
Title On parallelizing the multiprocessor scheduling problem

Author(s) Ahmad, I; Kwok, YK

Citation Ieee Transactions On Parallel And Distributed Systems, 1999, v.
10 n. 4, p. 414-432

Issued Date 1999

URL http://hdl.handle.net/10722/42801

Rights

©1999 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.



On Parallelizing the Multiprocessor
Scheduling Problem

Ishfaq Ahmad, Member, IEEE Computer Society, and Yu-Kwong Kwok, Member, IEEE

AbstractÐExisting heuristics for scheduling a node and edge weighted directed task graph to multiple processors can produce

satisfactory solutions but incur high time complexities, which tend to exacerbate in more realistic environments with relaxed

assumptions. Consequently, these heuristics do not scale well and cannot handle problems of moderate sizes. A natural approach to

reducing complexity, while aiming for a similar or potentially better solution, is to parallelize the scheduling algorithm. This can be done

by partitioning the task graphs and concurrently generating partial schedules for the partitioned parts, which are then concatenated to

obtain the final schedule. The problem, however, is nontrivial as there exists dependencies among the nodes of a task graph which

must be preserved for generating a valid schedule. Moreover, the time clock for scheduling is global for all the processors (that are

executing the parallel scheduling algorithm), making the inherent parallelism invisible. In this paper, we introduce a parallel algorithm

that is guided by a systematic partitioning of the task graph to perform scheduling using multiple processors. The algorithm schedules

both the tasks and messages, and is suitable for graphs with arbitrary computation and communication costs, and is applicable to

systems with arbitrary network topologies using homogeneous or heterogeneous processors. We have implemented the algorithm on

the Intel Paragon and compared it with three closely related algorithms. The experimental results indicate that our algorithm yields

higher quality solutions while using an order of magnitude smaller scheduling times. The algorithm also exhibits an interesting trade-off

between the solution quality and speedup while scaling well with the problem size.

Index TermsÐParallel processing, resource management, processor allocation, scheduling, task graphs, parallel algorithms,

message-passing, multiprocessors.

æ

1 INTRODUCTION

GIVEN a parallel program modeled by a directed acyclic
graph (DAG), in which nodes represent the tasks and

edges represent the communication costs as well as the
dependencies among the tasks, the goal of a scheduling
algorithm is to minimize the execution time by properly
allocating and sequencing the tasks on the processors such
that the precedence constraints are preserved. A DAG can
be scheduled off-line if the structure of the program, in
terms of its intertask dependencies and task execution and
communications costs, is known before the program
execution. The scheduling problem is intractable even when
severe restrictions are imposed on the task graph and the
machine model [11]. The following simplifying assump-
tions about the task graph are common:

. The structure of the task graph is restricted (e.g.,
tree, fork-join, etc.) rather than arbitrary;

. All nodes in the graph have the same computation
costs;

. The communication costs on the edges are zero.

Likewise, the following assumptions about the machine

model are common:

. The number of available processors is unlimited;

. The processors are fully connected;

. The network links are contention-free;

. The processors are homogeneous, that is, their
processing speeds are the same.

The problem is complex even in the presence of such
assumptions, and polynomial-time algorithms for optimal
solutions are known only in three cases: 1) The task graph is
a tree with unit node-weights and there exist multiple fully
connected homogeneous processors [11]; 2) The task graph
is arbitrarily structured with unit node-weights and the
machine consists of exactly two homogeneous processors
[11]; 3) The graph is interval-ordered [3]. The communica-
tion cost on the edges of the task graph is ignored in the first
two cases and restricted to unit-cost in the third case. The
problem is NP-complete when arbitrary communication
costs are taken into account.

Due to the intractability of the problem, heuristics are
devised for obtaining suboptimal solutions in an affordable
amount of computation time. Even though most heuristics
can produce high quality solutions, their time complexities
are quite high [26]. Furthermore, heuristics designed with
more relaxed assumptions tend to incur higher time
complexities. Thus, many heuristics work well for small
task graphs but do not scale well with the problem size.
Therefore, the solution quality and applicability are usually
in conflict with the goal of reducing the time complexity.

To reduce the time complexity without compromising
the solution quality, a natural approach is to parallelize the
scheduling algorithm. This has an extra advantage in that
the parallel machine using the algorithm can schedule its
own programs in a short time. Moreover, with the great
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advances in networking and communication tools, hetero-

geneous environments using both parallel machines and

networks of workstations are becoming increasingly popu-

lar. In such an environment, a parallel machine can execute

a fast algorithm to schedule tasks on multiple hetero-

geneous workstations. However, tackling the general DAG

scheduling problem in parallel, for the most part, is an

unexplored approach despite that there are a few recent

attempts in devising parallel heuristics for a class of

problems, such as the job-shop scheduling problem [9],

[23] in which all the jobs are independent. Indeed, all of the

well known DAG scheduling algorithms are sequential in

nature. The reason being that the task ordering technique in

scheduling is widely reckoned as inherently sequential as

the time clock for ordering tasks is global. Thus, parallelism

within a scheduling algorithm is invisible.
In this paper, we propose a parallel algorithm, called

PBSA (Parallel Bubble Scheduling and Allocation), that

produces high quality scheduling solutions without making

any of the specific simplifying assumptions mentioned

above. The novelty of the algorithm lies in a systematic

partitioning of the task graph which guides the concurrent

generation of subschedules. The algorithm works well for

regular or irregular graph structures with arbitrary com-

munication and computation costs, handles arbitrarily

connected network of target processors, and is suitable for

homogenous and heterogeneous processor systems.
The remaining paper is organized as follows: In the next

section, we present a brief overview of various approaches

that have been proposed for the DAG scheduling problem.

In Section 3, we present the proposed algorithm, and

discuss its design principles. Section 4 includes some

scheduling examples illustrating the operation of the algo-

rithm. We present the experimental results in Section 5, and

conclude the paper with some final remarks in Section 6.

