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Solutions of the Quasi-Vector Wave Equation
for Optical Waveguides in a Mapped
Infinite Domains by the
Galerkin’s Method

Kai Ming Lo and E. Herbert Li,Senior Member, IEEE

Abstract—Galerkin's method is employed to analyze the quasi- summary section anticipates the range of potential applications
vector wave equation for optical waveguides with arbitrary re- of present method.
fractive index profile in a mapped infinite domains. Results are
presented for a range of waveguide structures which include
rectangular core, circular core, rib, and multiple quantum well. Il. MATHEMATICAL FORMULATION
Solutions are compared favorably to exact vector solution and

numerical results using Fourier operator transform method and . .
beam-propagation method. A. Quasi-Vector Wave Equation

Index Terms—Eigenvalues/eigenfunctions, Maxwell equations, Maxwell's equations are employed to calculate the spa-
moment equations, optical propagation, optical waveguides, op- tial variation of electric fieldE(z, y, z) and magnetic field
tical waveguide theory. H(x, y, z) of an optical waveguide. The dielectric constant
e(x, y, z) of a waveguide is related to its refractive index
n(z, y, 2) by e = n%eq, Wheregy is the free space electric
) . . permittivity. The magnetic permeability is taken to have its
T HE use of Galerkin’s method in solving the scalar wavgee space valueu(= 1) everywhere. The field vectors are

equation of optical waveguides with arbitrary refractivgsyen to depend on time through the implicit factep(—iwt).

index profiles was first proposed by Henry and Verbeek [jnder these conditions and regions are free of charges and

equation [2]. However, there is a large increase in computing

time and memory. In considering that matter, we decide to use V x E =i(uo/e0)**kH (1)
the quasi-vector results which include the polarization effects VxH=— i(EO/NO)l/QkTLQE )
of optical waveguides as an intermediate solution. The memory

requirement is the same as in solving the scalar wave equatjgilere iz — 21 /X is the free space wavenumber, ahds the
while the computing time is moderate. wavelength of light in free space.

We also employ a mapping scheme to eliminate the needf we eliminate the magnetic field from (1) and (2) by
of enclosing waveguide structures within a rectangle whosg x (1) and substitutéV x H from (2) into, we obtain the
size affect the accuracy of calculations [3]. Alternately, th@ector wave equation
elimination can be done by using Hermite—Gauss functions as
basis functions [4] rather than sine functions which are used (V2 +k*n?)E = -V(E -V ln n?) (3)
in present studies. However, such elimination is only valid for . - .
waveguides with homogeneous cladding. For inhomogenedl¥s Using two vector identities, viz.
cladding waveguides like rib waveguides, the cladding have to
be truncated if Hermite—Gauss basis functions are used. On the Vx(VxE)=V(V-E) - V’E, (4)
other hand, no truncation of cladding is needed if sine basis V- (n’E)=n’V-E+E-Vn®=0. (5)
functions are used in a mapped infinite domains. 5 . ) ] i

In the next section, we will derive the quasi-vector wave 1he V= in (3) is a vector operator. However, if the field
equation and establish the details of solving this equati§fCtors have components referred to fixed Cartesian directions
using the Galerkin’s method. In Section I1I, we compare sonfe ¥ @ndz as indicated in Fig. 1(a), the vector opera¥of is

of our numerical results with those of other authors. THEP!aced by the scalar Laplaciar?. Moreover, if an optical
waveguide with refractive index profile that does not change
Manuscript received June 18, 1997. This work was supported by tWédth distancez along the waveguide, i.en = n(x, y). The
Research Grant Council of Hong Kong. The work of K. M. Lo was supported|ectric field of the waveguide can be written in separable
by the University of Hong Kong Postdoctoral Fellowship.
The authors are with the Department of Electrical and Electronic Engineégrm as
ing, The University of Hong Kong, Hong Kong.
Publisher Item Identifier S 0733-8724(98)03324-6. E(z, y, z) = e(z, y) exp(ifz) (6)

