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An Optimal Topology-Transparent Scheduling
Method in Multihop Packet Radio Networks

Ji-Her Ju,Member, IEEE, and Victor O. K. Li, Fellow, IEEE

Abstract—Many transmission scheduling algorithms have been
proposed to maximize the spatial reuse and minimize the time-
division multiple-access (TDMA) frame length in multihop packet
radio networks. Almost all existing algorithms assume exact
network topology information and do not adapt to different
traffic requirements. Chlamtac and Farago proposed a topology-
transparent algorithm. Following their approach, but with a
different design strategy, we propose another algorithm which
is optimal in that it maximizes the minimum throughput. We
compare our algorithm with that of Chlamtac and Farago’s
and with the TDMA algorithm, and find that it gives better
performance in terms of minimum throughput and minimum
and maximum delay times. Our algorithm requires estimated
values of the number of nodes and the maximum nodal degree
in the network. However, we show that the performance of our
algorithm is insensitive to these design parameters.

Index Terms—Packet radio network, time-division multiple
access, topology-transparent scheduling.

I. INTRODUCTION

A PACKET radio network consists of a number of ge-
ographically dispersed radio units which communicate

with each other. Due to limited transmission power, it may
be necessary to relay a packet over multiple nodes before
the destination is reached, resulting in a multihop packet
radio network. A packet radio network using a time-division
multiple-access (TDMA) transmission schedule is called a
TDMA network. In a conventional TDMA network every
node is assigned a unique time slot in each frame to transmit.
This method works well when the network is fully connected,
but in a multihop packet radio network the number of nodes
in the network is much greater than the maximum number
of neighbors of a node, and spatial reuse of time slots
can greatly improve the system performance. Hence, the
design of transmission schedules in multihop mobile radio
networks to ensure good system performance is an attractive
research topic [1], [2], [4], [5], [7], [15], [16]. A proper
design not only guarantees successful information exchanges
among nodes in the presence of conflicts but also maximizes
the system throughput. In this context we will focus on
the scheduling problem in a TDMA network, although our
algorithm can also be applied to a code-division multiple-
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access (CDMA) network using a procedure similar to that
described in [3]. In a TDMA system, time is divided into
transmission slots, grouped into frames. Each slot is designed
to accommodate the transmission of one fixed-size packet
and a guard time, corresponding to the maximum differential
propagation delay between pairs of nodes in the network.
When nodes communicate, they may suffer two types of
conflicts [7], [12]. The first one, called primary conflict, occurs
if two or more nodes transmit simultaneously to the same
destination node. The second one, called secondary conflict,
occurs when a node receiving a transmission is also within the
transmission range of other transmissions not intended for it.

Previous studies on transmission scheduling can be clas-
sified into two categories: link activation [1], [9] and node
activation [7], [15]. Most such studies concentrated on find-
ing fair conflict-free algorithms which maximize the system
throughput by using graph theory [9], [16]. In [7] it is
shown that the problem of determining transmission schedules
with optimal throughput is NP-complete. The problem of
constructing a minimum frame length schedule is also shown
to be NP-complete [15]. Most algorithms are centralized, i.e.,
they need global network connectivity information to achieve
their goals. Ephremides and Truong [7] proposed a distributed
algorithm which requires using up to two-hop connectivity
information. The distributed algorithm of Ramaswami and
Parhi [15] only needs one-hop connectivity information. As
can be expected, however, an optimal design for an initial
network may be far from optimal after changes in the network
topological structure or the traffic load of the nodes. In
particular, in a highly mobile network, accurate network
connectivity information may be very difficult to obtain.
Furthermore, to maintain accurate connectivity information
will require a great number of information exchanges among
the nodes. This intensive communication requirement may
consume more bandwidth than the savings obtainable by
an algorithm which uses this more accurate topology in-
formation. Therefore, the efficiency and robustness of the
above algorithms are questionable in mobile networks. By
allowing contentions, Chlamtac and Farago [2] developed an
algorithm which is topology-transparent and guarantees that
each node has at least one successful transmission in each
frame. However, no attempt has been made to optimize the
performance of this algorithm. In fact, as will be shown in
Section V, this algorithm sometimes performs worse than a
conventional TDMA algorithm. Following their approach, but
with a different design strategy, we propose another algorithm
which is optimal in that it maximizes the minimum throughput.

