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Multicoloring of Grid-S tructured PDE Solvers 
on Shared-Memory Multiprocessors 

Hwang-Cheng Wang, Member, IEEE Computer Society, and Kai Hwang, Fellow, IEEE 

Abstract-In order to execute a parallel PDE (partial differen- 
tial equation) solver on a shared-memory multiprocessor, we have 
to avoid memory conflicts in accessing multidimensional data 
grids. A new multicoloring technique is proposed for speeding 
sparse matrix operations. The new technique enables parallel 
access of grid-structured data elements in the shared memory 
without causing conflicts. The coloring scheme is formulated as 
an algebraic mapping which can be easily implemented with low 
overhead on commercial multiprocessors. The proposed multicol- 
oring scheme has been tested on an Alliant FW80 multiprocessor 
for solving 2D and 3D problem using the CGNR method. Com- 
pared to the results reported by Saad (1989) on an identical Al- 
liant system, our results show a factor of 30 times higher per- 
formance in Mflops. Multicoloring transforms sparse matrices 
into ones with a diagonal diagonal block (DDB) structure, ena- 
bling parallel LU decomposition in solving PDE problems. The 
multicoloring technique can also be extended to solve other scien- 
tific problems characterized by sparse matrices. 

Index Terms-Parallel processing, conjugate gradient meth- 
ods, multicoloring, sparse matrix, PDE solvers, memory access 
conflicts, cache saturation, multiprocessor performance. 

I. INTRODUCTION 

ARALLEL solution of partial differential equations (PDE) P has attracted much attention in recent years. A number of 
studies were reported in [5] ,  [71, [ l l l ,  [131, [151, [191, [231, 
[24]. In this paper, we present a new multicoloring technique 
which allows the parallelization of generalized conjugate 
gradient (GCG) methods on a shared-memory multiprocessor 
system. These methods solve asymmetric systems of equations, 
often characterized by the multiplication of vectors by a matrix 
and its transpose. These matrix operations dominate the main 
computing cost of the PDE algorithms. The sparse matrix op- 
erations are highly desirable for parallel processing. 

We concentrate on centralized, shared-memory multiproc- 
essor systems because most vector multiprocessors fall into 
this category. The basic assumption is that only one copy of 
the data set, consisting of all nonzero elements of the charac- 
teristic matrix, is available in the shared memory. Distributed 
memory algorithms are beyond the scope of this study. No 
data replication is needed in a shared-memory multiprocessor. 
The main problem being attacked is the avoidance of access 
conflicts in the shared memory. Using a multicoloring ap- 
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proach, we can eliminate most memory conflicts and thus re- 
duce the solution time significantly. 

Most storage formats for sparse-matrix-vector multiplications 
form a duality of reduction-extension operations. Without color- 
ing, the extension operation may cause the algorithm to diverge 
due to conflicting updates of the same memory location by more 
than one processor at the same time. To cope with the problem, a 
multicoloring technique for grid-structured PDE problems is 
developed. Coloring is formulated as a mapping from the coor- 
dinates of grid points to different colors. Sufficient and neces- 
sary conditions are derived for a mapping to generate a valid 
coloring scheme. The minimum number of colors is established 
for different discretization stencils. 

Numerical experiments were conducted on a shared- 
memory Alliant FW80 multiprocessor system in solving 2D 
and 3D PDE problems. The timing results demonstrate a sig- 
nificant improvement in performance. The results obtained for 
extension type of operation show an appreciable gain in speed 
over those reported in the past. With the proposed coloring 
scheme, the extension operations exhibit good scalability with 
respect to both machine size and problem size. 

The fundamental idea of coloring is to decouple the connec- 
tions among grid points. It has been used extensively to improve 
parallel processing efficiency [ 191. The best known coloring 
technique is the two-coloring developed for the parallel process- 
ing of Gauss-Seidel and SOR methods. Diagonal coloring has 
been used to allow a wave-front sweeping along the diagonals. 
Coloring has also been used with irregular grid structures [ 171. 

