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An Improved Time-Domain Traveling-Wave Model
for Vertical-Cavity Surface-Emitting Lasers

S. F. Yu

Abstract—The use of the time-dependent transfer matrix and
wide-angle beam propagation method is proposed to improve the
computational speed and accuracy of a recently developed time-
domain traveling-wave model of vertical-cavity surface-emitting
lasers. With suitable utilization of the transfer matrix, signifi-
cant reduction of the total execution time of the traveling-wave
model can be obtained. In addition, the use of wide-angle beam
propagation method can minimize the calculation error of the
traveling-wave model due to the diffraction of light from the
small aperture of the laser cavity.

Index Terms—Diffraction loss, Pad́e approximant propagation
operator, semiconductor device modeling, surface-emitting de-
vices, transfer matrix method.

I. INTRODUCTION

V ERTICAL-CAVITY surface-emitting lasers (VCSEL’s)
are considered to be the key components of future high-

speed long-haul optical fiber communication systems because
of their potential capability for stable single-mode operation,
ultrahigh intrinsic relaxation oscillation frequency, ultralow
threshold current condition, and efficient coupling into optical
fibers. The intrinsic relaxation oscillation frequency of VC-
SEL’s is the result of the high photon density inside the small
laser cavity. It was demonstrated that the relaxation oscillation
frequency of VCSEL’s can be as high as 71 GHz [1]. However,
the maximum modulation bandwidth of VCSEL’s is found to
be limited to 14 GHz [2]. Therefore, it is necessary to have a
thorough understanding of the dynamic behavior of VCSEL’s.

Simple rate-equation models are commonly used to analyze
the modulation characteristics of VCSEL’s [3], [4]. Neverthe-
less, some important characteristics of VCSEL’s have been
ignored in these calculations, such as: 1) the change of Bragg
reflectivity due to the diffraction of light within the small
cavity aperture and 2) self-focusing of the optical beam inside
the active region due to the change of refractive index. In fact,
these inherent properties have significant impact on: 1) the
total cavity loss [5]; 2) transverse mode stability [6], [7]; and
3) modulation responses [8], [9] of VCSEL’s. Hence, time-
domain traveling-wave models of VCSEL’s are developed
with: 1) the reflectivity of the Bragg stack, 2) diffraction
of light; and 3) self-focusing effects taken into consideration
[8], [9]. However, the major limitations of these traveling-
wave models are: 1) the requirement of extensive computation
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time due to the nature of the time-domain algorithm and
2) the phase errors of off-axis light diffraction due to the
paraxial approximation of the propagation waves. Therefore,
it is necessary to redesign the time-domain algorithm of
the traveling-wave model for better computational speed and
accuracy.

In this paper, the use of: 1) the time-dependent transfer
matrix to improve the computational speed and 2) wide-
angle beam propagation method to reduce the phase errors
inside each dielectric layer is proposed for the traveling-
wave model. In Section II, a modified time-domain traveling-
wave algorithm using the transfer matrix and wide-angle
beam propagation method is developed. In Section III, the
computational speed as well as the calculation accuracy of
the time-domain traveling-wave models are examined with
and without the cases of: 1) the time-dependent transfer
matrix and 2) wide-angle beam propagation method taken into
consideration. Finally, a brief discussion of the results and
conclusions are given in Section IV.

II. DYNAMIC MODELS

The traveling-wave equations describing the propagation of
the optical field inside the laser cavity along the longitudinal

and transverse directions can be written as

(1)

where is the group velocity, is the
group refractive index, is the light velocity in free space,
and is the longitudinal propagation coefficient. and
are the slowly varying envelope of the forward and reverse
traveling waves, respectively, along the longitudinal direction.
The effective one-dimensional (1-D) (longitudinal direction)
[8] and quasi-three-dimensional (3-D) (longitudinal and trans-
verse directions) [9] distribution of propagation fields can
be calculated through in (1). The corresponding
expression of is given by

for 1-D

for quasi 3-D (2)

where is the wavevector, is the wavelength,
and are the effective change of permittivity of
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1-D and quasi-3-D waveguide geometry, respectively (see
Appendix A). Therefore, (1) can be used to describe 1-D
or quasi-3-D distributions of the optical field inside the laser
cavity depending on the use of the operator [H].