2 THE SCHEDULING PROBLEM AND RELATED

WORK

In static scheduling, we represent a parallel program by a

directed acyclic graph (DAG), also known as the task graph
or macro-dataflow graph. In a DAG, G � �V ;E�, V is a set

of v nodes, representing the tasks, and E is a set of e directed
edges, representing the communication message. Edges in a

DAG are directed and, thus, capture the precedence
constraints among the tasks. The cost of node ni, denoted

as w�ni�, represents the computation costs of the task and
the cost of an edge �ni; nj�, denoted by c�ni; nj�, represents

the communication cost of the message. The source node of
an edge is called a parent node, while the destination node

is called a child node. A node with no parent is called an

entry node and a node with no child is called an exit node.
A node can only start execution after it has gathered all of

the messages from its parent nodes. Fig. 1 shows an
example DAG which we will use in the subsequent

discussion.
We assume the target platform to be a distributed

memory multiprocessor system such that a processor and

its local memory, constituting a processing element (PE),
communicate with other PEs through message-passing. The

communication cost between two nodes assigned to the
same processor is assumed to be zero.

The objective of scheduling is to minimize the schedule

length, which is defined as the maximum finish time of all

nodes, by properly assigning tasks to processors such that
the precedence constraints are preserved. We classify the

existing algorithms proposed in this context into four
categories:

. Bounded Number of Processors (BNP) Scheduling: A
BNP algorithm schedules a DAG to a limited
number of processors directly. The processors are
assumed to be fully connected without any regard to
link contention and scheduling of messages.
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Fig. 1. A task graph.



. Unbounded Number of Clusters (UNC) Scheduling: A
UNC algorithm schedules a DAG to an unbounded
number of clusters. The clusters generated by these
algorithms may be mapped onto the processors
using a separate mapping algorithm. These algo-
rithms assume the processors to be fully connected.

. Arbitrary Processor Network (APN) Scheduling: An
APN algorithm performs scheduling and mapping
on an architecture in which the processors are
connected via a network topology. An APN algo-
rithm also explicitly schedule communication mes-
sages on the network channels, taking care of the
link contention factor. The proposed algorithm
belongs to this class.

. Task-Duplication-Based (TDB) Scheduling: A TDB algo-
rithm duplicates tasks in order to reduce the commu-
nication overhead. Duplication, however, can be used
in any of the other three classes of algorithms.

Fig. 2 depicts a chronological summary of various

algorithms reported in the recent literature, and their

categorization according to our classification method. The

summary also includes the complexities of these algo-

rithms, in terms of the number of nodes (v) and edges (e) in

the task graph, and the number of processors (p). This

classification helps in making a comparison among the

algorithms within the same class; clearly, algorithms

belonging to different classes cannot be directly compared.

The survey is by no means complete (an extensive

taxonomy of the general scheduling problem is proposed

in [5]) since a complete overview of the literature is beyond

the scope of this paper. However, most of the reported DAG

scheduling algorithms can be categorized according to our

scheme. For our purpose, we will compare the proposed

algorithm with the three other APN algorithms (BU, DLS,

and MH).
Tackling the general scheduling problem in parallel is a

relatively unexplored approach in that hitherto only a few

techniques have been suggested for some restricted forms

of the scheduling problem. Recently, Pramanick and Kuhl

[23] have proposed a paradigm, called Parallel Dynamic

Interaction (PDI), for developing parallel search algorithms

for many NP-hard optimization problems. The have

applied the PDI method to the job-shop scheduling problem

in which a set of independent jobs are scheduled to

homogeneous machines. De Falco et al. [9] have suggested

the use of parallel simulated annealing and parallel tabu

search algorithms for the task allocation problem, in

which a Task Interaction Graph (TIG), representing com-

municating processes in a distributed systems, is to be

mapped to homogeneous processors. A TIG is different

from a DAG in that the former is an undirected graph

with no precedence constraints among the tasks. In a

recent study, we have proposed a parallel genetic

algorithm for BNP scheduling [17].

3 THE PROPOSED ALGORITHM

In the following, we first explain the sequential operation of

the proposed PBSA algorithm, and then discuss the graph

partitioning and parallelization issues. Table 1 summarizes

the definitions of the notations used throughout the paper.
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3.1 Scheduling Serially

In the following, we call the processors which execute the

PBSA algorithm the physical processing elements (PPEs) in

order to distinguish them from the target processing

elements (TPEs) to which the task graph is to be scheduled.

The sequential version is a special case in which only a

single PPE is used to execute the PBSA algorithm. The

algorithms starts by scheduling all the nodes to one TPE. It

then improves the schedule by migrating the nodes to other

TPEs. As such we refer to the serialized algorithm as simply

the BSA algorithm.
To determine an accurate scheduling order, we arrange

the nodes in an order called the CPN-Dominant sequence. The

sequence is determined as follows: In a task graph, there is a

set of nodes and edges, forming a path from an entry node

to an exit node, of which the sum of computation and

communication costs is the maximum. This set of nodes is

called the critical path (CP) of the task graph, and the sum

of the computational costs of the nodes on the CP provides

a loose lower bound on the schedule length of the graph. A

CP can be easily found by using a depth-first search; there

can be multiple CPs, from which we select the one with the

maximum sum of computation costs.

The CP nodes (CPNs) are more important nodes (since
their finish times determine the final schedule length) and
should be considered for scheduling as early as possible in
the scheduling process. However, a CPN can only start its
execution if all of its parent nodes have finished their
execution. Thus, before a CPN is scheduled, all of its parent
nodes must be scheduled. The parent node of a CPN need
not be a CPN itself. We call such a node an in-branch node
(IBN), which is defined as a node that is not a CPN and
from which there is a path reaching a CPN. In addition to
CPNs and IBNs, there is another class of nodes called out-
branch node (OBN). An OBN is a node which is neither a
CPN nor an IBN. Based on this classification, the nodes of
any connected graph can be divided into these three
categories. Using this categorization, the relative impor-
tance of nodes are in the order: CPNs, IBNs, and OBNs. In
the CPN-Dominant sequence, the precedence constraints
among nodes are preserved in the following manner: the
IBNs reaching a CPN are always inserted before the CPN;
OBNs are appended to the sequence in a topological order
so that a parent OBN is always inserted before its child
OBN.

The CPN-Dominant sequence is constructed by a
procedure called Serial_Injection, which assigns the entire
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CPN-dominant sequence into a single processor called the

pivot processor (the one with the largest number of incident
links). The Serial_Injection procedure is outlined below.