Another use of coloring is to form long vectors in order to 
reduce the startup cost of pipelined processing on a vector 
processor. These methods were exemplified by the continuous 
coloring scheme proposed by Poole and Ortega in [20]. Re- 
lated work can also be found in [l], [lo], [22]. The main ob- 
jective of these schemes is to transform a matrix into one pos- 
sessing a DDB (diagonal diagonal blocks) structure [21]. 
Similar methods were used to vectorize the preconditioning 
phase of conjugate-gradient methods based on incomplete 
(block) factorization of the coefficient matrix [ 161. 

We introduce a concept of  tu^ of a point P as an area 
within which no other point is allowed to have the same color 
as P ,  and show that the area needs to be extended-beyond 
those points directly connected to pint P. Moreover, the num- 
ber of colors used in the continuous coloring scheme varies 
with the number of grid points along each coordinate direction. 
As a result, the scheme may need a number of iterations to 
determine a suitable coloring. Our method enumerates valid 
coloring schemes explicitly, thereby eliminating the tedious 
trial-and-error process. 
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V : ) 8 1 - 1  1 
J : l l I  2 1 
S : [ I I  3 6 

Special data structures are needed for the storage of sparse 
matrices to conserve the shared memory space. Several com- 
monly used formats are specified below, followed by the cor- 
responding codes for matrix-vector multiplications. These op- 
erations are required in GCG methods. Suppose A is a sparse 
N x N real matrix. Irrespective of the format used, the basic 
information to be stored includes the nonzero elements and its 
row and column indices in the matrix. Several storage schemes 
are compared and evaluated below: 

1 0 1 1 1  4 9 / 3 ( 7 / 5 / 6 / - 3 1 2 1  

2 1 3  2 3 / 4 \ 3 1 4 1 5 1  4 151 
9 1 1 2  14 

Diagonal format. For matrices having a banded structure 
with nonzero elements clustered along fixed diagonals, 
the nonzero elements can be stored in a V of dimension 
N x d. A small vector I of dimension d stores the offset of 
each element relative to the main diagonal. 
Rowwise format. A vector V of size Z is used to store the 
nonzero elements of the matrix row by row. A second 
vector J of the same length as A stores the column index 
of each nonzero element. A third vector S of size N + 1 
indicates where each row of the sparse matrix slarts. 
Columnwise format. This is the counterpart of rowwise 
format. Similar to the rowwise format, a vector V holds 
the nonzero elements. Another vector I stores the row 
index of each nonzero elements, and a third vector S 
stores the the starting location of each column in A. 
This format is used in Harwell-Boeing sparse matrix 
collection [8]. 
ITPACK format. A 2D array V of size N x J,, is used to 
store the nonzero elements of A ,  where Jmax is the largest 
number of nonzero elements in any TOW. Another array J 
of the same size indicates the column index of each 
nonzero element. This format has been used in the nu- 
merical packages ELLPACK and ITPACK. 
Jagged diagonal format. The format is similar to row- 
wise format except that the rows are sorted by the n u -  
bers of nonzero elements. The matrix is stored in stripes 
by picking the first nonzero element in each row, fol- 
lowed by the second nonzero element in each row, etc. 
The required data structures are similar to the rowwise 
format except vector S stores the starting location of each 
column stripes in this scheme. An auxiliary vector X rec- 
ords the correct row index of each shuffled row. This 
format was proposed in [17] to improve vector process- 
ing efficiency. 

V 
I. 

8 ) 1 ( - 1 ) 1 0  4 11 9 1 7 1 3 1 5 1 - 3 1 6 1 2 1  
1 / 2 1  1 1 2  3 2 3 1 4 1 3 1 4 1  5 1 4 1 5 1  

V. 