Equation (1) can be solved by using the time-domain
traveling-wave method as given in [10]. The time and spatial
variation of wave equations can be linearized by a first-order
difference approximation to the partial differential in (1). By
choosing the relation between time and the spatial step as

, we have

(3)

where is a constant time step and is the propagation
distance. If the initial value of at time and
location is known, the fields at the next
time step can be determined at the position from
(3). In addition, the boundary conditions at the interface of the
dielectric layers are applied to for the
calculation of the reflectivity of the alternate dielectric layers
such that the reflectivity of the Bragg reflectors is evaluated
simultaneously. As we can see, the time-domain algorithm
has the advantages of easy implementation and implicit intro-
duction of longitudinal modes into the calculation. However,
the total execution time of the time-domain traveling-wave
model of VCSEL’s is dependent on its propagation distance

and the total number of dielectric layers. This is because
the decrease in leads to an increase in the number of
computational steps due to the requirement of time and the
spatial step relation (i.e., ). Furthermore, the Bragg
reflectivities are calculated by applying boundary conditions at
the interface of the dielectric layers such that the value of
used in (3) should equal the physical thickness of the dielectric
layers [8], [9]. It can be shown that the value of is about
0.1 m (using m and ) which is shorter
than that used in distributed feedback (DFB) lasers (i.e., 2m)
[10]. Therefore, the disadvantages of using the time-domain
algorithm for VCSEL’s are: 1) the number of computational
steps depends on the total number of dielectric layers; 2)
depends on the thickness of the dielectric layers; and 3)
is too small. In addition, the execution time for the quasi-3-
D model will be much longer than that of the 1-D model of
VCSEL’s due to the existence of the transverse dimension.

A. Time-Domain Traveling-Wave Model
Using the Transfer Matrix

In order to solve the problem of small but without sacri-
ficing the advantages of the time-domain algorithm, we modify
the above model of VCSEL’s by using the transfer matrix
method [11]. Fig. 1 illustrates the use of a transfer matrix

to represent a dielectric layer. The propagation
fields can be related to by

(4)

Fig. 1. Schematic illustrating the use of the transfer matrix in the
time-domain algorithm.

where the subscript 1 of represents the position of
the dielectric layer, are the elements of the transfer matrix

, and . The transfer matrix can be
determined by considering the propagation of traveling waves
along the dielectric layer and the transmission and reflection
between the interface of the adjacent dielectric layers.

The propagation of forward and reverse propagating waves
and along the dielectric layer can be expressed as

(5)

In addition, the transfer matrix for a refractive index step from
a dielectric layer of refractive index to that of refractive
index is given by

(6)

where and are the reflection and transmission
coefficients, respectively, and their corresponding expressions
are given in the Appendix B. It must be noted the influence of
off-axis reflection and transmission at the dielectric interfaces
has been taken into consideration through the proper assess-
ment of and in (6). Therefore, the transfer matrix

can be written as

(7)

The exponential terms in (7) can be simplified to improve the
computing efficiency as

(8)
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where is an identity matrix. The time-domain algorithm
given in [10] can be utilized to solve (4). This can be done by
rewriting (4) in the following format:

(9)

Now, (9) can be solved by advancing from one
dielectric layer to another during each time interval. In
addition, the boundary conditions between dielectric layers
are implicitly introduced into (9) such that the reflectivity of
Bragg reflectors can also be evaluated in a time-dependent
manner. The main differences of this model to that without the
transfer matrix are: 1) the boundary conditions are implicitly
introduced into consideration and 2) the propagating distance
of is not restricted to as in [8], [9] but is varied
with the propagation length of the transfer matrix.

Now, the total number of computational steps as well
as the execution time of the traveling-wave model can be
reduced by increasing the propagation length of the transfer
matrix. For example, if a new transfer matrix is defined as

, the corresponding propagation
distance of this transfer matrix is increased to such that
the number of computational steps as well as the execution
time can be reduced roughly by a factor of two.

B. Time-Domain Traveling-Wave Algorithm Using
Wide-Angle Beam Propagation Method

For VCSEL’s with diffraction of light occurring inside the
laser cavity, especially for devices with small aperture such
as the index-guided devices [12], the amplitude and phase
variation of the traveling wave are nonuniformly distributed
over the transverse directionwithin each dielectric layer.
Therefore, the assumption of a uniform plane wave is not
valid and the term should be included in the traveling-
wave model such that the superposed waves traveling at widely
different off-axis angles (i.e., wide-angle propagation) can be
calculated. The corresponding wave equation can be written as

(10)

where is included into the wave equations to take into
account the influence of diffraction.