SERIAL_INJECTION(PIVOT_PROCESSOR):

1. Initialize the CPN-Dominant Sequence as an empty list of
tasks. Make the entry CPN to be the first node in the
sequence. Set Position to 2. Let nx be the next CPN.

while not all CPNs are included in the CPN-Dominant
Sequence do

2. If nx has all its parent nodes in the sequence then

3. Put nx at Position in the sequence and increment
Position.

4. else

5. Let ny be the parent node of nx which is not in the
sequence and has the largest b-level.1 Ties are broken by
choosing the parent with a smaller t-level. If ny has all
its parent nodes in the sequence, put ny at Position in
the sequence and increment Position. Otherwise,
recursively include all the ancestor nodes of ny in the
sequence so that the nodes with a larger value of b-level

are considered first.
6. Repeat the above step until all the parent nodes of nx

are in the sequence. Put nx in the sequence at Position.
7. endif

8. Make nx be the next CPN.
endwhile

9. Append all the OBNs to the sequence in a decreasing
order of b-level.

10. Inject the CPN-Dominant Sequence to Pivot_Processor.

For scheduling tasks and messages, we employ an

incremental adaptive approach. After the serial injection

process, the nodes are incrementally ªbubbled-upº by
migrating to the adjacent processors in a breadth-first

order. In the course of node migration, messages are also

incrementally routed and scheduled to the most suitable

time slots on an optimized route. This is because a node will

not migrate if its start time cannot be reduced by the
migration or if the destination processor for migration is not

a valid choice as specified by the underlying routing

scheme.
A candidate node for migration is a node that has its data

arrival time (DAT) (defined as the time at which the last

message from its parent nodes finishes delivery) earlier

than its current start time on the pivot processor. The goal
of a migration is to schedule the node to an earlier time slot

on one of the adjacent processors that allows the largest

reduction in the start time of the node. To determine the

largest start time reduction, we need to compute the DAT

and the start time of the node on each adjacent processor. A
node can be scheduled to a processor if the processor has an

idle time slot that starts later than the node's DAT and is

large enough to accommodate the node. The following

procedure outlines the computation of the start time of a

node on a processor.

Computation of ST�ni;Q�:
Precondition: m nodes nQ1

; nQ2
; . . . ; nQm

� 	
have been scheduled

on processor Q (m � 0).

1. Check if there exists some k such that:

ST nQk�1
; Q

ÿ �ÿmax FT nQk
;Q

ÿ �
; DAT ni;Q� �� 	 � w ni� �

where k � 0; . . . ;m, ST nQm�1
; Q

ÿ � � 1, and
FT nQ0

; Q
ÿ � � 0.

2. If such k exists, compute max FT nQl
; Q

ÿ �
; DAT ni;Q� �� 	

with l being the smallest k satisfying the above inequality,
and return this value as the start time of ni on processor
Q; otherwise, return 1.

The above procedure states that to determine the start
time of a node on a processor, we have to examine the first
idle time slot, if any, before the first node on that processor.
We check whether the overlapping portion, if any, of the
idle time slot and the time period in which the node can
start execution, is large enough to accommodate the node. If
there is such an idle time slot, the start time for the node is
the earliest one; if not, we proceed to try the next idle time
slot.

The DAT of a node on a processor is constrained by the
finish times of the parent nodes and the message arrival
times. If the node under consideration and its parent node
are scheduled to the same processor, the message arrival
time of this parent node is simply its finish time on the
processor (intraprocessor communication time is ignored).
On the other hand, if the parent node is scheduled to
another processor, the message arrival time depends on
how the message is routed and scheduled on the links. To
schedule a message on a link, we search for a suitable idle
time slot on the link to accommodate the message. A
message can be scheduled to a link if the link has an idle
time slot that is later than the source node's finish time and
is large enough to accommodate the message. The following
procedure outlines the scheduling of a message ex � �ni; nj�
to a link L:

Computation MST(ex; L):
Precondition: m messages e1; . . . ; emf g have been scheduled on
the link L (m � 0).

1. Check if there exists some k such that

MST ek�1; L� � ÿmax MFT ek; L� �; FT ni; Proc ni� �� �f g � cij
where k � 0; . . . ;m and MST em�1; L� � � 1,
MFT eo; L� � � 0.

2. If such k exists, compute

max MFT er�1; L� �; FT ni; Proc ni� �� �f g
with r being the smallest k satisfying the above inequality,
and return such value as the start time of ex on L (denoted
by MST �ex; L�); otherwise return 1.

This procedure determines the start time of a message on
a link, in a similar manner as the procedure used for
determining the start time of a node on a processor. The
DAT of the node on the processor is then simply the largest
value of the message arrival times. The parent node that
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corresponds to this largest value of the message arrival time

is called the Very Important Parent (VIP).
The sequential BSA algorithm is outlined below. The

procedure Build_Processor_List constructs a list of processors

in a breadth-first order from the first pivot processor. The

procedure Serial_Injection constructs the CPN-Dominant

sequence of the nodes and injects all the nodes to the first

pivot processor.

THE BSA ALGORITHM:

1. Load processor topology and input task graph
2. Pivot_TPE  the processor with the highest degree2

3. Processor_list  Build_Processor_List(Pivot_TPE)

4. Serial_Injection(Pivot_TPE)

5. while Processor_list_not_empty do

6. Pivot_TPE  first processor of Processor_list

7. for each ni on Pivot_TPE do

8. if ST �ni; P ivot TPE� > DAT �ni; Pivot TPE� or

Proc�V IP �ni�� 6� Pivot TPE then

9. Determine DAT and ST of ni on each adjacent
processor PE0

10. if there exists a PE0 such that
ST �ni; PE0� < ST �ni; P ivot TPE� then

11. Allow ni to migrate from Pivot TPE to PE0 and
update start times of nodes and messages

12. else if ST �ni; PE0� � ST �ni; Pivot TPE� and

Proc�V IP �ni�� � PE0 then

13. Allow ni to migrate from Pivot TPE to PE0, and
update start times of nodes and messages

14. end if

15. end if

16. end for

17. end while

The procedure Build_Processor_List takes O�p2� time

because it involves a breadth-first traversal of the

processor graph. The procedure Serial_Injection takes

O�e� v� time because the CPN-Dominant sequence can

be constructed in O�e� v� time. Thus, the dominant step

is the while-loop from step 5 to step 17. In this loop, it

takes O�e� time to compute the ST and DAT values of

the node on each adjacent processor. If migration is done,

it also takes O�e� time. Since there are O�v� nodes on the

Pivot_TPE and O�p� adjacent processors, each iteration of

the while loop takes O�p2ev� time. Thus, the BSA

algorithm takes O�p2ev� time.
If the target processors are heterogeneous, the decision as

to whether a migration should be taken is determined by

the finish times of the nodes rather than the start times. This

is because, for heterogeneous processors, the execution time

of a task varies for different processors; hence, even if a task

can start at the same time for two distinct processors, its

finish times can be different. Moreover, the first pivot

processor will be the one on which the CP length is the

shortest in order to further minimize the finish times of the

CPNs by exploiting the heterogeneity of the processors.

