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Solutions of the Quasi-Vector Wave Equation
for Optical Waveguides in a Mapped

Infinite Domains by the
Galerkin’s Method

Kai Ming Lo and E. Herbert Li,Senior Member, IEEE

Abstract—Galerkin’s method is employed to analyze the quasi-
vector wave equation for optical waveguides with arbitrary re-
fractive index profile in a mapped infinite domains. Results are
presented for a range of waveguide structures which include
rectangular core, circular core, rib, and multiple quantum well.
Solutions are compared favorably to exact vector solution and
numerical results using Fourier operator transform method and
beam-propagation method.

Index Terms—Eigenvalues/eigenfunctions, Maxwell equations,
moment equations, optical propagation, optical waveguides, op-
tical waveguide theory.

I. INTRODUCTION

T HE use of Galerkin’s method in solving the scalar wave
equation of optical waveguides with arbitrary refractive

index profiles was first proposed by Henry and Verbeek [1].
Same method was used by Marcuse in solving the vector wave
equation [2]. However, there is a large increase in computing
time and memory. In considering that matter, we decide to use
the quasi-vector results which include the polarization effects
of optical waveguides as an intermediate solution. The memory
requirement is the same as in solving the scalar wave equation
while the computing time is moderate.

We also employ a mapping scheme to eliminate the need
of enclosing waveguide structures within a rectangle whose
size affect the accuracy of calculations [3]. Alternately, the
elimination can be done by using Hermite–Gauss functions as
basis functions [4] rather than sine functions which are used
in present studies. However, such elimination is only valid for
waveguides with homogeneous cladding. For inhomogeneous
cladding waveguides like rib waveguides, the cladding have to
be truncated if Hermite–Gauss basis functions are used. On the
other hand, no truncation of cladding is needed if sine basis
functions are used in a mapped infinite domains.

In the next section, we will derive the quasi-vector wave
equation and establish the details of solving this equation
using the Galerkin’s method. In Section III, we compare some
of our numerical results with those of other authors. The
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summary section anticipates the range of potential applications
of present method.

II. M ATHEMATICAL FORMULATION

A. Quasi-Vector Wave Equation

Maxwell’s equations are employed to calculate the spa-
tial variation of electric field and magnetic field

of an optical waveguide. The dielectric constant
of a waveguide is related to its refractive index
by , where is the free space electric

permittivity. The magnetic permeability is taken to have its
free space value ( ) everywhere. The field vectors are
taken to depend on time through the implicit factor .
Under these conditions and regions are free of charges and
current, Maxwell’s equations are written as

(1)

(2)

where is the free space wavenumber, andis the
wavelength of light in free space.

If we eliminate the magnetic field from (1) and (2) by
and substitute from (2) into, we obtain the

vector wave equation

(3)

by using two vector identities, viz.

(4)

(5)

The in (3) is a vector operator. However, if the field
vectors have components referred to fixed Cartesian directions

, , and as indicated in Fig. 1(a), the vector operator is
replaced by the scalar Laplacian . Moreover, if an optical
waveguide with refractive index profile that does not change
with distance along the waveguide, i.e., . The
electric field of the waveguide can be written in separable
form as

(6)
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(a) (b)

Fig. 1. An optical structure in (a)x–y plane and (b) transformedu–v domains. A rib waveguide is used as an example.

where is the propagation constant. Thus if we set

(7)

in (6) where , and are unit vector parallel to the axes
in Fig. 1(a) and using

(8)

(3) is reduced to two equations coupling the field components
and as follows:

(9)

(10)

If the coupling terms in (9) and (10) are neglected, we have

(11)

(12)

These are in fact the scalar wave equation with polarization
correction which are referred here as the quasi-TE wave
equation and the quasi-TM wave equation.

The assumption used in (11) and (12), i.e., in
(11) and in (12), is accurate for three classes of
waveguides [5]: 1) weakly guiding waveguides [6] with arbi-
trary shape and small difference in refractive index between
core and cladding or substrate, 2) rectangular core waveguides
with arbitrary core-cladding refractive index operated in the
far-from cutoff region, and 3) arbitrary refractive index profile
waveguides with an elongated or slab like cross section.
Numerical results for these three classes of waveguides will
be given in Section III.

Fig. 2. Structure of a rectangular core optical waveguide.

B. Galerkin’s Method

Since the formulation of the quasi-vector wave (11) and
(12) are the same, the quasi-TE wave (11) will be solved in
below using Galerkin’s method and the procedure developed
is applicable for solving the quasi-TM wave equation (12).

To eliminate the need of enclosing waveguide within a
rectangle, the whole– plane is mapped onto a unit square
in – space as shown in Fig. 1 using the transformation
functions

(13)

(14)

where and are scaling parameters in the and
directions, respectively. The same change of variables is
applied to the quasi-TE wave equation (11) and in the–
space it is written as

(15)

where , .
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(a)

(b)

Fig. 3. Field pattern of (a)ex of Ex11 mode and (b)ey of Ey11 mode at
2Vb=� = 0:5 for N = 25. The core region is shaded. Contour lines are at
10% intervals of peak amplitude.