The displacement and time variation of given in
(10) can be solved by using the Padé recursion approximation
[13] and the time-dependent transfer matrix [11], respectively.
First, rewrite (10) in a matrix format to describe the propaga-
tion of for a distance from and at a time as in (5).

The traveling-wave equation of can be expressed as

(11)

where the time derivative term in (10) has been ignored
in the derivation. Equating the operators on on the left-
and right-hand sides of (11), we obtain the Padé recursion
approximation on (11) as

(12)

where treats the field variation along the transverse di-
rection. Therefore, at distance can be obtained
by integrating (12) along the longitudinal direction, and the
solution is given by

(13)

The expression of can also be determined in a similar
approach. Therefore, the time-independent transfer matrix of
(10) can be expressed as

(14)

Second, let us take . Then the time-dependent
transfer matrix of (10) can be written as in (7), that is

(15)

where the exponential terms in (15) can be simplified as

(16)

By substituting (15) into (9), the displacement and time vari-
ation of can be solved using the time-domain algorithm.
It must be noted that the off-axis propagation of light at the
interface of the dielectric layers has also been properly taken
into account through and . Hence, a very simple but
powerful quasi-3-D dynamic model for VCSEL’s is developed
with full consideration of light diffraction inside the laser
cavity.

The calculation of the phase of the propagation fields using
(12) can be simplified by the Padé recursion approximation on
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. This is because (12) suggests a recurrence relation

(17)

where is an integer. The low-order Padé operators that result
from the application of (17) can be obtained by the recurrence
relation. For example, the Pad´e (1, 1), (2, 2), and (3, 3)
operators can be written as seen in (18)–(20), shown at the
bottom of the page.

In fact, higher-order Padé operators can also be obtained
in the same manner. It has been discussed in [13] that phase
error can be minimized by the Padé (1, 1) operator or almost
suppressed by the Padé (3, 3) operator, even at a propagation
angle of 30. Therefore, a Pad́e operator up to the order of (3,
3) is sufficient for use in the traveling-wave model of VCSEL
for the consideration of light diffraction.

C. Electrical Model Using the Rate Equation
for Carrier Concentration

The electrical part of the dynamic model of VCSEL’s used
in this analysis is similar to that given in [9]. The nonuniform
distribution of carrier concentration inside the active
layer is described by the carrier rate equation as shown below:

(21)

where is the electron charge, is total thickness of wells,
is the optical gain, is a fitted

parameter, and is the carrier concentration at transparency.
is the photon density inside the active

layer and is the diffusion coefficient. is the
recombination rate of carrier concentration and is defined as

(22)

where is the carrier lifetime, is the bimolecular recombina-
tion coefficient, and is the Auger recombination coefficient

of carrier. is the current density distribution along the
transverse direction and is given by [14]

(23)

where denotes the current density at the edge and within
the contact area ( ), and is the effective diffusion
length of the injection carrier.

The transient response of VCSEL’s can be calculated by
solving the wave equations and the rate equation of carrier
concentration by a time-domain algorithm in a self-consistent
manner [8]. This can be done by relating the time and spatial
steps in the longitudinal direction as . Therefore,
at each propagation distance of the traveling waves, the
corresponding change of carrier concentration can be written
as

(24)

It must be noted that (24) is computed during each com-
putational step of the traveling-wave equations. Therefore,
the execution time of (24) can be reduced by increasing
the propagation distance of the time-domain algorithm.
For example, if the propagation distance of the time-domain
algorithm is increased from to , the corresponding
execution time of (24) will be reduced by half. Therefore, it is
expected that the total execution time for the traveling-wave
equations will be reduced by more than a factor of two.

III. N UMERICAL ANALYSIS

A. Device Structure

A schematic of the VCSEL’s used in the calculation is
shown in Fig. 2. The device has a built-in index-guided
structure, and a circular metal contact is formed on the
epitaxial side (p-side) for current injection. A InGaAsP–InP
quantum-well active layer is sandwiched between two undoped
spacer layers and two Bragg reflectors. The Bragg reflectors

(18)

(19)

(20)
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TABLE I
REFRACTIVE INDEX DISTRIBUTION IN THE LASER

Fig. 2. Schematic of an index-guided VCSEL.

are formed by alternating layers of GaAs and AlGaAs and
consist of 13 such pairs on both the n- and p-sides. The
radius of the core region is set to 0.8m. The corresponding
values of refractive index along the longitudinal direction of
the entire multilayer are listed in Table I. In addition, the
material parameters used in the electrical model can be found
in Table II.