I. INTRODUCTION
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Fig. 1. An optical structure in (aj—y plane and (b) transformed—v domains. A rib waveguide is used as an example.

where/ is the propagation constant. Thus if we set

(7)

e=¢cX+e,y+e.z

in (6) wherex, ¥, andz are unit vector parallel to the axes

n2

N

in Fig. 1(a) and using 2 . X
o2 o2
2 2 2
=Vi=—+-—-0 8
Vi=Vi=os 7 f 8
(3) is reduced to two equations coupling the field components < 2 >
e, ande, as follows: Fig. 2. Structure of a rectangular core optical waveguide.
&%e &%e
- E 4 (K%n? = He,
dz?  Oy? ( ) B. Galerkin’s Method
+23<ewalﬂ +eyalﬂ> =0 (9) Since the formulation of the quasi-vector wave (11) and
O Oz Iy (12) are the same, the quasi-TE wave (11) will be solved in
e, n e, + (K202 — e below using Galerkin’s method and the procedure developed
dx? = Oy? Y is applicable for solving the quasi-TM wave equation (12).
b} dlnn dlnn To eliminate the need of enclosing waveguide within a
+ 28_y Comg TG —8y =0. (10) rectangle, the whole—y plane is mapped onto a unit square
: . in space as shown in Fig. 1 using the transformation
If the coupling terms in (9) and (10) are neglected, we ha\lfgngrgnsp Wh in Hg. 2 using I
A%e, O%e, 15] dlnn
952 +W+(k2”2_/32)%+28—<%8—> = 1
z Y 37 37 T =g tan |:7T <u— —)} (13)
(11) 2
e, D%, 9 9 g dlnn 1
— —_— e = = ¥y Ld - = 14
8x2+8y2 + (k*n /3)6y+2ay<ey oy >— y=oaytan |7 v 5 (14)
(12)

where o, and «, are scaling parameters in the and y

These are in fact the scalar wave equation with polarizatimectionS, respective'y_ The same change of variables is
correction which are referred here as the quasi-TE wayggplied to the quasi-TE wave equation (11) and in the

equation and the quasi-TM wave equation.
The assumption used in (11) and (12), i.€,, > ¢, in

space it is written as

(11) andey > e, in (12), is accurate for three classes of
waveguides [5]: 1) weakly guiding waveguides [6] with arbi-
trary shape and small difference in refractive index between
core and cladding or substrate, 2) rectangular core waveguides
with arbitrary core-cladding refractive index operated in the
far-from cutoff region, and 3) arbitrary refractive index profile
waveguides with an elongated or slab like cross section.
Numerical results for these three classes of waveguides will
be given in Section Il

+ (k2 — B%)e, + 2<

d*u  dlan

Pl Y
da:Qe ou

dx

wheree, = e.(u, v), n = n(u, v).

ou

B\ e Pt | (00 P, e,
de ) Ou? = dx? Ou dy ) %  dy? ow
du\?> 8 ( dlun

)

(15)
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TABLE |
P2 as A FUNCTION OF 2V}, /™ FOR THE FUNDAMENTAL QUASI-VECTOR MODES
OF THE RECTANGULAR CORE OPTICAL WAVEGUIDE. avy = @, oty = b, p = Vab,

