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Numerical Analysis of Nonlinear Soliton
Propagation Phenomena Using the
Fuzzy Mesh Analysis Technique

P. Shum and S. F. Yu

Abstract—A novel numerical technique, the fuzzy mesh analysis
technique, is developed to study the nonlinear propagation phe-
nomena of solitons in an optical fiber. The main advantage of this
technique is the variation of mesh size with the shape of soliton
pulses along the propagation distance such that: 1) the calculation
efficiency can be enhanced and 2) the number of sampling points
can be greatly reduced. It is shown that the fuzzy mesh analysis
technique is capable of analyzing the propagation phenomena of
high-power solitons, pulse compression, and soliton interaction
in an efficient manner.

Index Terms—Modeling, optical fiber communication, optical
fiber theory, optical solitons.

I. INTRODUCTION

OPTICAL solitons have enormous potential in the applica-
tion of long-haul high-speed optical fiber communication

systems [1], [2]. Soliton phenomena can also be used for signal
compression and for switching purposes [3]. It is noted that
for short-distance soliton communication (around 1000 km), it
is possible for the soliton transmission speed to be more than
100 Gbit/s [4]. However, for long-distance transoceanic soliton
communication over 10 000 km, the transmission speed is
limited to 5–40 Gbit/s due to various dispersion and amplifier
conditions [5], [6]. Therefore, the study of soliton propaga-
tion in an optical fiber is required in order to optimize the
performance of soliton communication systems for various
applications.

The inverse scattering method (ISM), perturbation method
(PM), split-step Fourier method (SSFM), and Fourier series
analysis technique (FSAT) are methods available to study
propagation phenomena of solitons in an optical fiber [7]–[13].
ISM gives an analytical solution to the propagation of solitons
in a lossless fiber. For higher order solitons, the complexity
and difficulty of finding exact solutions using ISM will be
greatly increased. If the consideration of fiber loss is required,
an exact analytic solution cannot be obtained by using ISM. In
order to deal with fiber loss, PM should be adopted. However,
the limitation of using PM is that the loss factor in the soliton
equation cannot be greater than a certain value, otherwise
inaccurate results will be obtained.

SSFM is a numerical technique with which fiber loss can
be taken into consideration. However, the disadvantages of
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using SSFM include: 1) a large number of sampling points
is required (e.g., larger than 200 sampling points) and 2) fast
Fourier transform (FFT) is heavily used to transform solutions
between time and frequency domains at each propagation step.
It is noted that for a propagation distance of one soliton
period FFT can be used as many as 3000 times, and the
cumulative errors are unavoidable [12]. In order to minimize
the cumulative error, FSAT is developed to operate entirely
in the frequency domain. This technique is efficient when
the required number of sampling points is small. However,
the computational efficiency of FSAT reduces significantly
with the increase of sampling points. This is because the
number of first-order partial differential equations as well as
the computational time increase with the number of sampling
points being used in the frequency domain [12], [13].

In this paper, we propose a novel fuzzy mesh analysis tech-
nique (FMAT) to minimize the required number of sampling
points in solving soliton propagation. In Section II, the soliton
equation is solved by splitting the corresponding nonlinear
partial differential equation into two simpler parts which can be
calculated easily, either analytically or numerically, in the time
domain. In addition, the mesh size is controlled by the shape
of the soliton pulse such that the number of sampling points
used can be minimized. In Section III, the numerical efficiency
of FMAT is examined. It can be shown that the FMAT is more
efficient than others [7]–[13] in the analysis of higher order
solitons, pulse compression, and soliton interaction.

II. NUMERICAL METHOD

A. The Implementation of the Fuzzy Mesh Analysis Technique

The general nonlinear soliton propagation equation which
includes dispersive and nonlinear effects is given by

(1)

where is the normalized complex amplitude of the
soliton pulse, is the normalized distance along the direction
of propagation, and is the normalized time. The first and
second terms on the right-hand side of (1) are the group
velocity dispersion and self-phase modulation, respectively. In
order to implement FMAT, the nonlinear expression of (1) is
split into two parts, the nonlinear and linear parts which can
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Fig. 1. Flowchart of the FMAT.

be expressed as follows:

(2)

(3)

It is obvious that error that arises from operator splitting
is proportional to the choice of (i.e., propagation step).
This is because as , such
that the summation of (2) and (3) gives back to (1). This
kind of splitting technique has been applied to discretize the
distance variable for the numerical solution of nonlinear partial
differential equations. In addition, it is found that the operator
splitting in numerical analysis is of second-order accuracy and
unconditionally stable [11], [14]–[16]. The nonlinear part (2)
can be solved analytically in the time domain, and the linear
part (3) can be calculated by finite-element analysis technique.

The use of FMAT in solving (2) and (3) is shown in Fig. 1.
The computational procedures can be explained as follows.

1) The input pulse shape is set for compu-
tation (e.g., for fundamental
soliton).