B. Computational Speed of Time-Domain Traveling-Wave
Models Using the Transfer Matrix

Using the laser structure given in Section III-A, the com-
putational speed of 1-D and quasi-3-D time-domain traveling-
wave models is investigated. This can be done by examining
the dynamic response of VCSEL’s under large-signal modu-
lation. It is assumed that the laser is biased at threshold and
modulated with a step current. The modulation amplitude is

(a)

(b)

Fig. 3. The influence of transfer matrices on (a) the transient response of
output power and (b) the steady-state carrier concentration distribution of a
1-D time-domain traveling-wave model.

selected such that the steady-state output power is around 0.2
mW. The output power is defined as

(25)

where is Planck’s constant, is the reflectivity between the
air and substrate, is the core radius, and is the operation
frequency of the laser.

Fig. 3 shows the dynamic response of the output power and
the steady-state distribution of carrier concentration calculated
by the 1-D time-domain traveling-wave models with different
propagation distances (i.e., , and where

and is the effective refractive index of theth
dielectric layer) of the transfer matrices. Furthermore, the dy-
namic response of the output power and the steady-state carrier
concentration distribution calculated by the quasi-3-D time-
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TABLE II
PARAMETERS USED IN THE MODEL

domain traveling-wave models are shown in Fig. 4(a) and (b).
The number of grid points (i.e., along the transverse direction)
is set to 25 in the calculation. It is observed that the propaga-
tion distances of the transfer matrix have less influence on the
1-D and quasi-3-D time-domain calculation of the dynamic
response of output power. From the above analysis, we can
conclude that the introduction of the transfer matrix into the
time-domain algorithm has only negligible detrimental effects
on the computational accuracy of the traveling-wave models.

Fig. 5(a) and (b) shows the total execution time of the
1-D and the quasi-3-D time-domain traveling-wave models
against the propagation distance of the transfer matrices. The
simulation program is written in FORTRAN 90 run on an IBM
Pentium II 200 MHz PC. It is shown in Fig. 5(a) that the total
execution time for the 1-D model is reduced by more than
2.5 when the propagation distance is increased fromto

. This is expected because the total computational steps
of (9) and (24) are reduced by half through the increase of
propagation distance. Hence, the total execution time for the
traveling model is reduced by more than half. However, the
total execution time for the quasi-3-D model is increased by
the application of the transfer matrix for a propagation distance
less than [see Fig. 5(b)]. This is because the inverse
operation of a matrix [involved in the calculation of (9)]
consumes half of the total execution time of the entire model.
On the other hand, the 1-D model requires the multiplication
and addition of complex numbers in the calculation of (9) such
that a significant improvement in total computational speed
can be obtained.

C. Minimization of Calculation Errors Due to Light
Diffraction Using the Wide-Angle Beam Propagation
Method in the Time-Domain Traveling-Wave Models

Using the laser structure given in Section III-A, the cal-
culation results obtained from the models using a paraxial
propagator [i.e., without in (10)] and (3, 3) Pad́e

(a)

(b)

Fig. 4. The influence of transfer matrices on (a) the transient response of
output power and (b) the steady-state carrier concentration distribution of a
quasi-3-D time-domain traveling-wave model.

approximation operator are compared. Fig. 6(a) and (b) shows
the transient response of the output power and the carrier con-
centration profile at steady state calculated from the models. As
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TABLE III
REFRACTIVE INDEX DISTRIBUTION IN THE LASER

(a)

(b)

Fig. 5. Total execution time of (a) 1-D and (b) quasi-3-D time-domain
traveling-wave models with different propagation distances.

in Section III-B, the laser is biased at threshold and modulated
with a step current. It is noted that the results obtained from
the model using a paraxial propagator is almost the same as
that using the Pad́e approximation operator. This is because
the transverse light is well confined inside the active layer
and spacer layers as well as Bragg reflectors due to the built-
in index guiding structure of the laser such that no light is
diffracted within the laser cavity.

In order to analyze the influence of light diffraction inside
the resonant cavity, the laser structure used in the calculation
has to be changed. This can be done by assuming no built-
in index-guiding structure inside the spacer layers and Bragg
reflectors such that the propagation fields are only transversely
guided within the quantum-well active layer in which the
diffraction of propagation fields occurs. Furthermore, the core

(a)

(b)

Fig. 6. (a) The transient response of output power and (b) the steady-state
carrier concentration profile of the quasi-3-D time-domain traveling-wave
model using a paraxial propagator (solid line) and a Padé (3, 3) operator
(dotted line).

radius and the difference of refractive index between the
core and cladding regions of the active layer are al-
lowed to change. The corresponding values of the refractive
index along the longitudinal direction of the entire multilayer
VCSEL structure are listed in Table III.