1063–6692/98$10.00 1998 IEEE
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We compare our algorithm with that of Chlamtac and Farago’s
and with the TDMA algorithm, and find that it gives better
performance in terms of minimum throughput and minimum
and maximum delay times. Our algorithm requires estimated
values of the number of nodes and the maximum nodal degree
in the network. However, we show that the performance of our
algorithm is insensitive to these design parameters.

In this paper we develop a new link activation scheduling
algorithm with a minimum guaranteed throughput under any
traffic conditions and analyze its performance for point-
to-point packet transmissions. The rest of this paper is
organized as follow. In Section II we present our network
model and some definitions and theorems which will be
used in the following sections. Section III presents the
steps of our proposed algorithm. Some theorems related
to the choice of the optimal frame structure and the
system parameters are also given. In Section IV the
average maximum and minimum delay times are derived
and an analytical comparison between our algorithm and
the conventional TDMA algorithm is provided. Numerical
results and discussions comparing our optimal algorithm,
Chlamtac and Farago’s algorithm, and the conventional
TDMA algorithm are given in Section V. We conclude in
Section VI.

II. M ODEL AND DEFINITIONS

A multihop packet radio network with mobile nodes can
be represented by a directed graph . is the set of
all network nodes and . is the set of all edges.
If node is within the transmission range of , then an
edge denoted is in We assume that if ,
then . are said to be neighbors. The degree
of a node , i.e., , is
defined as the number of its neighbors. The maximum degree

, i.e., in the network is much less than the
number of nodes in the network. We assume that will
remain constant while the network operates. The maintenance
and benefits of this kind of degree-bounded topology have
been discussed in [10], [11], and [14].

In this paper we assume that the transmission channel
is error-free and a reception failure is due only to packet
collisions. The packet transmitted from a neighbor of a node,
say node , is successfully received by nodeif no other
neighboring nodes transmit in the same slot. All of the nodes
in the network are homogeneous, i.e., they have the same
equipment, traffic characteristics, and traffic generation rate.
Although nodes with multiple reception capability have been
considered in [4] and [8], we assume that each node only has
a single narrow-band transceiver to communicate with other
nodes. A node cannot transmit and receive simultaneously.
As in [2], we will use the total number of nodes and
the maximum degree as design parameters. Based on
these two system parameters, we will design a scheduling algo-
rithm such that each node in the network gets a predetermined
minimum throughput no matter how or how often the topology
changes.

Our approach is to use coding theory to design a topology-
transparent scheduling algorithm, and to maximize the guar-

Fig. 1. The relationships of TSAF, TSLV, and the frame structure.

anteed throughput of our algorithm. The following definitions
and theorems help explain our algorithm.

Definition 1: A polynomial of degree can
be expressed as ( ), where

Theorem 1: Let be a polynomial of degree
, where is a prime number. Then the equation

( ) will have at most distinct roots which are integers
between 0 and

The proof of the above theorem can be found in [6].
Definition 2: The Hamming weight of a -tuple

row vector is the number of nonzero symbols in the vector

Definition 3: The Hamming distance between
two -tuple row vectors is the number of symbols in
which the two -tuple row vectors differ.

The Hamming weight and Hamming distance will be used
to describe the relationship between the transmission slot
assignments of two nodes.