3.2 Scheduling in Parallel

We parallelize the algorithm by partitioning the DAG into
multiple parts. In a simple approach, one can partition the
DAG horizontally or vertically [18], [24]. A horizontal
partitioning means dividing the DAG into layers of nodes
such that the paths in the DAG are levelized. In contrast, a
vertical partitioning means dividing the DAG along the
paths. Fig. 3 illustrates these two simple techniques. The
partitioned pieces can then be scheduled independently and
their resultant schedules can be combined. However, the
efficiency of a horizontal or vertical partitioning depends on
the graph structure. In the PBSA algorithm, we partition the
CPN-Dominant sequence (which is neither vertical nor
horizontal but is a combination of the two). The number of
partitions is equal to the number of PPEs available. Each
PPE independently schedules the nodes belonging to its
own partition by using a sequential BSA algorithm. The
subschedules for all the partitions are generated and then
concatenated to form the final complete schedule.

Due to the dependencies between the nodes of two
adjacent partitions, the PPEs have to share some global
information in the scheduling process. Specifically, when a
PPE attempts to schedule a node in its partition, it has to know
the finish time of a parent node in another partition, called the
remote parent node (RPN), so that the PPE can determine its
earliest start time. A straight forward approach is to let the
PPEs communicate and exchange information about the start
times during the scheduling process. This approach, how-
ever, is not efficient because local schedules in the PPEs need
to be revised, resulting in an excessive overhead due to
communication among the PPEs which limits the speedup. In
our approach, we use an estimated information in each PPE
so that inter-PPE communication is minimized. These
estimates are given in the following definitions:

Definition 1. The earliest possible start time (EPST) of a node is
the largest sum of computation costs from an entry node to the
node but not including the node itself.

Definition 2. The latest possible start time (LPST) of a node is
the sum of computation costs from the first node in the serial
injection ordering to the node but not including the node itself.

The start time of a node is bounded below by its EPST
(due to the precedence constraints) and bounded from
above by the node's LPST (because LPST is the start time of
the node when the DAG is serialized by the serial injection
process). Therefore, EPST and LPST represent the most
optimistic estimate and the most pessimistic estimate for the
start time of an RPN, respectively.

An RPN can be scheduled to start at any time between
these two extremes. The crux is to pick an accurate estimate
for a RPN's start time from all values between the two
extremes. In our approach, if the RPN is a CPN, we take an
optimistic estimate for its start time; otherwise, we take a
conservative estimate. Specifically, the estimated start time of
a RPN is taken to be its EPST if it is a CPN; otherwise, it is taken
to be �EPST� 1ÿ �� �LPST. Here, the parameter �
(0 � � � 1), called the importance factor, indicates the time-
liness of the scheduling of the RPN in that a larger value of
implies that the RPN's estimated start time is closer to its
EPST, while a smaller value implies its estimated start time is
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closer to its LPST. In any case, � is a positive real number less
than 1 and has to be determined heuristically. In Section 5, we
present some experimental results about the effect of� on the
schedule lengths.

In addition to the estimated start time of an RPN, we need
to know the TPE to which the RPN is scheduled. This is
essential in determining the DAT of a node to be scheduled in
order to select the most suitable TPE for the node. We estimate
this in the following manner: If the RPN is a CPN, then we
assume that it will be scheduled to the same TPE as the highest
level CPN in the local partition; otherwise, we randomly pick
one TPE to be the one to which the RPN is scheduled. We call
this TPE of an RPN the estimated TPE (ETPE).

In the PBSA algorithm, one PPE is designated as the
master and the others PPEs as the slaves. The master PPE is
responsible for all pre-scheduling and post-scheduling
work. This includes the serial injection, the task graph
partitioning, and the concatenation of subschedules includ-
ing resolving any conflicts in subschedules. The slave
procedure of PBSA is outlined below.

PROCEDURE PBSA_Slave:

1. Receive the target processor network from PBSA_Master.
2. Receive graph partition together with the RPNs

information (i.e., ESTs and ETPEs) from PBSA_Master.
3. Apply the serial BSA algorithm to the graph partition. For

every RPN, its EST and ETPE are used for determining
the DAT of a node to be scheduled in the local partition.

4. Send the resulting subschedule to PBSA_Master.

To derive the time complexity, suppose there are m
nodes in the local partition of PBSA_Slave. As step 3 in
PBSA_Slave is the dominant step, the complexity of
PBSA_Slave is O�p2e0m�, where e0 is the number of edges
in the local partition.

3.3 Concatenating Subschedules

The master procedure concatenates the subschedules. The
concatenation process involves a matching of TPEs between

adjacent subschedules. Obviously, an exhaustive matching
is not feasible. To reduce the time complexity of sub-
schedules concatenation, we employ a two-phase method.
The objective of the first phase is to minimize the start time
of the most important node in every subschedule. Such a
node is likely to be a CPN. The second phase is for
rearranging the exit nodes (that is, the nodes without any
successor in the same partition) of a subschedule so that
they can start earlier. This rearrangement can potentially
make the most important node of the next subschedule
start earlier.

In the first phase, for every subschedule, the earliest
node among all TPEs is determined. Call this node the leader
node and the TPE to which the leader node is scheduled the
leader TPE. The leader node, together with all its succeeding
nodes on the leader TPE, are concatenated to a TPE of its
preceding subschedule such that the start time of the leader
node is scheduled as early as possible. Such a TPE is called
the image of the leader TPE. The neighboring TPEs of the
leader TPE are then concatenated to the corresponding
neighboring TPEs of the leader TPE's image. This is done to
all TPEs in a breadth-first manner. In the concatenation
process, nodes may need to be moved to start later than
their original scheduled times because of the accommoda-
tion of the interpartition communication messages. In
addition, the corresponding schedule of communication
messages may also need to be adjusted.

In the second phase, after a subschedule is concatenated
with its preceding subschedule, all exit nodes in the
subschedule are examined for rescheduling. Specifically,
each exit node is rescheduled to the TPE that allows the
minimum start time. The procedure for performing this
two-phase concatenation process, called Concat_Schedules, is
outlined below.