2) The nonlinear part is solved analytically in the time
domain for a propagation distance of .

3) obtained from 2) is used as the
initial condition for solving the linear part for another
propagation distance of .

4) Mesh control is adopted each time after the calculation
of the linear part such that the sampling profile can be
optimized for the next calculation.

5) obtained from 3) is used as the initial
condition for solving the nonlinear part of another prop-
agation distance provided that the propagation distance
is not reached.

Steps 2)–5) are repeated until the required propagation distance
is reached.

In the following paragraphs, the methods to solve the
nonlinear and linear parts of (1) as well as the principles of
mesh control are discussed in detail.

B. Solution of the Nonlinear Part

The nonlinear part of (1) can be solved analytically in the
time domain. This can be done by solving the first derivative
of

(4)

Substituting (2) and its conjugate into (4) with as the
initial pulse shape yields an analytical solution of (2) which
is given by

(5)

C. Solution of the Linear Part

Using the finite difference approximation, (3) can be ex-
pressed as

(6)

where is an integer, , and . Let
and , then (6) becomes

(7)

The calculation error of (7) can be estimated from the total
residue , defined as

(8)

where is an integer and is the total
number of elements. The residue of theth element is
given by

(9)

where and denote the node distribution of .
The solutions of at the propagation distance,, and

can be expressed as

(10)

(11)
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where and are defined on theth element. Using the
piecewise cubic interpolant, both and are given by

(12)

(13)

where and ( and ) are the values of
and its gradient, respectively, at theth node. The parameters

, and in (12) and (13) are the shape
functions of . In fact, these parameters can be approxi-
mated by general cubic expressions ofwhich are given as
follows:

(14)

(15)

(16)

and

(17)

Using (8), the stationary conditions of R are given as follows:

(18)

where is an integer. For theth
element, the stationary conditions

(19)

must be satisfied. Using (9), the first term of (19) can be
expressed as

(20)

where

(21)

Other terms of (19) can also be obtained in a similar approach.
With the consideration of all elements, we can obtain the

global system of equations below:

(22)

Fig. 2. Flowchart of the mesh control.

where is defined in (23), shown at the bottom of the next
page, and

...
...

(24)

(25)

and

(26)

The above system of equations can be solved to find the values
of and after a propagation distance of .

D. Principle of Mesh Control

The idea of mesh control is to make use of the available
sampling points for minimum calculation error such that the
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Fig. 3. Propagation of a fundamental nonlinear soliton pulse in an ideal fiber: (a) analytical result obtained by ISM (solid line) and (b) numerical
result obtained by the FMAT (solid dots).

numerical model can be more efficient. Different techniques of
mesh control such as adaptive grid control have been utilized
to solve the linear and nonlinear problems [17]–[21]. The
algorithm for the mesh control applied in our analysis is shown
in Fig. 2, and the corresponding computational procedures can
be explained as follows.

1) Using the cubic shape functions (14)–(17), the temporal
soliton pulse shape at a particular propagation distance
is deduced as a function of.

2) Based on the calculated cubic shape functions, both the
temporal pulse shape and slope of are obtained.
Hence, the turning points (i.e., ) can
be located by comparing the variation of the slope of

.
3) The distribution of sampling points is defined within a

sampling window along the axis. The left and right
boundaries of this sampling window are defined as the
magnitude of just below 10 . Based on the
location of turning points, new values of mesh sizes as
well as are assigned.

Fig. 4. Computational error versus soliton propagation distance for FSAT
and FMAT.

4) The procedures of assignment of mesh sizes can be
described as follows.

• The number of turning points is counted
within the sampling window.

...
...

...
...

...

(23)



SHUM AND YU: NUMERICAL ANALYSIS OF NONLINEAR SOLITON PROPAGATION PHENOMENA 2033

Fig. 5. Propagation of a second-order nonlinear soliton pulse in an ideal fiber. The results (solid dots) are computed by FMAT with mesh control.

• The sampling window is subdivided into
regions with the turning points as the boundaries
of each subdivided region.

• The sampling points within each subdivided re-
gion are equally spaced, but the number of sam-
pling points can be different between subdi-
vided regions.

• If and (i.e., ) are the boundaries
of within a subdivided region, can
be defined as ), where

is a tuning factor. is adjusted such that
the summation of sampling points within each
subdivided region is equal to

• If the total number of sampling points assigned
to each subdivided region is more (or less) than
the available sampling points of the sampling
window, the above procedures are repeated for
a different until the optimal mesh size is
achieved.

5) Hence, new values of can be calculated using
(13)–(17) with the optimized node distribution.

Using this mesh control, more information of the soliton
pulses can be obtained but without increasing the total number
of sampling points. Hence, the computational efficiency and
accuracy can be improved with FMAT.