The unknown electric field component is expanded as

(16)

where integer quotient function div and remainder on division
function mod are employed to relate the index,, and spatial
frequencies, and , as

div (17)

mod (18)

TABLE I
P 2 AS A FUNCTION OF 2Vb=� FOR THE FUNDAMENTAL QUASI-VECTOR MODES

OF THE RECTANGULAR CORE OPTICAL WAVEGUIDE. �x = a, �y = b, � =
p
ab,

AND Ne

m
= Ne

n
= N . THE PARAMETERSNe

m
AND Ne

n
INDICATE THE NUMBER

OF EVEN SPATIAL FREQUENCY COMPONENTSUSED IN THE x AND y DIRECTIONS

The expansion functions are chosen as the complete
set of orthonormal sine basis functions as

(19)

The field expansion (16) is substituted into (15), it is then
multiplied by and integrated over the unit square in
Fig. 1(b) and yield the result

(20)

where

(21)

correspond to the scalar wave equation with

(22)

(23)



940 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 16, NO. 5, MAY 1998

(a) (b)

(c) (d)

(e) (f)

Fig. 4. (a)–(f) Field patterns,ex for quasi-TE mode andey for quasi-TM
mode, of the first six bound modes of the high contrast rectangular core
waveguide forN = 30. Designation of the modes are given in Table II.

TABLE II
P 2 OF THE FIRST SIX BOUND MODES OF THEHIGH REFRACTIVE INDEX

CONTRAST RECTANGULAR CORE WAVEGUIDE. Ne

m
= Ne

n
= N FOR

MODES (a), (b), AND (f); No

m
= Ne

n
= N FOR MODES (c) AND (d);

AND Ne

m
= No

n
= N FOR MODE (e). THE PARAMETERS N

e; o

m AND

N
e; o

n INDICATE THE NUMBER OF EVEN AND ODD SPATIAL FREQUENCY

COMPONENTSUSED IN THE x AND y DIRECTIONS, RESPECTIVELY

and

(24)

Here, is a delta function and defined as

if
if

(25)

Fig. 5. Structure of a circular core optical fiber.

The modal parameters and are defined as

(26)

(27)

The core and cladding refractive index, and , and
normalization parameter are chosen to be representative of
the refractive index profile of the optical waveguide under
consideration. Moreover

(28)

correspond to polarization correction. The six integralsto
is given in the Appendix as (29)–(34) and can be evaluated

analytically in terms of sum of trigonometric functions if the
refractive index profile is approximated by rectangles
of uniform refractive index.

The double summation series in (20) can be written as a
matrix eigenvalue equation, , by defining a vector

consisting of the elements and a matrix composed
of the coefficients and . LAPACK subroutines are
used to solve this equation [7], the propagation constants of
the bound modes of a waveguide are calculated from the
real, positive eigenvalues and the corresponding modal
field is calculated via the Fourier coefficients of associated
eigenvectors .

III. N UMERICAL RESULTS

A. Rectangular Core Optical Waveguide

Fig. 2 shows an optical waveguide with a rectangular core of
width 2aand height2b. The core and cladding refractive index
are and . m and

. Table I gives the normalized propagation constants
for the fundamental quasi-

vector modes as a function of where
. The bound modes are denoted as Emode for

the quasi-TE mode and E mode for the quasi-TM mode,
respectively. The and are both positive integers meaning

and field zeros in the and directions of
the modal fields, respectively. The calculated results are in
excellent agreement with Fourier operator transform (F-OPT)
method [8] except at where present method is
more accurate as shown by the convergence of. The modal
fields at is shown in Fig. 3. As can be clearly seen
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TABLE III
P 2 AS A FUNCTION OF FIBER PARAMETER V = k�(n21 � n22)

1=2

FOR THE FUNDAMENTAL QUASI-VECTOR MODES OF THECIRCULAR

CORE OPTICAL FIBER. �x = �y = � AND Ne
m = Ne

n = N

the present method is able to reproduce the discontinuity in
the field at the core-cladding boundaries (vertical side walls
for quasi-TE mode and horizontal side walls for quasi-TM
mode).

Results of for the first six bound modes of another
rectangular core waveguide with high refractive index contrast
( , ) is shown in Table II. The associated
field of these modes are shown in Fig. 4. Here,
and . Results of are in good agreement with
results using Hermite–Gauss (H-G) basis functions [4]. As is
expected, this present method, with sine basis functions in
the transformed domains, has field zero at infinity as does
Hermite–Gauss basis functions.

B. Step-Index Core Optical Fiber

The next structure to be studied is a circular core optical
fiber (Fig. 5) with and

. The first quadrant of the circular core is resembled by
25 uniform rectangles and the rest is found by symmetry.

of the two fundamental quasi-vector modes are almost
the same as listed in Table III. Theoretically, with infinite
number of rectangles, the fundamental quasi-vector modes
are degenerated. Results of present quasi-vector solutions are
compared with the exact vector solutions [6], HE11mode, and
they are in good agreement.