Definition 4: For a given network each node is
associated with a unique time slot assignment function (TSAF)

. is a polynomial
with degree and it maps from to , where

and is a prime.
This TSAF is used to calculate the positions of assigned

transmission slots in a frame for each node.
Definition 5: We define a standard row vector

Then
is also a row vector called the time slot location vector (TSLV)
of node

This TSLV indicates the exact positions of assigned trans-
mission slots in each frame for each node. In Fig. 1 we show
the relationships of TSAF, TSLV, and the frame structure.
Each frame is divided into subframes of slots each, and the
time slot assigned to node in subframe
is given by In Fig. 1 etc.

The following is used to define the relationship between
any two TSAF’s.

Definition 6: For a set of TSAF’s with degree , we
say that two TSAF’s are in the th-order TSAF subgroup
if the difference of these two TSAF’s is a polynomial with
degree
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Theorem 2: Consider a set of TSAF’s with maximum
degree Let and be two TSAF’s,
where is the standard row vector. Then the of
any and is greater than or equal to if and

are in the th-order subgroup of the subset of TSAF’s
. is the dimension of the TSLV and

Proof: If and are in the th-order TSAF
subgroup, then can be expressed as

( ), where are elements in
and The equation

where (1)

will have at most roots. That means and have at most
common values among theelements. So,

for any and
Since the TSLV’s and represent the slot positions

of assigned transmission slots, each agreement in these two
vectors is a possible collision for these two nodes. Theorem
2 says that the number of possible collisions for two nodes is
equal to when their TSAF’s are in the th-order subgroup.

III. OPTIMAL SCHEDULING ALGORITHM

We now describe our proposed algorithm. Consider a single-
channel TDMA network with mobile nodes and maximum
degree , i.e., the number of neighbors of any node in this
network is not greater than The TDMA frame consists
of subframes, each consisting ofslots. Each node will be
assigned one transmission slot in each subframe according to
its unique TSAF This idea is similar to that in Chlamtac
and Farago [2]. Their algorithm attempts to find the smallest
value of which guarantees that each node has at least one
successful transmission in each frame and at the same time
minimizes the frame length. In a contention-free scheduling
algorithm a frame structure with minimum frame length can
indeed maximize the throughput. However, if contentions are
allowed, this is no longer true. Hence, we use a different
strategy to derive a different scheduling algorithm which can
be proved to have certain advantages. In fact, in terms of
maximal minimum throughput, our assignment function is
optimal.

As we have mentioned, the assigned time slots for each
node can be represented by a TSLV. The TSLV is a row
vector which can be represented as If the
elements at the same position of two TSLV’s have the same
value, a collision may occur when the two corresponding nodes
transmit because they are assigned the same slot in the same
subframe. This implies that the smaller the value of the maxi-
mum Hamming weight of the difference vector
between any two TSLV’s, the larger the probability that their
transmissions will collide. For example, if the dimension of
TSLV is , then the maximal value of between
any two TSLV’s, say and , will be If

for any two TSLV’s, the assigned slots for these two
nodes are collision-free because there is no agreement in their
TSLV’s. Hence, we need to find a set of appropriate TSAF’s
which can generate TSLV’s with maximum Hamming distance
subject to the maximal minimum throughput requirement.

Since all TSLV’s must be unique to each node to ensure
that every node has at least a minimum throughput, the total
number of TSLV’s should be at least the total number
of nodes in the network, i.e., Each TSLV is
generated from its unique TSAF ( )
where , i.e.,

(2)

and is the standard row vector. Hence

(3)

if the maximum degree of the TSAF’s is equal to
If the maximum degree of the TSAF’s is equal to, the

maximum degree of the difference polynomial of any two
TSAF’s will be less than or equal to According to Theorem
1, there are at most common roots for these two TSAF’s.
Each common root corresponds to an agreement in their
TSLV’s and each agreement represents a possible collision for
these two nodes. Hence, the maximum degree of the TSAF’s

determines the maximum number of possible collisions
that a node can cause its neighbor. Based on Theorem 2 we
conclude that the number of possible collisions in each frame
for any two nodes is between 0 and, and this number of
possible collisions depends on the degree of their difference
polynomial. Because each node is assignedtransmission slots
in each frame and the maximum number of neighbors of a
node is , the maximum number of possible collisions of
a node is To ensure that each node has some minimum
throughput, the following relation must be satisfied:

number of collisions in a frame

(4)

Here, is the number of guaranteed successful transmissions
in each frame for every node. and are the upper
and lower bounds of which are equal to and ,
respectively.