III. N UMERICAL RESULTS

For a fundamental soliton pulse of shape
, it is well known that its pulse shape should be

unchanged along an ideal fiber. Fig. 3 compares the numerical
results (i.e., obtained by FMAT) and exact solutions (i.e.,
obtained by ISM) for the propagation of a fundamental
soliton of one soliton period (one soliton period in our
presented analysis is equivalent to ). For the numerical
calculation, the number of sampling points is set to 100 and
one sampling window is utilized. It is observed that the mesh
size of the input pulse is evenly distributed but changed
dramatically with the propagation distance. In addition, the
mesh size is concentrated around the region . The
numerical calculation obtained by FMAT also shows good
agreement with the analytical one. The influence of mesh
control in FMAT on the computational speed and accuracy is
also analyzed. The calculation given in Fig. 3 is repeated for
the case of equidistant spacing (i.e., without mesh control).
It is found that the computational time is about the same
(approximately 5 min run on an IBM PC/Pentium with a
200-MHz clock rate), but the calculation error is increased
by double when compared with the case with mesh control.
Hence, it is shown that the mesh control subroutine only takes
up a small amount of CPU time but significantly reduces the
calculation error of the numerical model.

In order to demonstrate the computational efficiency of the
proposed FMAT, the calculation error of FMAT is compared
with that obtained by FSAT. Fig. 4 shows the computational
error of FMAT and FSAT for the calculation of long-distance
propagation of a fundamental soliton. The number of sampling
points used in both techniques is equal to 18 and the compu-
tational error is calculated at various propagation distances by
comparing with that from exact solutions. The computational
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(a)

(b)

Fig. 6. Normalized power versus normalized time for a second-order soliton
pulse atx = �=4 obtained by FMAT (a) with (solid dots) and (b) without
(circles) mesh control. The solid line shows the analytical solution of the
soliton pulses.

error is defined as

(27)

where and the subscripts and stand for calculated
and exact, respectively. As we can see, the computational error
arising from FMAT is constant but that by FSAT increases
linearly with the propagation distance.

Fig. 5 shows the propagation of a second-order soliton pulse
along an ideal fiber for one soliton period. The initial condition

Fig. 7. Propagation of a third-order nonlinear soliton pulse in an ideal fiber.
The results (solid dots) are computed by FMAT with mesh control.

of the input soliton pulse is given as . In
the calculation, the total number of sampling points used is set
to 100 (i.e., distributed between ). As shown in
the figure, the mesh size and the distribution of the sampling
window vary nonuniformly along the propagation distance.
It is observed that the sampling points concentrate near the
turning points of the soliton pulse. For the propagation distance
near (where the peak power is maximized but the
pulsewidth is minimized), the distribution of the sampling
window reduces from to . The
pulse recovers to its original shape at .

For a second-order soliton, the exact solution can be ob-
tained by ISM and is given by (28), shown at the bottom
of the page, where for sech .
In order to show the computational efficiency of the FMAT,
the numerical results of at computed
by FMAT with (solid dots) and without (circles) using mesh
control are examined, see Fig. 6. The solid line shows the
analytical solution given by (28). As shown in Fig. 6, the
original shape of the soliton pulse is recovered by FMAT
with mesh control. However, FMAT without mesh control
needs at least five times the number of sampling points to
recover the original pulse shape. This is because the rapid
change of the soliton pulse shape can be accurately described
by the redistribution of mesh size but without increasing the
total number of sampling points. It is noted that 63% of total
sampling points are utilized to describe the rapid change of
the soliton pulse for the case with mesh control but only 13%
for the case without using mesh control.

Fig. 7 shows the propagation of a third-order soliton pulse
along an ideal fiber for one soliton period. The initial condition

(28)
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of the input soliton pulse is given by .
The number of elements used in the calculation is also set
to 100 (distributed between ). The solid dots
indicate the nonuniform distribution of the sampling points.
It is observed that the mesh size as well as the distribution
of the sampling window are varied effectively when single or
multiple pulses are formed during the propagation. In addition,
the original pulse shape of the input pulse is recovered at

. This example indicates that FMAT is also capable of
controlling the mesh size over high-order pulse compression.
The redistribution of sampling points is also possible if more
soliton pulses are excited.

IV. CONCLUSION

Due to the periodic variations of high-power solitons, ul-
trasharp pulses are being created such that a large sampling
density may be required in the numerical calculation. In order
to improve the computational efficiency, a new numerical
technique, FMAT, is developed. The main advantage of FMAT
is the redistribution of mesh size with the shape of soliton
pulses such that the sampling density can be greatly reduced.
It is shown that, in our calculations, with real time control of
mesh size taken into consideration, the propagation behavior
of high-power solitons can be studied in an efficient manner
and the requirement of the total number of sampling points is
drastically reduced compared with other existing techniques.
Furthermore, FMAT is capable of analyzing high-power soli-
ton propagation, soliton pulse compression, soliton interaction,
as well as other nonlinear propagation problems.
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