AND Nj, = Nf; = N. THE PARAMETERS N}, AND NN}, INDICATE THE NUMBER

m

OF EVEN SpPATIAL FREQUENCY COMPONENTSUSED IN THE & AND % DIRECTIONS

s/ N F-OPT
10 15 20 25

EY; mode

0.40 0.0346 0.0343 0.0337 0.0335 0.0400
0.45 0.0679 0.0664 0.0661 0.0661 0.0670
0.50 0.1077 0.1069 0.1069 0.1069 0.1068
0.55 0.1523 0.1522 0.1523 0.1522 0.1520
0.60 0.1991 0.1993 0.1992 0.1992 0.1990
0.65 0.2458 0.2459 0.2459 0.2458 0.2456
0.70  0.2909 0.2910 0.2910 0.2909 0.2907
0.75 0.3338 0.3339 0.3338 0.3338 0.3336
0.80 03741 03742 03741 03741 0.3739
0.85 0.4117 0.4118 0.4117 0.4117 04116
0.90 0.4467 0.4467 0.4467 0.4467 0.4465
095 0.4791 0.4791 0.4791 0.4791 0.4789
1.00 0.5090 0.5091 0.5091 0.5091 0.5089

@)

EJ; mode

0.40 0.0274 0.0315 0.0320 0.0307 0.0483
0.45 0.0603 0.0617 0.0614 0.0614 0.0612
0.50  0.0999 0.1004 0.1000 0.1005 0.1003
0.55 0.1444 0.1443 0.1440 0.1444 0.1441
0.60 0.1908 0.1903 0.1901 0.1902 0.1900
0.65 0.2370 0.2363 0.2361 0.2361  0.2359
0.70  0.2817 0.2810 0.2809 0.2808 0.2805
0.75 0.3243 0.3237 03236 03235 0.3232
0.80 0.3645 0.3640 0.3639 0.3638 0.3635
0.85 0.4021 0.4018 0.4017 0.4016 0.4013
090 0.4372 0.4370 0.4369 0.4368 0.4365
0.95 0.4698 0.4697 0.4696 0.4695 0.4692
1.00  0.5001 0.5000 0.5000 0.4998 0.4996

@

The expansion functiong;(u, v) are chosen as the complete
set of orthonormal sine basis functions as

(b)
Fig. 3. Field pattern of (ap, of Ef, mode and (b), of E], mode at ¢i(u, v) = 2 sin(m;mu) sin(n;7v). (19)
2V, /7 = 0.5 for N = 25. The core region is shaded. Contour lines are al . . . . . -
103/({ intervaﬁs of peak ;mpmud& 9 'ILhe field expansion (16) is substituted into (15), it is then

multiplied by ¢,(u, v) and integrated over the unit square in

o ) Fig. 1(b) and vyield the result
The unknown electric field componea} is expanded as

Ny Ny
N,.N.,, N Np Z (Sjﬂ‘ + P],Z - W26j7i)ai =0 (20)
Cp = Z aid)i(u? U) = Z Z A n; d)z(uv U) (16) @
B m;=1n;=1 where
where integer quotient function div and remainder on division Sji =V?A; i+ B (21)

function mod are employed to relate the indéxand spatial
frequenciesyn; andn;, as

1 1
mi = (i —1)divN, +1 17) Aji = /u=o /Uzog(uv v)pi(u, v)¢i(u, v) dudv  (22)
n; = (i —1)modN,, + 1. (18) Bji=p*(I1 + I+ I3+ 1) (23)

correspond to the scalar wave equation with
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Fig. 4. (a)—(f) Field patternsz, for quasi-TE mode and, for quasi-TM
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y

Fig. 5. Structure of a circular core optical fiber.

o

The modal parameters and W are defined as

V =kp(nZ, —nd)t/?
W =p(B* — K*nd)"/>.

(26)
(27)

The core and cladding refractive index., and n., and
normalization parametes are chosen to be representative of
the refractive index profile of the optical waveguide under
consideration. Moreover

= p*(Is + L)

correspond to polarization correction. The six integtalgo

I is given in the Appendix as (29)-(34) and can be evaluated
analytically in terms of sum of trigonometric functions if the
refractive index profilew(z, y) is approximated by rectangles

P; i (28)

mode, of the first six bound modes of the high contrast rectangular capé uniform refractive index.

waveguide forN = 30. Designation of the modes are given in Table II.