PROCEDURE CONCAT_SCHEDULES:
1. for every pair of adjacent subschedules do
2. Determine the earliest node in the latter subschedule.

Call this the leader node. Call its TPE the leader TPE.
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3. Concatenate all nodes, which are scheduled on the TPE
accommodating the leader node, to a TPE in the former
subschedule so that the leader node can start as early as
possible.

4. Concatenate the nodes on all other TPEs to the TPEs of
the former subschedule in a breadth-first order
beginning from the neighbors of the leader TPE.

5. Reschedule the exit nodes in the latter subschedule so
that they can start as early as possible.

6. Walk through the whole concatenated schedule to
resolve any conflict between the actual start times and
the estimated start times.

7. end for

To derive the time complexity, suppose that there are at

most m nodes in every subschedule. Since step 2 and

step 5 take O�m� time, while steps 3, 4, and 6 take O�m2�
time, the time complexity of Concat_Schedules is then

O�Pm2�, where P is the number of PPEs (that is, the

number of subschedules).
The final schedule generated from concatenating the

subschedules by the procedure Concat_Schedules is a valid

schedule. This is formalized in the following theorem:

Lemma. The final schedule produced by Concat_Schedules

preserves the precedence constraints.

Proof. Clearly, the precedence constraints within a sub-

schedule are preserved by the slave program. On the

other hand, interpartition precedence constraints are

preserved because the CPN-Dominant sequence main-

tains the precedence constraints. Finally, step 6 of the

procedure Concat_Schedules resolves any potential con-

flict between pairs of adjacent subschedules by pushing

down nodes in the succeeding subschedules. The

theorem is proven. tu
With the procedure Concat_Schedules, the master proce-

dure of the PBSA algorithm can be outlined below.

PROCEDURE PBSA_Master:

1. Load processor network topology and input task graph.
2. Serial_Injection
3. Partition the task graph into equal sized sets according to

the number of node PPEs available. Determine the ESTs
and ETPEs for every RPNs in all partitions.

4. Broadcast the processor network topology to all
PBSA_Slave.

5. Send the particular graph partition together with the
corresponding ESTs and ETPEs to each PBSA_Slave.

6. Wait until all PBSA_Slave finish.
7. Concat_Schedules

If there are P PPEs, the maximum sizem of each partition

will then be v
P

� �
. The dominant steps in PBSA_Master are

steps 6 and 7. As describe above, step 6 takes O�p2e0m� and

step 7 takes O�Pm2�. The time complexity of PBSA_Master

is then O p2e0 v
P

� �� P v
P

� �2
� �

. Taking e0 to be e
P

� �
, the time

complexity is O p2 e
P

� �
v
P

� �� P v
P

� �2
� �

.

To analyze the theoretical speedup, denoted by SPBSABSA , of

the PBSA algorithm with respect to the serial BSA

algorithm, we start with the following expression:

SPBSABSA � O p2ev

p2 e
P

� �
v
P

� �� P v
P

� �2

 !
:

Dropping the ceiling operators, we have:

SPBSABSA � O p2ev
p2ev
P 2 � v2

P

 !
� O 1

1
P 2 � v

p2eP

 !
:

Since the second term in the denominator is much smaller
than the first term, we ignore it and get the following
approximate theoretical speedup of PBSA over serial BSA:

SPBSABSA � O P 2
ÿ �

:

That is, the speedup grows as the square of the number of
PPEs is used, which is superlinear. This superlinear
speedup is mainly due to the fact that the PBSA algorithm
estimates the start times of RPNs, allowing it to spend less
time in scheduling interpartition edges.

4 SCHEDULING EXAMPLES

In this section, we present some examples to demonstrate
the operation of the proposed algorithm using the task
graph shown in Fig. 1. We describe the schedules generated
by the serial BSA algorithm and the PBSA algorithm using
three PPEs for a ring of four homogeneous target
processors. The CPN-Dominant sequence is constructed as
follows. The critical path of the task graph is n1; n7; n9f g.
The CPN-Dominant sequence is as follows:

n1; n2; n7; n4; n3; n8; n6; n9; n5

(see Fig. 4; the CPNs are marked by an asterisk).
The serial BSA algorithm allocates the entire CPN-

Dominant sequence to the first pivot processor PE 0
(Fig. 5a). In the first phase, n1, n2, and n7 do not migrate
because they are already scheduled to finish at the earliest
possible times. But n4 migrates to PE 1 because its start time
will improve. Similarly, n3 migrates to a neighboring
processor PE 3, and n8 migrates to PE 1. Fig. 5b shows the
intermediate schedule after these migrations. Next, n6

migrates to PE 3 (see Fig. 5c). The last CPN, n9, migrates to
PE 1, where its VIP n8 is scheduled. This migration allows the
only OBN n5 to move up. The resulting schedule is shown in
Fig. 5d, which is the final schedule as no more nodes can
migrate to improve their start times. The final schedule
length is 160. For this example, we also executed the MH,
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DLS, and BU algorithms. The schedule length is 200 for the

MH and DLS algorithms and 270 for the BU algorithm.
Next, we execute the PBSA algorithm using three PPEs for

the same task graph. Given the CPN-Dominant sequence, the

task graph is now partitioned into three sets: n1; n2; n7f g,
n4; n3; n8f g, and n6; n9; n5f g (see Fig. 6a and Fig. 6b. Fig. 6c

shows the estimated parameters of the remote parent nodes

(RPNs). According to the partitioning, there are only four

RPNs, namely, n1, n2, n7, and n8. The value of the

importance factor � is taken to be 0.7. For the nodes n1,

n2, and n7, their EPSTs are equal to their respective LPSTs.