To evaluate the performance, we define the minimum
throughput as follows.

Definition 7: The minimum throughput is defined
as the ratio of the number of guaranteed successful transmis-
sions in each frame to the frame length, i.e.,

(5)

where
Theorem 3: For a given , the maximal value (i.e., upper

bound) of is

if

otherwise

(6)
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Proof: From (5), we know

(7)

To find the maximal value of we have to solve the
following equation:

(8)

Since , we get

(9)

increases with when and
decreases with when From (3) and (4), we
know that has to satisfy the following equations:

(10)

(11)

Hence, if , assumes the maximal
value when , and

(12)

Otherwise, has the maximal value when ,
and

(13)

To maximize the minimum throughput of the network, we
have to choose the best values ofand by using Theorem
3. Once we decide the values for and , we can get

and In our analysis
we found that the best value of will be greater than one
only when For example, if ,
then will be equal to two when This means
that the maximum number of collisions between any two
nodes in a frame will be either zero or one in almost all
cases if the network size is not extremely large. This result
means that the best set of TSLV’s are constructed by the
TSLV’s with The actual maximum
number of collisions of a node depends on the relationships
between its TSAF and its neighbors’ TSAF’s. Note that

corresponds to the conventional TDMA fixed time
slot assignment algorithm which assigns each node a unique
transmission slot in each frame, and the minimum throughput
is equal to

Thus, we can design an optimal scheduling algorithm as
below.

Optimal Algorithm:

• Use Theorem 3 to select theand for the given and
such that is maximized.

• Each node is randomly assigned a unique TSAF (with
degree ).

• Each node calculates its TSLV according to (2).
• Each node transmits its data packets at its assigned slots.

Here, we assign the TSAF to each node randomly. Actually,
if we have additional information on the nodes’ locations, a
more systematic way to assign the TSAF’s may improve the
overall system performance. For example, we can assign the
TSAF’s from the zeroth-order TSAF subgroup to those nodes
in the dense area of the network, i.e., those nodes with many
neighbors. This is because the TSAF’s from the zeroth-order
TSAF subgroup always have the largest

IV. PERFORMANCE ANALYSIS

In the following analysis the average transmission delay is
defined as the average waiting time between two successive
successful transmissions. Here we only consider the average
transmission delay under the worst and the ideal traffic condi-
tions. The worst case occurs when all of the neighbors of
a specific node transmit data packets in all their assigned
slots and each of them causescollisions in a frame. The
ideal case occurs when all of the neighbors of a specific node
do not contribute any collisions to its transmissions because
either they have no packet to transmit or their TSAF’s have
no common roots with the TSAF of this node.

Definition 8: The average transmission delay under the
worst traffic condition is called the maximum transmission
delay It is defined as the ratio of the frame length
to the minimum number of successful transmission slots in a
frame, i.e.,

(frame length)(minimum number of

successful transmissions in a frame)

(14)

Definition 9: The average transmission delay under the
ideal traffic condition is called the minimum transmission
delay It is defined as the ratio of the frame length
to the maximum number of successful transmission slots in a
frame, i.e.,

(frame length)(maximum number of

successful transmissions in a frame)

(15)

and are the upper and lower bounds of the
average transmission delay, respectively.

Theorem 4: is equal to , where
is the maximum degree in the network, is the

maximum degree of TSAF’s, andis the number of assigned
slots in each frame for each node.

Proof: The frame length is equal to From (14),
we get

(16)

This is the average longest time between two
successive successful transmissions. Similarly, we can get the
following theorem for which is the average shortest
time between two successive successful transmissions.