S 1 1 3 1  6 1 9  

7 
-3 2 

12 14 

(a) Diagonal format (b) ITPACK format 

V 
J: 
S: 

1 41 7 8 ) - 3 / l O l 9 1 5 \ - 1 / 2 1 1 1 ( 3 l B /  
1 2 1  3 1 1  4 1 2  1 3 1 4 1  5 1 2 1  5 1 3 1 4 1  
1 6 I 11 14 I 

x : 2 3 1 4  1 / 5 1  

1 10 11 0 0 
A = O  4 9 3 0 .  

0 0 7  5 6  

(e) Jagged &agonal format 

Fig. 1. Storage formats for the sparse matrix in (1). 

(1) 

age formats for sparse matrix-vector multiplications. In Sec- 
tion II, two iterative solvers are presented for solving nonself- 
adjoint PDEs. In Section 111, matrix-vector multiplication op- 
erations are characterized as reduction and extension opera- 
tions, depending on the storage scheme used. In Section IV, 
the coloring technique for a 2D grid is presented; four color 
assignment strategies and the resulting coloring are given. 

In Section V, the coloring of a 3D grid is formulated as a lin- 
ear mapping. Rigorous analysis leads to useful rules for coloring 
the grid points. Based on these rules, results obtained in Section 
IV are proved. In Section VI, we deal with matrices with a 
DDB stmeture and show that the proposed coloring scheme 
leads to DDB matrices. Section VI1 describes the numerical 
experiments performed on an Alliant FW80 shared-memory 
system. PerFomance data obtained from numerical experi- 
ments are analyzed and compared with previous results. Finally, 
we comment on generalization of the multicoloring methods for 
parallel solution of other grid-structured problems. 

II. GRID-STRUCTURED PDE SOLVERS 

We limit the discussion to a system of linear equations 
arising from the discretization of a PDE problem over a regu- 
lar region. Fig. 2 shows that for a 2D problem, the grid size is 
m x n with a 5-star discretization stencil; and for a 3D prob- 
lem, a grid of size m x n x p is used with a 7-star stencil. The 
discretization leads to 2D and 3D grids in Fig. 3, with the grid 
points numbered in a natural ordering and each grid point re- 
ferred to by its coordinates. These problems are referred to as 
the model problems with N = mn and N = mnp, respectively. 
The resulting coefficient matrix A is sparse. Since the model 
problems have regular structures, any one of the storage for- 
mats discussed in the previous section can be used. 

A difference between the model problems and real PDE 
problems is that the coefficients in the stencil are randomly gen- 
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(a) 5-star stencil (b) 7-star stencil 

Fig. 2. Stencils used for discretizing 2D and 3D differential operators. 

erated positive numbers between 0 and 1. A ramification is that 
the corresponding matrices are made neither M-matrix' nor di- 
agonally dominant. However, the model problems capture the 
essence of asymmetric PDE problems for which GCG methods 
are used, such as the CG method applied to normal equations 
(CGNR) and the biconjugate-gradient (BCG) methods. 

These methods were shown to be suitable in solving differ- 
ent types of linear systems [18]. In particular, since CGNR 
solves the normal equation ATAu = ATf by a conjugate gradient 
method, the rate of convergence is determined by the singular 
values of matrix A .  Algorithms 1 and 2 show the computation 
steps of CGNR and BCG methods for solving the linear sys- 
tem Au =f. One important property of CGNR method is that it 
converges monotonically for any nonsingular coefficient ma- 
trix. These two methods are specified below: 

(a) An 8x8 square grid 

(b) A 4x4~4 cubic gnd Algorithm 1 (CGNR method) 

1. Initialization: Choose uo as an initial guess and compute 
ro =f- Auo and po = ATrO. 

2. For k = 0, 1, 2, ... until convergence do 

Fig. 3. 2D and 3D grids resulting from finite-difference discretization. Each 
point is referenced by its coordinates (I; s) in a 2D grid and (r,  s, r) in a 3D 
grid, respectively. 

COmpUte ak = (AT rk, AT rk) / (Apk, Apk). 
0 Update solution vector uk+l= Uk + ak Pk. 