TABLE I
P2 oF THE FIRST Six BOUND MODES OF THEHIGH REFRACTIVE INDEX
CONTRAST RECTANGULAR CORE WAVEGUIDE. N5, = N7 = N FOR
Mopes (a), (b),anp (f); N2, = NS = N For MobEs (c) AnD (d);
AND N&, = NP = N FOR MoDE (€). THE PARAMETERS N5, © AND
N, ° INDICATE THE NUMBER OF EVEN AND ODD SPATIAL FREQUENCY
COMPONENTSUSED IN THE & AND y DIRECTIONS RESPECTIVELY

N Mode

(@ ® ©© @ (@@ ©
EhZ, BL By Ej Ej Ej

10 0.7591 0.7007 0.5041 0.5000 0.3390 0.1979
15 0.7585 0.6968 0.5008 0.4991 0.3386 0.1961
20 0.7584 0.6972 0.5012 0.4961 0.3386 0.1965
256  0.7580 0.6953 0.4995 0.4962 0.3382 0.1950
30 0.7580 0.6960 0.5001 0.4947 0.3383 0.1955
H-G[4] 0.7577 0.6949 0.4988 0.4985 0.3375 0.1942
and
2 2
n*(u, v) — ng
o, v) = D (24

2 _
nco ncl

Here, ¢, ; is a delta function and defined as
1 ifj=x¢
(5]'71‘ = {0

if £ i, (25)

The double summation series in (20) can be written as a
matrix eigenvalue equatiotla = W 2a, by defining a vector
a consisting of the elements; and a matrixM composed
of the coefficientsS; ; and F; ;. LAPACK subroutines are
used to solve this equation [7], the propagation constants of
the bound modes of a waveguide are calculated from the
real, positive eigenvalueB/’? and the corresponding modal
field is calculated via the Fourier coefficients of associated
eigenvectorsa.

I1l. NUMERICAL RESULTS

A. Rectangular Core Optical Waveguide

Fig. 2 shows an optical waveguide with a rectangular core of
width 2aand heighb. The core and cladding refractive index
arene = ny = 1.5 andng = ne = 1.45. A = 1.15um and
a/b = 2. Table | gives the normalized propagation constants
P? = [(B/k)? — n}]/(n%, — n?) for the fundamental quasi-
vector modes as a function @, /r whereV, = kb(n? —
n3)!/2. The bound modes are denoted a§,Emode for
the quasi-TE mode andyE mode for the quasi-TM mode,
respectively. Then andn are both positive integers meaning
m — 1 andn — 1 field zeros in thex and y directions of
the modal fields, respectively. The calculated results are in
excellent agreement with Fourier operator transform (F-OPT)
method [8] except a2V, /= = 0.4 where present method is
more accurate as shown by the convergencB%fThe modal
fields at2V; /= = 0.5 is shown in Fig. 3. As can be clearly seen
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TABLE 1l
P2 as A FUNCTION OF FIBER PARAMETER V' = kp(n? — n3)'/2
FOR THE FUNDAMENTAL QUASI-VECTOR MODES OF THE CIRCULAR
Core OpTICAL FIBER. ap = a9y = p AND N5, = N = N

14 Mode
Eh E, HEp
N N
10 15 20 25 =25
0.8 — 0.0043 0.0049 0.0046 0.0047 0.0043

1.0 0.0339 0.0330 0.0325 0.0325 0.0325 0.0322
1.2 0.0920 0.0918 0.0918 0.0918 0.0918 0.0911
1.4 0.1696 0.1692 0.1691 0.1690 0.1689 0.1681
1.6 0.2510 0.2506 0.2505 0.2504 0.2503 0.2494
1.8 0.3286 0.3283 0.3281 0.3280 0.3280 0.3270
2.0 0.3991 0.3988 0.3987 0.3986 0.3985 0.3976
2.2 0.4615 0.4613 0.4612 0.4611 0.4610 0.4603
2.4 0.5163 0.5161 0.5160 0.5159 0.5158 0.5151
2.6 0.5640 0.5639 0.5638 0.5637 0.5636 0.5630
2.8 0.6056 0.6055 0.6054 0.6054 0.6053 0.6048
3.0 0.6420 0.6419 0.6418 0.6418 0.6417 0.6412

(@

the present method is able to reproduce the discontinuity in
the field at the core-cladding boundaries (vertical side walls
for quasi-TE mode and horizontal side walls for quasi-TM

mode).