Theorem 5: is equal to , where is the number of
assigned slots in each frame for each node.
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Proof: From (15), we get

(17)

So, the average transmission delay will be between
and Furthermore, we can get the following con-

clusion.
Theorem 6: The difference between and of

our optimal algorithm is no more than
Proof: From (16) and (17), we get

(18)

From Theorem 3, the optimal value ofis the prime number
closest to

if
otherwise.

(19)

Substituting the above value into (18), we will get

if

otherwise

(20)

Hence, we conclude that is no more than

Theorem 7: For a given , of our algorithm is larger
than the guaranteed throughput of conventional TDMA fixed
assignment scheduling algorithm when

Proof: From (5), we know

(21)

If , then

(22)

Solving the above inequality, we get

(23)

when

(24)

Fig. 2. The guaranteed throughputGmin for N = 121:

Fig. 3. The guaranteed throughputGmin for N = 256:

V. NUMERICAL RESULTS AND DISCUSSION

In this section we quantitatively compare the above opti-
mal scheduling algorithm with the conventional TDMA fixed
assignment scheme and the one proposed by Chlamtac and
Farago [2]. For convenience we refer to these three algorithms
as the optimal, the conventional TDMA, and Chlamtac’s
algorithms, respectively. We considered four cases where the
number of nodes in the network is 121, 256, 800, and 1024,
respectively, and the range of the maximum degree is
from 4 to 44. The bigger the value of , the higher the
density of mobile nodes in a certain area. For each givenand

, , , and are obtained for each of the
scheduling algorithms. gives the minimum throughput
of the network. and give the upper and lower
bounds of the average transmission delay for a packet.

Figs. 2–5 show for the four cases. They show that
our optimal algorithm has the best performance. It always
performs much better than Chlamtac’s algorithm, especially
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Fig. 4. The guaranteed throughputGmin for N = 800:

Fig. 5. The guaranteed throughputGmin for N = 1024:

when the value of the maximum number of degree is not very
high. For the case of and , of the
optimal algorithm is six times better than of Chlamtac’s
algorithm. of Chlamtac’s algorithm fluctuates with
because it only focuses on minimizing the frame length. If the
actual value of deviates from the design value of ,
the performance may degrade drastically. In our algorithm the
performance is not very sensitive to this deviation.

Due to the fixed assignment property, of conventional
TDMA is a flat line. When is large, Chlamtac’s algorithm
performs better than conventional TDMA in most cases. If
is small, then Chlamtac’s algorithm performs better only when

is sufficiently small. Our optimal algorithm performs
better than conventional TDMA for most of the values
for all cases. This agrees with Theorem 7 derived in the
previous section.

Figs. 6–9 show and for the four cases. They
show that Chlamtac’s algorithm has the lowest and our

Fig. 6. The scheduling delays forN = 121:

Fig. 7. The scheduling delays forN = 256:

is similar. Chlamtac’s algorithm also has the highest
when is small or is large. Its also

fluctuates a lot with Our increases smoothly
with and is much less than of Chlamtac’s
algorithm. and of our optimal algorithm are
almost always less than the average transmission delay of
conventional TDMA. By comparing the differences of
and , we see that the optimal algorithm has a smaller
transmission delay variation than Chlamtac’s algorithm. The
small transmission delay variation implies that our algorithm is
more stable, which is an important preferred feature in network
design.

In Chlamtac’s algorithm the number of total assigned slots
for each node in a frame is a power of prime, i.e., ,
where is a prime number and is a positive integer In
their papers [2], [3] they did not provide an explicit method to
calculate the positions of the assigned transmission slots when

because the calculation based on finite field will be
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Fig. 8. The scheduling delays forN = 800:

Fig. 9. The scheduling delays forN = 1024:

more complicated. (Using the geometric mapping method, this
problem can be solved by the algorithm in [13].) For ease of
implementation, in this paper our algorithm will only consider
the cases when is equal to a prime number. Although this
restriction will limit the choices of , we found that the
performance of our algorithm is almost the same fora prime
and a power of prime.