This is because they occupy the earliest possible positions in

the CPN-Dominant sequence. The ESTs of these three

nodes, therefore, are equal to the EPSTs (and LPSTs as well)

independent of �. Indeed, their ESTs are correct with

reference to the schedules shown in Fig. 5. Also, their ETPEs

are all chosen to be PE 0. The EPST of n8 is equal to the sum

of computation costs of n1 and n4. The LPST, on the other

hand, is equal to the sum of computation costs of the list of

nodes n1; n2; n7; n4; n3f g. Thus, the EST of n8 is given by

60� 0:7� 160� 0:3 � 90. Since n8 is not a CPN, its ETPE is

randomly chosen to be PE 1.
A parallel execution of PBSA_Slave results in three

subschedules, which are shown in Fig. 7a, Fig. 7b, and
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Fig. 5. (a) Intermediate schedule produced by BSA after serial injection (schedule length = 300, total comm. cost = 0), (b) intermediate schedule after
n4, n3, n8 migrate to neighboring processors (schedule length = 220, total comm. cost = 90), (c) intermediate schedule after n6 migrates to PE 3
(schedule length = 220, total comm. cost = 150), (d) final schedule after n9 migrates to PE 1 (schedule length = 160, total comm. cost = 220).



Fig. 7c. For clarity, the RPNs of each partition are not shown
in the subschedules. In the concatenation of the subsche-
dules (see Fig. 8), the first two partitions are concatenated
directly without any need of resolving conflicts. This is
because of the accurate estimations of start times of the
RPNs. The concatenation of the second and third partitions
needs some more explanation. Since n6 is the leader task in
this partition, the Concat_Schedules procedure has to mini-
mize its start time. To accomplish this, n6 is appended to
TPE 2 instead of TPE 0. This, in turn, makes n9 to be
scheduled to TPE 2. The OBN n6 is appended to TPE 3 after
the final walk-through of the schedule, which is done for
minimization of start times. The generated schedule is
almost similar to that of the BSA algorithm and the schedule
length is the same. The only difference is in the scheduling
of n9. However, such scheduling of n9 does not affect the
final schedule length. Even though the value of EST of the
RPN n8 is over-estimated, scheduling n9 to the same
processor as n6 turns out to be a good decision. This is
because n9 does not need to wait for the data from n6 and,
thus, can start earlier.

Finally, we note that the total communication costs
incurred in the combined schedule is larger than that of the
BSA algorithm. The reason is that the BSA algorithm does

not allow nodes to migrate to other target processors if their
start times do not improve. However, the slave program of
the PBSA algorithm does not have this global knowledge
about the intermediate state of the schedule, and thus it
attempts to locally schedule every node to start at the
earliest possible time, resulting in a higher utilization of the
communication links.

5 RESULTS

In this section, we present the performance results of the
PBSA algorithm and compare it with the MH, DLS, and BU
algorithms. Since the MH, DLS, and BU algorithms are
sequential, we also compare their performance with our
serialized BSA algorithm. Furthermore, we compare the
solution quality and efficiency of the PBSA and BSA
algorithms and observe the trade-off between the solution
quality and running time.

5.1 Workload

For testing the algorithms, we generated two suites of task
graphs: regular graphs and irregular graphs. The regular
graphs represent three parallel applications including
Gaussian elimination [28], Cholesky factorization [16], and
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Fig. 6. (a) Calculation of the EPSTs of the RPNs n1, n2, n7, and n8, (b) calculation of the LPSTs of the RPNs, (c) the estimated values of the RPNs.



FFT [16]. There exists a unique critical path in each
Gaussian elimination and Cholesky factorization graphs.
However, the lengths of some other paths in a Gaussian
elimination graph are the same as that of the critical path.
The FFT graphs are ªdenseº graphs in that they contain
more edges than nodes. Furthermore, all the paths in an
FFT graph are of equal length and, therefore, are all
critical paths. Fig. 9 includes some miniature examples of
these regular graphs. Since these applications operate on
matrices, the number of nodes (and edges) in their task
graphs depends on the size of the data matrix. The
number of nodes in the task graph for each application
is roughly O�N2�, where N is the dimension of the
matrix. For a given N , the number of nodes is about the
same for all applications. In our experiments, we varied
N from 19 to 64 with increments of 5 so that the
numbers of nodes in the graphs range approximately
from 200 to 2,000.

The suite of irregular task graphs consists of graphs with
randomly generated structures. Within each type of graph,
we chose three values of CCR (0.1, 1.0, and 10.0). A value of
CCR equal to 0.1 represents a computation-intensive task
graph (or coarse granularity), a value of 10.0 represents a
communication-intensive task graph (or fine granularity),
and a value of 1.0 represents a graph in which computation
and communication are just about balanced. For the regular
graphs, we generated the weights on the nodes and edges

such that the average value of CCR corresponded to 0.1, 1.0,

or 10.0. We generated the irregular graphs as follows: First,

we randomly selected the computation cost of each node in

the graph from a uniform distribution with mean equal to

40 (minimum = 2 and maximum = 78). Beginning with the

first node, we chose a random number indicating the

number of children from a uniform distribution with mean

equal to v
10, thus, the connectivity of the graph increases

with the size of the graph. We also randomly selected the

communication cost of each edge from a uniform distribution

with a mean equal to 40 times the specified value of CCR. The

sizes of random graphs range from 200 to 2,000 nodes with

increments of 200.
We used four target system topologies: an 8-node

hypercube, a 4� 2 mesh, an 8-node fully connected net-

work, and an 8-node random topology. We assume these

target systems to be composed of homogeneous processors.

Unless otherwise stated, all results of the PBSA algorithm

were generated with � (the importance factor used in

estimating the start times of RPNs) equal to 0.5.
We implemented the scheduling algorithms on an Intel

Paragon/XP-S; the sequential algorithms (MH, DLS, BU,

and BSA) were executed on a single processor (an i860/XP)

of the Paragon. For the PBSA algorithm, we used 2, 4, 8, and

16 processors.
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Fig. 7. (a) The schedule of the first partition, (b) the schedule of the second partition, (c) the schedule of the third partition.



5.2 Schedule Lengths and Speedups

In our first experiment, we compared the schedules

produced by the BSA algorithm and the PBSA algorithm

(16 Paragon processors) with those of the MH, DLS, and BU

algorithms, using the four types of task graphs of various

sizes and four target topologies. We found that the graph
size and processor network topology did not have a
significant impact on the relative schedule lengths, but the
value of CCR did affect the schedule length. Fig. 10 shows
the impact of CCR on the ratios of the schedule length
generated by the MH, DLS, BU, and PBSA algorithms, to
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Fig. 8. (a) The subschedules concatenation process, (b) the combined final schedule generated by the PBSA algorithm (schedule length = 160, total
comm. costs incured = 240).