Results of P? for the first six bound modes of another
rectangular core waveguide with high refractive index contrast
(ny = 2, ng = 1) is shown in Table Il. The associated
field of these modes are shown in Fig. 4. Helg, = 3
anda/b = 5/3. Results of P? are in good agreement with
results using Hermite—Gauss (H-G) basis functions [4]. As is
expected, this present method, with sine basis functions in
the transformed domains, has field zero at infinity as does
Hermite—Gauss basis functions.

B. Step-Index Core Optical Fiber

The next structure to be studied is a circular core optical
fiber (Fig. 5) withn.,, = n; = 1.6 andng = ny = (b)

= 1 H H
1.5. The first quadrant of the Clrcular_ core is resembled kp{g_ 6. Field patiems of (), of Ef, mode and (b, of E}, mode of the
25 uniform rectangles and the rest is found by symmetnyrcylar core optical fiber at” = 1 for N = 25.
P2 of the two fundamental quasi-vector modes are almost

the same as listed in Table Ill. Theoretically, with infinit . .
&@ndary is likely to be an average of the exact vector solution

number of rectangles, the fundamental quasi-vector mo i deratelv to th ‘ ¢ luti
are degenerated. Results of present quasi-vector solutionsaé}g It 1S converge moderately 10 the exact vector solution as

compared with the exact vector solutions [6], HfEode, and N'1s increased.
they are in good agreement. ) ) )

The field patterns of the quasi-vector modesvat= 1 is C- Rib Optical Waveguide
given in Fig. 6. Discontinuity of field is clearly seen at the A rib optical waveguide as shown in Fig. 8 is considered in
core-cladding boundary. The field componeptof E¥; mode this section. Herep, = n1 = 3.44, ng = ne = 3.4, n3 = 1,
along ther axis as a function of normalized distan¥e=z/p ¢ = 1um, w = 3 um, andX = 1.15 um. Table IV showsP?
is shown in Fig. 7(a). As can be seen from the figure, the quafir the fundamental quasi-vector modes as a functios &y
vector modal fields are agree with the exact vector soluti@emparison with results from F-OPT method [8] and beam
except near the core-cladding boundary which is detailed pnopagation method (BPM) [9], the convergence of present
Fig. 7(b). From this figureg, of quasi-TE mode near thesolutions is better for § mode than E; mode. This could be

N7~
N=rIN=7/
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o) Fig. 9. Field patterns. of Ef; mode (left side) and, of EJ; mode (right
& side), of the rib waveguide fo’N = 30 at (a)-(b)d = 0pm, (c)—(d)
o 078} d = 0.5um, and (e)-(f)d = 1 um.
074 in optoelectronic integrated circuits [11]. The structure to
" 06 0.8 1.0 1.2 1.4 be modeled consists of MGa As/GaAs QW layers and
X thick Alg3Gay7As buffer layer grown on a GaAs substrate;
(b) the schematic of the structure is shown in Fig. 10. In our

Fig. 7. (a) Electric field component,. of quasi-TE mode as a function model, G& ion is implanted with a projected range located
of normalized distance\” for N' = 10, 15, 20, and 25. The electric field around the center of the QW layers. The implantation process
Ec;rpaﬁlcs’”s{'t(egj gfe;g? exact vector (v) solution is given in solid fine. (b) o4, ceg a modification of the QW material which in turn
leads to differences in refractive index in different region
[10]. The implanted region has a lower refractive index than
w N the nonimplanted region, hence produce lateral confinement
of light. Fig. 11 shows a IID MQW refractive index profile
which is represented by rectangles of constant refractive
Ny y index. The profile was calculated fd&a = 3um, 2b =
T 0.6 pum at A = 0.901085pm. The maximum and minimum
0