The field patterns of the quasi-vector modes at is
given in Fig. 6. Discontinuity of field is clearly seen at the
core-cladding boundary. The field componentof E mode
along the axis as a function of normalized distance
is shown in Fig. 7(a). As can be seen from the figure, the quasi-
vector modal fields are agree with the exact vector solution
except near the core-cladding boundary which is detailed in
Fig. 7(b). From this figure, of quasi-TE mode near the

(a)

(b)

Fig. 6. Field patterns of (a)ex of Ex11 mode and (b)ey of Ey11 mode of the
circular core optical fiber atV = 1 for N = 25.

boundary is likely to be an average of the exact vector solution
and it is converge moderately to the exact vector solution as

is increased.

C. Rib Optical Waveguide

A rib optical waveguide as shown in Fig. 8 is considered in
this section. Here, , , ,

m, m, and m. Table IV shows
for the fundamental quasi-vector modes as a function of. By
comparison with results from F-OPT method [8] and beam
propagation method (BPM) [9], the convergence of present
solutions is better for E mode than E mode. This could be
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(a)

(b)

Fig. 7. (a) Electric field componentex of quasi-TE mode as a function
of normalized distanceX for N = 10; 15; 20, and 25. The electric field
componentex of the exact vector (vt) solution is given in solid line. (b)
Details of (a) nearX = 1.

Fig. 8. Structure of a rib optical waveguide.

explained by the fact that higher spatial frequency components
are needed to model the large discontinuity of field component

of E mode at the core-air interfaces perpendicular to the
axis of Fig. 8 which are clearly seen form the field patterns

at Fig. 9.

D. IID MQW Waveguide

The last example is to apply present method to a multi-
ple quantum-well (MQW) waveguide fabricated by impurity-
induced disordering (IID) technique [10]. The IID technique
provides an efficient way to realize waveguiding structure

(a) (b)

(c) (d)

(e) (f)

Fig. 9. Field patternsex of Ex11 mode (left side) andey of Ey11 mode (right
side), of the rib waveguide forN = 30 at (a)–(b) d = 0�m, (c)–(d)
d = 0:5�m, and (e)–(f)d = 1�m.

in optoelectronic integrated circuits [11]. The structure to
be modeled consists of Al0.3Ga0.7As/GaAs QW layers and
thick Al0.3Ga0.7As buffer layer grown on a GaAs substrate;
the schematic of the structure is shown in Fig. 10. In our
model, Ga+ ion is implanted with a projected range located
around the center of the QW layers. The implantation process
produces a modification of the QW material which in turn
leads to differences in refractive index in different region
[10]. The implanted region has a lower refractive index than
the nonimplanted region, hence produce lateral confinement
of light. Fig. 11 shows a IID MQW refractive index profile
which is represented by rectangles of constant refractive
index. The profile was calculated for m,

m at m. The maximum and minimum
refractive index are assigned as and

, respectively. Other parameters are refractive index
of Al0.3Ga0.7As buffer layer and air cover which is equal to
3.35447 and 1, respectively. of the fundamental quasi-
vector modes are listed in Table V. The associated modal fields
are shown in Fig. 12. Results show that present method is
applicable for finding the waveguiding properties of an optical
waveguide with a diffused refractive index profile.

IV. CONCLUSIONS

A numerical method for solving the guided quasi-vector
modes problem of optical waveguide with arbitrary refractive
index in a mapped infinite domains is described. Solving
the problem with the Galerkin’s method, the mode field is
expanded into a two-dimensional (2-D) Fourier sine series and
resulting in a matrix eigenvalue equation which is solved using
the LAPACK subroutines.

The accuracy of present method is compared to the Fourier
operator transform method and the beam propagation method
for a rectangular core waveguide and a rib waveguide. More-
over, solutions for step-index circular core optical fiber are
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TABLE IV
P 2 AS A FUNCTION OF d FOR FUNDAMENTAL QUASI-VECTOR

MODES OF THERIB OPTICAL WAVEGUIDE. �x = w=2,
�y = t=2, � =

p
�x�y , Ne

m
= N AND Nn = 2N

Fig. 10. Schematic of an IID MQW waveguide.

compared with the exact vector solution. Results shown that
the present quasi-vector solutions provide a good approxima-
tion of the exact solution.

The application of present method to a waveguide with
diffused refractive index profile is demonstrated using an
MQW waveguide fabricated by impurity induced disorder-
ing technique. The normalized propagation constants of the
fundamental quasi-vector modes converge moderately as we
increase the number of spatial frequencies.

Fig. 11. Refractive index profile (half symmetry) of the IID MQW wave-
guide.

(a)

(b)

Fig. 12. Field patterns of (a)ex of Ex11 mode and (b)ey of Ey11 mode of
the IID MQW waveguide forN = 25. The shaded region is the MQW under
the mask.

TABLE V
P 2 FOR THE FUNDAMENTAL QUASI-VECTOR MODES OF THEIID

MQW WAVEGUIDE. �x = a, �y = b, AND � =
p
ab

APPENDIX

The integrals to in (23) and (28) are given as follows:

(29)
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(30)

(31)

(32)

(33)

(34)

In (33) and (34), sine related functions ,
, , etc. For cosine related

functions, they are abbreviated by the symbol.
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