Fig. 9. Miniature examples for (a) Gaussian elimination task graph, (b) Cholesky factorization task graph, and (c) FFT task graph.



those of the BSA algorithm. Each point on the curve is an
average of 40 schedule length ratios (10 graphs and four
topologies). From these results, we make the following
observations:

. The BSA algorithm outperforms the MH, DLS, and
BU algorithms since all ratios are greater than 1;

. The margin of improvement is different for each
algorithm: the largest improvement is over the BU
algorithm (up to about 55 percent for the random
graphs); the minimum improvement is over the MH
algorithm;

. The margin of improvement is larger when the value
of CCR is large;

. The PBSA algorithm (using 16 PPEs) outperforms
the MH, DLS, and BU algorithms in most cases;

. For the Gaussian elimination and Cholesky factor-
ization graphs, the PBSA algorithm performed
comparably with the DLS algorithm for smaller
values of CCR. For the FFT graphs, the PBSA
algorithm performed worse than the DLS and MH
algorithm.

. The PBSA algorithm outperformed the BU algorithm
for all the regular graphs, except for the FFT graphs
with CCR equal to 0.1.

These observations are explained through the following
reasons: The CPN-Dominant sequence captures a relatively
better tasks ordering for scheduling in that a more
important node can be scheduled at an earlier time. Indeed,

a closer look at the scheduling traces of the BU algorithm
reveals that its inferior performance is primarily due to its
strategy of evenly distributing the tasks to the processors.
On the other hand, the MH and DLS algorithms perform
relatively better than BU because they minimize the start
times of nodes. The incremental message-scheduling
strategy in the BSA algorithm is another major reason for
its better performance. In the BU, DLS, and MH algorithms,
scheduling of messages relies on the information stored in
the infrequently updated routing tables. The inaccuracy of
the tables inevitably leads to inefficient utilization of
communication links in that some links are contended by
several messages while some links are idle. This, in turn,
delays the start times of nodes.

A longer schedule length produced by PBSA (using 16
PPEs) compared to its sequential counterpart, BSA, is for
two reasons: 1) some inaccuracies are incurred due to the
estimation of the start times of RPNs; and 2) the procedure
for merging the partial schedules can cause some additional
performance degradation. After observing the scheduling
traces, we found that the adverse effect of inaccurate
estimation is more profound when the task graph contains
multiple critical paths. However, for the random graphs
with more general structures, the PBSA algorithm yields a
better performance.

Table 2 provides the scheduling times (in seconds) for
these serial algorithms on a single node of the Paragon (the
values were taken as the average across four target
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Fig. 10. Average ratios of schedule lengths generated by the MH, DLS, BU, and PBSA (using 16 PPEs) algorithms to those of the BSA algorithm for
the four types of graphs against CCR. (a) Gaussian elimination graphs, (b) Cholesky factorization graphs, (c) FFT graphs, (d) random graphs.



topologies and three CCRs). The running times of the PBSA
algorithm using 16 PPEs on the Paragon are also included
for comparison. We observe that the running times of the
sequential algorithms approach thousands of seconds when
the number of nodes is more than 800. The DLS algorithm
takes significantly longer time than the other algorithms.
For instance, to schedule a 2,000-node random graph, the
PBSA algorithm takes only about three minutes but the DLS
algorithm takes more than two hours. These results also
indicate that MH is about 30 percent faster than DLS, BSA is
about 20 percent faster than DLS. The BU algorithm is the
fastest among the sequential algorithms. In contrast, the
running times of the PBSA algorithm are nearly two orders
of magnitude less than those of the sequential algorithms,
thereby demonstrating a superlinear speedup. This makes
the PBSA algorithm useful for generating schedules for very
large task graphs.

To further investigate the effects of parallelization, we
applied the PBSA algorithm to the four types of graphs
using 2, 4, 8, and 16 processors on the Paragon. As before,

we computed the schedule length ratios with respect to
the serial BSA algorithm. The results are summarized in
Fig. 11. Since the effect of task graph size, graph type,
and target topology are found to be insignificant, we
show in Fig. 11 the average schedule length ratios across
all graph types, graph sizes, and topologies, with each
point on the curves representing the average of 140 ratios
(four topologies, 35 graphs). The performance degrada-
tion percentage of PBSA with respect to BSA ranges from
3 to 22 percent. In most cases, however, the performance
degradation is less than 10 percent. As noted earlier, the
degradation in PBSA's performance is due to the
inaccuracy in start times estimation and subschedules
concatenation. Both of these effects aggravate with an
increase in the number of processors. However, the
amount of degradation is smaller compared to the
improvements BSA yielded over MH, DLS, and BU.
Indeed, we observe that the average schedule length
ratios in Figs. 11a, 11b, and 11c are all less than 1,
implying that the overall performance of PBSA is better
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Average Running Times of the MH, DLS, BU, and PBSA (Using 16 PPEs) Algorithms for

Various Task Graphs Across All CCRs and Target Topologies



than the other algorithms. An interesting observation is
that the average schedule length ratios of PBSA over MH,
DLS, and BU are smaller when CCR is larger; in contrast,
in Fig. 11d, we observe that the ratios increase with CCRs.
This observation implies that compared with the PBSA
algorithm, the performance of the MH, DLS, and BU
algorithms is more sensitive to the value of CCR.

We also calculated the speedups by dividing the running
times of the MH, DLS, BU, and serial BSA algorithms by
those of the PBSA algorithm. Fig. 12 shows the speedup of

PBSA using 2, 4, 8, and 16 processors with various sizes of
task graphs, for the regular task graphs (Cholesky factor-
ization, Gaussian elimination, and FFT) and random
graphs. These results indicate that the parallelization
strategy used in PBSA has both positive and negative
effects. By negative effects we mean potential inaccurate
decisions in scheduling which can cause a longer
schedule length. On the positive side, the algorithm
becomes faster because its workload is reduced. As we
have shown in Section 3, the theoretical speedup of PBSA
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Fig. 11. Average schedule length ratios of the PBSA algorithm to the (a) MH algorithm, (b) DLS algorithm, (c) BU algorithm, (d) BSA algorithm, for all
graphs and topologies.

Fig. 12. Average speedups of PBSA with respect to the sequential algorithms for (a) regular graphs (Gaussian elimination, Cholesky factorization,
and FFT), and (b) random graphs.



with respect to serial BSA is O�P 2�, which is superlinear.
The plots indicate that the parallel PBSA when run on
two processors was about 6 to 10 times faster than the
serial BSA. By using more PPEs, the speedup appears to
increase almost linearly. With 16 PPEs, the speedup is
close to 50. The observed speedup, therefore, agrees with
the predicted superlinear speedup.

