable inputscheme in large and small band-
width expansion.

variable rate channel coding schemes have limited intrinsic
gains in CDMA systems compared with TDMA systems.

APPENDIX A
INDUCED PROBABILITY DENSITY ON

A. One Dimension

We first prove (4) in Section II.
Proof: Define the induced probability density as

where is the number of symbols with in a
sequence of symbols, and is a small increment in .

Observe over a long time duration . Suppose
is an ergodic random process, we have

where is the total time that and is
the fading density. Hence,
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where is the symbol duration (a function of) and
. Therefore,

(51)

where

(52)

We shall show that is the average symbol rate. Suppose
we observe over a very long time interval , then

and there are symbols during this
time duration. By definition, the average symbol rate is the
number of symbols transmitted per unit time and is given by

which is equal to .
We shall illustrate the use of this induced probability density

in the following example.
Example 1: Suppose the symbol error probability is

conditioned on . To obtain the unconditional error probability,
we have to use theinduced densityin the integration given by

Proof: The average number of symbol errors given that
is given by . By definition, the average

error probability is the total number of symbol errors divided
by the total number of symbols transmitted and is given by

B. Dimensions

For the ideal interleaved channel,and are independent.

Hence, the -dimensional induced probability density on
is the product of one-dimensional induced densities

(53)

Extending Example 1 to the -dimensional and ideal in-
terleaving case, the unconditioned error probability is given
by

APPENDIX B
OPTIMAL CONTROL RULE FOR VARIABLEDURATION SCHEME

The problem is to choose that mini-
mize under the constraints of (24), (25), and (26). We form
the th Lagrange multiplier as

(54)

where

By the Calculus of Variations [24], the necessary condition
for to be the optimal control is for all

. This implies

where is a constant independent of. This means that
must be a constant for every. Hence, the

optimal is given by

where is determined by substituting back into the constraints
(24)–(26).

APPENDIX C
PROOF OFLEMMAS FOR VARIABLEDURATION SCHEME

A. Proof of Lemma 1

Proof: From (16) and (7), can be expressed as

(55)

(i)

Since [22], [1], we have .
Since

and , we have

(ii) Since [22], [1]
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for any , we have

where the last inequality follows from the Holder’s
inequality. Hence, is a convex function in
and the result follows.

B. Proof of Lemma 2

Proof: The necessary condition for to maximize
is . This gives

(56)

By Lemma 1(ii), we have . This verifies that
the stationary point obtained, , corresponds to the absolute
maximum and in (56) is a strictly decreasing function of

. Hence, as increases from 0 to 1, decreases from
to and maximizes at . For . Since

is a decreasing function of, we have

for . Since the error bound in (6) is valid only
when maximizes at .

C. Proof of Lemma 5

Proof: The estimated index is given by

where is a general decoding function.
The average codeword error probability is given by

(57)

By Fano’s inequality

(58)

Since

because of equiprobable input
and

we have

(59)

where . Given any particular and

, we have
and by the data processing inequality [18], we have

Hence

(60)

Substituting (60) into (59) and maximizing w.r.t. ,
we found that if , we have and

(61)

Assume that . By definition of channel capacity, a
code with rate and such that .
However, this contradicts (61) which states that

Hence, the lemma follows.

APPENDIX D
PROOF OF LEMMAS AND THEOREM FOR

VARIABLE INPUT SCHEME

A. Proof of Lemma 3

Proof: Since [22], [1]

for any , we have
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where the last inequality follows from the Holder’s inequality.
Hence, is a convex function in and the result
follows.

B. Proof of Theorem 2

Proof: Express the code rate as

(62)

where . Let be the roots of (37). From
Lemma 4, if , the optimal parameter and we
have

if , the optimal parameter, , and we have

From Lemma 4,

. Hence, and is strictly
decreasing w.r.t. . At , from (37),
and . Therefore, if .
Take .

APPENDIX E
OPTIMAL CONTROL RULE FOR VARIABLE INPUT SCHEME

The optimization problem is to choose that
minimizes in (39) under the constraints of (40) and (41).
The th Lagrange multiplier is given by

(63)

By the Calculus of Variations [24], the necessary condition
for to minimize under the constraints of (40) and
(41) is which is given by

constant (64)

This gives

WLOG, we drop the index. Since is an increasing func-
tion of and the constraint (41) requiresto be nonnegative,

is given by

where is a constant determined by the constraint (40)

and is given by the roots of the equation
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