The influence of light diffraction on the steady-state and
dynamic behavior of VCSEL’s is demonstrated by equating
and to 0.8 m and 0.4 (i.e., strong index guiding inside
the active layer), respectively. Fig. 7(a) and (b) compares the
on-axis mode intensities in the longitudinal direction and mode
intensities at the QW position in the transverse direction,
respectively, from the models using the paraxial propagator
and Pad́e (3, 3) operator. It is observed that the optical
field is diverges less from the core region of the active
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(a)

(b)

Fig. 7. (a) On-axis mode intensities in the longitudinal direction and (b)
mode intensities at the QW position in the transverse direction calculated
from the models using a paraxial propagator and a Padé (3, 3) operator. In
the calculation,w and�na are set to 0.8 and 0.4�m, respectively.

layer for the case using the paraxial propagator than that
using the Pad́e (3, 3) operator. Fig. 8(a) and (b) shows the
corresponding dynamic response of the output power and the
carrier concentration profile at steady state. As we can see, the
output power as well as the relaxation oscillation frequency are
overestimated for the case using the paraxial propagator. This
is because the degree of light diffraction and total cavity loss
are underestimated by the model using the paraxial propagator.

Now, the relative error (i.e., relative to the results obtained
from the model using the Padé (3, 3) operator) computed
from the model using the paraxial propagator as well as Padé
operators of orders (1, 1) and (2, 2) are compared withand

as the variable parameters. It must be noted that it is
difficult to evaluate the computational error from the dynamic
calculation as the exact solution cannot be obtained. Therefore,
the relative error is defined as the average of the relative peak
steady-state power of the optical field along the longitudinal
direction, that is,

error
total no. of

%

where is the steady-state peak power obtained from the
model using the Padé (3, 3) operator. Fig. 9 shows the influ-

(a)

(b)

Fig. 8. The corresponding (a) dynamic response of output power and (b)
steady-state carrier concentration distribution calculated form the model using
the paraxial propagator (solid line) and the Padé (3, 3) operator (dotted line).
In the calculation,w and�na are set to 0.8 and 0.4�m, respectively.

ence of on the relative error of the models with the paraxial
propagator and the Padé operators of order (1, 1) and (2, 2).
The value of is set to 1.0, 1.2, 1.3, 1.5, 1.7, and 1.8m
and the value of is set to 0.6 for all cases. It is observed
that the relative error increases with a decrease infor all
the models. This is because the diffraction of light is enhanced
for devices with small aperture. In addition, the relative error
is minimized for the model using a Padé (2, 2) operator.
Fig. 10 shows the influence of on the relative error. In
the calculation, the value of is set to 0.5, 0.55, 0.6, 0.65,
and 0.7 and the value of is set to 1.3 m for all models. It
is observed that the relative error increases with the increase
of but decreases with an increase in. Furthermore, the
relative error is minimized for the model using the Padé (2, 2)
operator. From the above analysis, it is shown that the time-
domain model with a Padé operator can be used to analyze
the influence of light diffraction in VCSEL’s especially for
the devices with a strong index-guiding structure and small
aperture size.

IV. DISCUSSION AND CONCLUSION

From the analysis given in Section III, it is shown that
the execution time and calculation accuracy of the modified
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Fig. 9. The relative error against the order of operators used in the models.
The (1, 0), (1, 1), and (2, 2) order of operators represent the paraxial propagator
and Pad´e (1, 1) and (2, 2) operators, respectively.�na is set to 0.6 andw
is varied from 1.0 to 1.8�m.

Fig. 10. The relative error against the order of operators used in the models.
The (1, 0), (1, 1), and (2, 2) order of operators represents the paraxial
propagator and Pad´e (1, 1) and (2, 2) operators, respectively.w is set to
0.8 �m and�na is varied from 0.5 to 0.7.

traveling-wave model has been improved by using the time-
dependent transfer matrix and wide-angle beam propagation
method. The performance of the laser models can be summa-
rized as follows.

• The execution time of the 1-D model can be reduced
by more than a factor of two by using the transfer
matrix due to the high efficiency in the calculation of (9).
Therefore, the 1-D model helps enormously in shortening
the design cycle of VCSEL’s. For examples, the 1-
D model is suitable for the analysis of the transient
response of coupled-cavity VCSEL’s [15] or the design
of VCSEL’s for self-sustained pulsation operation [16].
This is because in these device structures light diffraction
is not a dominant factor.