/N

refractive index are assigned as.(= 3.52695) and n.(=
3.46782), respectively. Other parameters are refractive index
d ny of Alg3Gay7As buffer layer and air cover which is equal to
3.35447 and 1, respectively?? of the fundamental quasi-
vector modes are listed in Table V. The associated modal fields
are shown in Fig. 12. Results show that present method is
applicable for finding the waveguiding properties of an optical
Fig. 8. Structure of a rib optical waveguide. waveguide with a diffused refractive index profile.

IV. CONCLUSIONS

explained by the fact that higher spatial frequency components . . . .
. o ' A numerical method for solving the guided quasi-vector

are needed to model the large discontinuity of field component . ; . : .
. o . modes problem of optical waveguide with arbitrary refractive

ey Of E]; mode at the core-air interfaces perpendicular to ﬂ?ﬁ

. . . . dex in a mapped infinite domains is described. Solvin
y axis of Fig. 8 which are clearly seen form the field patterr}ﬁe problem Wi?r? the Galerkin’s method, the mode field ig
at Fig. 9. '

expanded into a two-dimensional (2-D) Fourier sine series and
) resulting in a matrix eigenvalue equation which is solved using
D. IID MQW Waveguide the LAPACK subroutines.

The last example is to apply present method to a multi- The accuracy of present method is compared to the Fourier
ple quantum-well (MQW) waveguide fabricated by impurityoperator transform method and the beam propagation method
induced disordering (IID) technique [10]. The IID techniqudor a rectangular core waveguide and a rib waveguide. More-
provides an efficient way to realize waveguiding structuraver, solutions for step-index circular core optical fiber are
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TABLE IV
P2 as A FUNCTION OF d FOR FUNDAMENTAL QUASI-VECTOR

MoDES oF THERIB OPTICAL WAVEGUIDE. o = w/2, x 3.52
ay =t/2, p = Jazay, N5, = N aND N, = 2N 8 451
d N F-OPT BPM o 3.50
0 20 30 g 349
%5 3.48
Ef; mode T 347

0.0 0.2879 0.2961 0.2971 0.2992 0.3001
0.1 0.2911 0.2989 0.2997 0.3018 ©.3026

.0
-0.1

0.2 0.2957 0.3029 0.3036 0.3055 0.3066 ybm o2 T X(um)
0.3 0.3019 0.3084 0.3091 0.3108 0.3116 Fig. 11. Refractive index profile (half symmetry) of the 1ID MQW wave-
0.4 03101 0.3158 0.3163 03178 0.3188 guide.
0.5 0.3202 0.3251 0.3255 0.3267 0.3269 )
0.6 0.3324 0.3364 0.3368 0.3373 0.3380 = -
0.7 0.3468 0.3500 0.3503 0.3509 0.3504 C ) ) )
0.8 0.3639 0.3666 0.3667 0.3668 0.3655 < @ .
0.9 0.3859 0.3880 0.3886 0.3880 0.3871
1.0 04241 04268 0.4271 04273 0.4273 (@
EY; mode ——
0.0 02495 02559 0.2567 02652 0.2664 = =
0.1 02523 0.2581 0.2588 0.2678 0.2685 & - ) >
02 02561 02614 02619 0.2703 0.2720 &\%”/_///
0.3 02615 0.2659 0.2664 0.2746 0.2762
0.4 02682 0.2719 02723 0.2804 0.2823 (b)
. . . Y
0.5 02769 0.27195 02800 02880 02892 the 11D MQW waveguide fory = 25. The shaded region i the MOW under
0.6 0.2877 0.2896 0.2898 0.2976 0.2990 the mask.
0.7 0.3002 0.3016 0.3017 0.3095 0.3101
08 03161 0.3166 03166 03244 03237 P? For THEFUNDAMENTA-LI-AQBULAESI-\\//ECTORMODES oF THEIID
0.9 0.3367 0.3370 0.3367 0.3446 0.3441 MQW WAVEGUIDE. crz = a, ay = b, AND p = Vab
1.0 0.3765 0.3769 0.3769 0.3851 0.3854 Ne N, Mode
, 10 20 0.1352 0.0110
) ' 15 30 0.1375 0.0111
- 6_2;6_, 20 40 0.1380 0.0096
w 25 50 0.1382 0.0094
11D MQW 0T—)x 2b
T APPENDIX
AlGaAs | The integraldl; to I in (23) and (28) are given as follows:
buffer ‘
; - | - I, = —m?in / / <du> ¢i(u, v)p;(u, v) dudy
Fig. 10. Schematic of an IID MQW waveguide. 1 00 S0 g J
_ m32 {36,,”7,"]. Omimj—2  Omym+2
compared with the exact vector solution. Results shown that ™ = 9,2 4 2 - 2