0 Compute residual rk+l = rk - ak A Pk. 

0 Compute p k  = (AT rk+l, AT rk+l) / (AT rk, AT rk). 
0 Update direction vector pk+l= rk+l + p k  P k .  

111. REDUCTION AND EXTENSION OPERATIONS 

Both CGNR and BCG involve the multiplication of vec- 
tors by a matrix A and its transpose AT. Performing both 
multiplications in the same algorithm is rather inefficient. 

Algorithm 2 (Biconjugate gradient method) Suppose v is an N x 1 column vector. AV is a reduction op- 
eration in which two vectors are combined to generate a 
single scalar quantity. On the contrary, the operation ATv is 
an extension operation whereby fhe action of a scalar quan- 
tity can affect the values of several others. The concept is 
illustrated in Fig. 4. 

1. Initialization: Choose uo as an initial guess and compute 
r o = r g * = p O = p ~ = f - A u O .  

2. For k = 0, 1 ,2  ,... until convergence do 
compute a k = ( p k , p i ) / ( p k , A p i ) .  

0 Update solution vector U k + l =  uk + ak Pk. 
n n 

Compute residual vectors rk+' = rk - akAPk and 
* *  

rk+l =rk - a k A T p i .  

Compute P k  = ( r k + , , r ~ + l ) l ( i k . r ~ ) .  

Update direction vectors pk+l = rk+l + p k  Pk and 
* *  

P k + l  =rk+l  + P k P k * .  

1 .  A matrix is an M-matrix if all the diagonal elements are positive, all the 
nonzero off-diagonal elements are negative, and all the elements of its inverse 
are positive. 

Fig. 4. Reduction and extension operations for a 2D grid. 
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The two matrix multiplication operations form a duality. 
The reduction and extension nature of the operations can be 
reversed, depending on the storage scheme used. For instance, 
if a columnwise storage scheme is used, the operation ATv is a 
reduction operation and AV is an extension operation. In con- 
trast, AV is a reduction and ATv an extension if a rowwise for- 
mat is used. 

The basic operation in the matrix-vector multiplication 
U = AV is shown below, where U and v are column vectors of 
length A? 

Zi 

ui = c A , v j ,  (2) 
j=1 

where Zi is the number of nonzero elements in row i of A .  
Similarly, the basic step in the operation U = ATv is 

z, Zi 

j=1 j = l  
u . ,C~TV.=C~. . v . .  IJ I I 1  I (3) 

It is convenient to interchange the subscripts in (3) and re- 
write it as 

u j  = x A i j v i .  (4) 
i=l 

The two types of multiplications are specified below in the 
rowwise storage format: 
operation U = AV: 

For i = 1 to N do 
Operation U = Atv: 

For i = 1 to N do 
For j = S ( i )  to S ( i + l )  - 1 do For j = S ( i )  to S(itl) - 1 do 
u(i) = u ( i )  + V C j )  * v(J(j)) u ( J ( j ) )  = u(J(j)) + V ( j )  * v ( i )  

hddo hddo 
Enddo hddo 

Consider the operation ATv in the rowwise storage format. 
The code consists of an outer loop indexed by i and an inner 
loop indexed byj .  At compile time, it is impossible to know 
the value of J (  j )  for a particular combination of i and j .  There- 
fore, the code is not optimized for parallel execution. How- 
ever, since the vector v is read-only, the element access order 
is irrelevant. Moreover, for the model problem each J( j )  cor- 
responds to one of the neighbors of the grid point indexed by i. 
Hence, the values of J(  j )  are all different for a given i. Conse- 
quently, it is permissible to carry out concurrent update opera- 
tions in the inner loop. This will be referred to as concurrent 
inner (CI) mode of operation. Many systems provide compiler 
directives to assist the compiler in generating appropriate code 
for execution in this mode. 