In Figs. 10 and 11 we investigate the effect of inaccuracies
in the estimation of on the minimum throughput
In Fig. 10 we choose and as the design
values for our algorithm, then we find that the corresponding
optimal values of and are 19 and 1, which provide the
maximal minimum throughput. When the actual value of
varies from the design value of ten, the optimal values of
and maximal minimum throughput may change. The black
bars in the figures represent the actual that the network
experiences when and the actual is equal

Fig. 10. Gmin as functions ofDmax when p varies and forp = 19,
respectively.

Fig. 11. Gmin as functions ofDmax when p varies and forp = 41,
respectively.

to the value shown on the axis (but using and
as the design values). The white bars in the same

figure represent the maximal that the network should
have if we choose and the value shown on
the axis as design parameters. The penalty on , i.e., the
difference between the white bar and the black bar, is caused
by the differences of their optimal and values. The figure
shows that the penalty on caused by choosing suboptimal
values of and is very small when the actual is close
to the design value of As the difference between
the actual and the design value of increases, the
penalty on also increases. We observe similar behavior
in Fig. 11, but note that the rate of increase in the penalty on

is much slower (compared with Fig. 10). So we conclude
that the minimum throughput is not very sensitive to the
accuracy of estimated , and the effect becomes smaller
when the size of the network increases.
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Fig. 12. Gmin as a function of the number of nodesN for fixed
Dmax (= 10):

Fig. 13. Gmin as a function of the number of nodesN for fixed
Dmax (= 20):

Figs. 12 and 13 consider the effect of inaccuracies in the
estimation of on the minimum throughput In Fig. 12
we use and as our design values and find
the corresponding optimal values ofand are 29 and 1. The
optimal values of and the maximal minimum throughput
are expected to change when the actualvaries from the
design value of 800. The white bars in the figures represent
the optimal that the network will have if we choose

and is equal to the value shown on theaxis
as design parameters. The black bars represent the actual,
i.e., the estimated , of the network when and

are used as the design values. Although the estimated
is better than the optimal when the actual value

of exceeds , i.e., the inequality stated in (3)
is violated, the minimum throughput will be zero for some
nodes because the total number of TSAF’s is less than the
total number of nodes. In this situation either some nodes will
not be assigned a TSAF or some nodes will share the same

TSAF. If the nodes with the same TSAF are adjacent to each
other, their minimum throughput becomes zero because their
transmissions may potentially collide all of the time. When
the actual value of is less than or equal to 841, there is
a penalty on which increases with the difference in the
actual value of and the design value of Similar results
can be found in Fig. 13, but the rate of increase in the penalty
on is much slower (compared with Fig. 12). This proves
that the minimum throughput of our algorithm is not very
sensitive to the accuracy in the estimation of, and the effect
becomes smaller when the network size is large.

VI. CONCLUSIONS

In a multihop TDMA network, transmission scheduling has
a very important impact on the performance. A scheduling al-
gorithm which is topology-transparent is particularly desirable
when the network is highly mobile. In this paper, following
the approach in [2] but with a different design strategy, we
have proposed an optimal transmission scheduling algorithm
to provide the maximal minimum throughput. This algorithm
is easy to implement and suited for distributed implementation
because it only needs global information about the number of
nodes and the maximum degree in the network. The
transparency to topology changes is inherent in the algorithm
and no dynamic control of algorithm parameters is required.

We also derived the minimum throughput, the minimum
delay time (when the system is under very light traffic), and
the maximum delay time (when the system is under very heavy
traffic) for the scheduling algorithm. Our algorithm is shown to
be optimal because it maximizes the minimum throughput. The
optimal minimum throughput is also insensitive to inaccuracies
in the estimated design values and

Compared with the conventional TDMA fixed scheduling
algorithm and Chlamtac’s algorithm, our algorithm performs
best.
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