• The total execution time of the quasi-3-D model has less
improvement than the 1-D model. This is because of
the low efficiency in the calculation of (9) when inverse
operation of a matrix is involved in the calculation.

• The calculation accuracy of the quasi-3-D model has been
improved significantly by using a Padé operator. This
improvement of the traveling-wave model is well suited
for the analysis of VCSEL’s with a strong index-guiding

structure and small aperture size such as those with
an index-guided structure [12] or double-oxide-confined
structure [17]. This is because the off-axis diffraction of
light inside and at the interface of the dielectric layers
can be accurately taken into consideration.

• It is noted that the quasi-3-D model using the Padé (3,
3) operator takes approximately 6 h to simulate the 1-
ns dynamic response of VCSEL’s. In fact, the coding
of this simulation program has not been optimized and
it is believed that the total execution time can be easily
reduced by at least half. To the best of our knowledge,
this model is the fastest and the simplest that we can find
in the literature. In addition, the calculation accuracy is
sufficient to estimate most of the important characteristics
of VCSEL’s such as diffraction loss, self-focusing effects,
and spatial hole burning of carrier concentration.

In the above analysis, the self-heating effects are ignored
in the calculation. This is because the phenomena of off-axis
light diffraction has been the main concern of this paper. In
fact, it is possible to include a thermal heat equation into
the model to analyze the influence of self-heating effects on
the modulation response of VCSEL’s, and this will form the
subject of our future study. In conclusion, the execution time
and calculation accuracy of the time-domain traveling-wave
model of VCSEL’s are improved by using the transfer-matrix
and wide-angle beam propagation methods. It is shown that the
total execution time of the 1-D time-domain traveling-wave
model can be reduced by half when using the transfer matrix.
However, the implementation of the transfer matrix in a 3-D
model requires the calculation of inverse operation of matrices
such that the total execution time of the 3-D model may not
be reduced as much as the 1-D model. On the other hand,
the influence of light diffraction on the dynamic behavior of
VCSEL’s has been carefully considered through the use of a
Pad́e operator in the calculation. It is shown in the calculation
that diffraction of light is important for devices with a strong
index-guiding structure, , and small aperture size,

m. However, the model using the Padé (3, 3)
operator is sufficient for eliminating error due to the influence
of diffraction loss.

APPENDIX A

The effective change of permittivity of the quasi-3-D
waveguide geometry is defined as [9]

active layer
elsewhere

(A1)

where is the difference of the built-in refractive
index relative to the core region and is the absorption and
scattering loss inside the core region and the cladding regions.

is the carrier-induced index change and is given by

(A2)

where and are some fitted parameters. The effective
change of permittivity of the 1-D waveguide geometry
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is given by [8]

(A3)

In (A1)–(A3), it is noted that the influence of spatial
hole burning on the propagation fields is also taken into
consideration through carrier-induced refractive index change.

APPENDIX B

The complete set of plane waves describing the reflected
and transmitted fields and along the dielectric interface
is given by [18]

(B1)

(B2)

where is the wavevector in the transverse direction and
is the Bessel function of the first kind of zeroth order.

and are the plane wave reflection and transmission
coefficients, respectively. is the Fourier–Bessel transform
of the incident electrical field and is defined as

(B3)

If only the fundamental mode is assumed to be supported by
the laser cavity, the reflected and transmitted fields given in
(B1)–(B3) can be discretized and written in a matrix formation
as shown below:

(B4)

(B5)

where and are the Bessel function operators. It
can be shown that the elements of and , and

, can be written as [18]

(B6)

(B7)

where and are some integers, is the
total number of grid points along the transverse direction,
is the radius of the laser cavity, is the th zero of (i.e.,

) and . Hence, and
given in (6) and (15) can be written as

(B8)

(B9)

The reflection and transmission matrices and
at the dielectric interface are defined as

(B10)

(B11)

where for . If the dielec-
tric interface are assumed to be polarization-independent, the
elements of the reflection and transmission matrices of the
incident transverse fields and can be expressed as

(B12)

(B13)

where and . Using
this approach, the effects of off-axis light propagation at
the interface of the dielectric layers can also be taken into
consideration.

If normal incident is assumed in calculation of the 1-D
model (i.e., ), and can be simplified to

(B14)

(B15)

where has the dimensions .
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