Different combinations of i and j may lead to the same value 
of J( j ) .  This is an example of the aliasing problem in which two 
logical items refer to the same physical entity. For the model 
PDE problem, the aliasing problem can occur at adjacent grid 
points. Thus, if two iterations in the outer loop are allowed to 
proceed concurrently, they will create a write-after-write 
(WAW) hazard condition [12]. The WAW hazard implies po- 
tential access conflicts in the shared memory. This mode of exe- 
cution is termed concurrent outer (CO) mode. The hazard is 
likely to deteriorate the performance of the GCG algorithms. In 
Table I and Fig. 5, we show the execution times of the AV opera- 
tion and the residual norm for the first few iterations when 
CGNR method is used to solve a 2D model problem. 

The sequential execution time was obtained on a single 
processor running in scalar mode, and the parallel execution 
time is obtained on a 4-processor Alliant FW80 cluster with 
vector processing enabled. The curve for the sequential and CI 
mode shows a monotonic decrease in the residual norm as re- 
quired of the CGNR method, whereas that for the CO mode 
shows a slower convergence at first and then diverges. The 
hazard condition observed for rowwise format also exists for 
the diagonal storage format. Therefore, it is not always possi- 
ble to get rid of the hazard conditions by merely choosing a 
different storage scheme. 

TABLE I 
SEQUENTIAL AND PARALLEL EXECUTION TIME (IN msec) OF U = ATV 

USING THE ROWWISE STORAGE FORMAT 

w. MUL~COLORING OF A 2D GRID 

To improve parallel performance while avoiding the hazard 
conditions, a coloring technique is devised. Define the range 
(or output set) RJr, of an operation on an index src as the set of 
points whose values are affected by the operation. From the 
perspective of the outer loop in the code in a 2D extension 
operation, the range consists of the five grid points in the 
neighborhood of the point corresponding to index i. In this 
case, the range of a grid point coincides with the discretization 
stencil centered at it. 

To circumvent the concurrent write conflicts, it is important to 
avoid simultaneous operations at grid points whose ranges inter- 
sect with each other. In other words, two grid points indexed by 
il and i2 can be updated simultaneously only if RII n Ri2 = 4. 
This is Bemstein’s third condition for parallel processing [3]. 

5 

Sequential and CI modes 

0.5 

1 2  3 4 5 6 7 8 9 10 

CGNR Iterations 

Fig. 5. Value of the residual norm (r,  r) for the first 10 CGNR iterations in 
two execution modes. 
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Since the range of a grid point is a 5-star stencil centered at 
point (r ,  s), a two-coloring scheme does not work. Suppose 
two points P at ( r l ,  S I )  and Q at (1-2, s2) have the same color. 
Then an examination of their ranges indicates that the coordi- 
nates must satisfy the condition: 

(5) lr1 - rzl + Is1 - szl 2 3 

in order to update P and Q concurrently. Graphically, a rhom- 
bic region surrounding point P can be drawn, which is referred 
to as the tuifof point P ,  denoted %. Equation (5)  requires that 
no other point in ?; be allowed to have the same color as P .  
The turf associated with a point always contains the range of 
the point in an extension operation. Consequently, none of the 
neighbors of a grid point will have the same color as it. 

Clearly, a 9-coloring scheme, in which grid points sepa- 
rated by a distance of 3 along each coordinate have the same 
color, satisfies ( 5 ) .  More compact 6-coloring and 5-coloring 
schemes are also allowed. With 6-coloring, points in the 
same color are separated by 3 in the horizontal direction and 
by 2 in the vertical direction. Fig. 6d shows that a 4-coloring 
scheme, in which points separated by a distance of 4 in one 
direction and 1 in the other are assigned the same color, 
gives rise to a write hazard. 

Fig. 6. Four coloring schemes with different numbers of colors. Each stencil 
shows the ranges of grid points of the same color. The coloring schemes in 
(a), (b), and (c) are valid, while the scheme in (d) is invalid. 