the present quasi-vector solutions provide a good approxima-

. . 67717-, 2—m; 67717- ,m;—4 67717- ,m;+4
tion of the exact solution. + 5 + 3 + 3
The application of present method to a waveguide with S 4
diffused refractive index profile is demonstrated using an —— 2 }6%”], (29)

MQW waveguide fabricated by impurity induced disorder-

ing technique. The normalized propagation constants of tb}e_m / / < ) 1
fundamental quasi-vector modes converge moderately as we ) —0Ju=o \ dz? J tan(m;mu)
increase the number of spatial frequencies. X @i (u, v)p;(u, v) dudv
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67717- ,m;—2

_ m; 67717-, 2—m; 67717- ,m+2
o2 4 4 4
67717 , d—my;

; — ; 6771' m;— 6771' my
_ _ Omimima  Omimia e
8 8 8 b

1 1 2
2.2 /uzo /Uzo <§—Z> ¢i(u, v)¢;(u, v) dudv

_ 7112 3671{771_7' 67%',"3'—2 6"7'7"3"1'2
T 22| 4 2 2

(30)

6717',2—71_7' 6717',71_7'—4 6717',71_7'-1—4
+ 2 + 8 + 8

_6717',4—71_7' 6
mi,m;

b= \/u—O\/l/ 0< ) an(71117rv)

x ¢i(u, v)pj(u, v) dudv
6n7,n]—2 6n7,nj+2

T, 67“72_”]. . . .
o 4 4 4
S et O
= : + = j+4}6mi,mj

8 8 8
(32)

gl 2
I =myn / / 9 @ v
w=0 Jv=0 tan(m;wu)

X i, v)b; (u, )alg( ) du dv

/u_o/b 0 <du> ¢i(u, v);(u, v)

2
8;n2 dudv

== du / dv{ln(n
X {{16[ (2u) — c(4u)]
— mF[c(4u) —
+ mym;[c(du) —
— dm;[s(4u) — 2s(2u)]ei(w) s (w)si(v)s;(v)
— 8my[s(du) — 2s(2u)]si(u)c;(u)si(v)s;(v)

1 1 9
o= / o / 2<d—1§)¢i<uv o), 072 g gy

== du / dv{ln(n
x {4[?4u> ~ e2u)]si(u >sg»<u>si<v>sj<v>
+ mals(du) — 25(2u)]cs(u)s; (w)si (v)s; ()
iy [s(4u) — 25(2u)]si(u)e; (w)si(v)s; (v)}}.
(34)

(381

6717' 3 4—n_7'

In (33) and (34), sine related functiong2u) = sin(2u),

si(u) = sin(mmu), s;(v) = sin(n;7v), etc. For cosine related

functions, they are abbreviated by the symbol
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