5.3 Scalability of the PBSA Algorithm

To investigate the scalability of the PBSA algorithm, we
used a larger number of PPEs. As the results in Section
5.2 indicated, the accuracy in start times estimation
critically affects the quality of the final schedule. And it
appears that the accuracy deteriorates with an increasing
number of PPEs (since the number of partitions also
increases). Thus, we applied the PBSA algorithm to ten
1,000-node random graphs for each CCR using 16, 32, 48,
and 64 processors on the Paragon and noted the average
absolute percentage error in the ESTs (estimated start
times of the RPNs), as well as the schedule length ratios
(PBSA to BSA). The absolute percentage error of EST is
defined as follows:

EST ÿ STj j
ST

� 100%:

This percentage was measured for each RPN and an
average was computed. Fig. 13a indicates that the percen-
tage error in EST is less than 10 percent for small values of
CCR even when 64 PPEs are used. However, the percentage
error is larger when CCR is equal to 10. The reason being
that the range of probable ST for each RPN is larger when
the communication costs are larger. Although the percen-
tage error is well below 20 percent in most cases, the
schedule lengths degrade quite rapidly when more PPEs
are used, as can be seen from Fig. 13b. The degradation
occurs during the concatenation process, which in some
cases enhances the adverse effect of inaccuracy in start
times estimation. However, the schedule lengths are still
within a factor of 2 from those generated by the BSA
algorithm.

The above results imply that the PBSA algorithm is
reasonably scalable in both solution quality and speedup.

Furthermore, it exhibits a trade-off between performance

and scheduling time, providing the user with a choice

between the faster version with some loss in performance

and the slower version with better performance.

5.4 Comparison of Different Partitioning Strategies

In this section, we present some experimental results to

illustrate the efficacy of the CPN-Dominant sequence

partitioning strategy used in the parallelization of the PBSA

algorithm. We compared our scheme against two other

simple graph-theoretic methods:

. Level-Based Sequence: In this method, the task
graph is partitioned into a number of horizontal
layers (see Fig. 13a) in the following manner. Using
the depth-first search, the graph is traversed from
entry nodes to exit nodes such that the level number
of every entry node is set to be 0. Then, for any node
having at least a parent node at level i, its level
number is assigned as i� 1. Nodes within the same
layer are then sorted in a descending order of the
number of children. Thus, a sequence of nodes is
constructed which can be partitioned according to
the number of PPEs available.

. Random Topological Sequence: In this method, the
nodes in the task graph are first topologically sorted
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Fig. 13. (a) Average absolute percentage error in the estimated start time of RPNs and (b) average schedule length ratios (PBSA to BSA) for ten
1,000-node random graphs.

Fig. 14. Peformance of three different task graph partitioning strategies.



using a simple depth-first search without regard to
the node and edge weights. The resulting topological
list of nodes is then randomly perturbed by
swapping some randomly selected pairs of indepen-
dent nodes such that the precedence constraints are
still preserved. For example, for the task graph
shown in Fig. 11, suppose the initial topological list
is n1; n2; n3; n4; n5; n6; n7; n8; n9f g, then n2 and n3 can
be swapped. Again, a list of nodes is obtained which
can be partitioned according to the number of PPEs
given.

The level-based strategy is a variant of horizontal
partitioning of a DAG. The random topological strategy is,
however, an arbitrary combination of horizontal and
vertical partitioning. Note that a purely vertical partitioning
strategy cannot be used with the subschedules concatena-
tion scheme.

To compare the three different partitioning strategies, we
modified the Serial_Injection process in the PBSA_Master
procedure to implement three versions of the PBSA
algorithm: 1) the original PBSA, 2) PBSA/Level (PBSA with
level-based partitioning), and 3) PBSA/Random (PBSA
with random topological partitioning). We then applied
these versions to ten 1,000-node random graphs and
compared their average schedule lengths. Fig. 14 includes
the results of these experiments. It is apparent from the
results that the CPN-Dominant sequence partitioning is

indeed considerably more effective than the other two
graph-theoretic methods.

5.5 Effects of the Start-times Estimation Technique

To study the effect of the importance factor � on the
performance of the PBSA algorithm (� was set to be 0.5
in all previous results), we varied � from 0.1 to 0.9 with
increments of 0.1, and for each value of �, we ran the
PBSA algorithm on ten 1,000-node random graphs with
three values of CCR: 0.1, 1.0, and 10.0. Fig. 15 shows
three plots of the ratios of the average schedule lengths
(for ten graphs) generated by PBSA to those of BSA
against �. We observe that when CCR is small (0.1), �
does not have a noticeable effect. This is because a
smaller value of CCR incurs less communication and,
thus, the values of EPST and LPST do not differ too
much. When CCR is moderate (1.0), the curves tend to be
convex and the smaller the value of �, the worse the
performance of PBSA. Optimal values lie somewhere
between 0.4 and 0.6. The main reason is that small
makes the estimations bias towards LPST, which is not
accurate for moderate CCR. However, when the value of
CCR is large (10.0), the curves become more convex. That
is, the performance is highly sensitive to extreme values
of �. In this case, a small value of � is better as it makes
the estimations bias towards LPST, which is more
accurate for large CCR (since communication weights
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Fig. 15. The effect of parameter � on schedule length. (a) CCR = 0.1, (b) CCR = 1.0, (c) CCR = 10.0.



are large, nodes tend to be scheduled late). Based on

these results, setting � to be 0.5 is a reasonable compromise

for handling general task graphs.

6 CONCLUSIONS AND FUTURE WORK

Parallelization of a multiprocessor scheduling algorithm is a

natural approach to reducing the time complexity of the

algorithm. In this paper, we have presented a novel parallel

algorithm which can provide a scalable schedule and can be

useful for scheduling large task graphs which are virtually

impossible to schedule using sequential algorithms. The

proposed algorithm outperforms three well-known algo-

rithms reported in the literature, while requiring signifi-

cantly shorter running times. There are a number of

avenues for extending this research, though. While the

PBSA algorithm yields a considerable speedup over the

sequential BSA algorithm, some performance degradation

is observed with the former. This is primarily due to the

inaccuracy of estimating the start times of the parent nodes

which do not belong to the current partition. New heuristics

are needed for improving the accuracy of estimation.
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