From the diagrams in Fig. 6, it is easy to determine the set 
of points of the same color. It is also easy to label the color of 
a grid point from its coordinates. For instance, in the 9- 
coloring scheme, the color of a point at ( r ,  s) is numbered by 
3(s mod 3) + r mod 3. In the case of 5-coloring, the same point 
is painted in color number (3s + r )  mod 5 .  For the 6-coloring 
scheme, we have the following color pattern selection rules: 

2-+(4,5, 6) 
3 4 3 , 1 9 2 )  

smod4= 

One of the patterns to the right of the arrow is chosen accord- 
ing to the the value of (s mod 4). The pattern selection process 
is repeated until all points on a line s are labeled. In practice, 
the assignment of colors can be carried out performed in paral- 
lel. Fig. 7 shows the color of each grid point on a 9 x 8 grid. 
The turfs associated with two points (circled) in the grid are 
indicated. 

1 2 3 1  

4 5 6 4  

3 1 2 3  

6 4 5 6  

2 3 1 2  

Fig. 7. Color assignment on a 9 x 8 grid using a 6-coloring scheme. Each 
rhombic area represents the turf of a circled point. 

Using the 6-coloring, we obtain the timing results shown in 
the last column of Table I. It is useful to compare the results 
with those of the CI and CO modes. As the problem size in- 
creases, the performance of the 6-coloring scheme improves 
steadily relative to that of the concurrent outer mode. This is 
evident from the fact that the number of grid points of each 
color is larger and thus concurrent processing is more feasible 
with a higher degree of parallelism. CI mode shows a little 
improvement in speedup because of limited parallelism. 

v. MULTICOLORING OF A 3D GRID 

For a 3D grid using 7-star discretization stencils, we expect 
seven colors to be sufficient for avoiding the concurrent write 
conflicts. The geometric rendition useful for 2D grids is diffi- 
cult to depict for a 3D grid. In the following, we describe an 
algebraic approach to coloring and illustrate the idea with a 
seven-color scheme. 

We formulate a coloring scheme as a linear mapping M de- 
noted by a 3-tuple ( ml ,  m2, m3 ). M assigns color c to a grid 
point at ( r ,  s, t )  using the following formula: 

c = (mlr + mzs + m3t) mod 7 ,  1 I ml ,  mz, m3 5 6 .  (6) 
These integers ml, m2, m3 are the weights in the mapping. In 
general, once the number of colors is fixed, a coloring scheme 
is uniquely determined by the weights used. 

Conceptually, a valid coloring can be determined by 
searching a state space comprising various combinations of the 
weights. For 7-coloring, there is a total of 63 = 216 possible 
states. An exhaustive search for valid combinations is tedious. 
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Since our concern is to divide grid points by different colors 
and color assignment is invariant with regard to coordinates, 
the number of distinct mappings is much smaller. In fact, using 
this coordinate-invariance property, we can reduce the number 
of distinct mappings to 56. In general, for a 6-coloring scheme, 
(b  - l)b(b + 1) / 6 distinct combinations are obtained after the 
invariance property is applied. For large 6, exhaustive search 
is very time-consuming. Therefore, it is desirable to determine 
valid mappings systematically. To this end, we introduce the 
concept of equivalent mappings. 

DEFINITION 1. Two mappings are equivalent f two grid points 
assigned the same color c1 by the first mapping are 
assigned the same color c2 by the second mapping. 

Formally, mappings M 1  and M2 are equivalent if for any i f 
j ,  Ml(ri, si, ti) = CI, Ml(rj, si, 4) = c1, and M2(ri, si, ti) = c2, then 
M2(rj, si, 4) = c2. 

The equivalence relation can be used to partition the state 
space into equivalence classes. The concept is illustrated in 
Fig. 8. Equivalent mappings allow us to search for the repre- 
sentative state in each partition instead of inspecting a11 the 
individual states, thereby reducing the amount of search time 
required. Based on the above definition, we derive the follow- 
ing results: 

Fig. 8. Partition of the state space into  equivalence^ classes. The dot in each 
class stands for the representative mapping in that class. 

LEMMA 

PROOF. 

1. Suppose a mapping MI is defined by the 3-tuple 
( mI, m2, m3 ) and another mapping M2 by ( Sml, Sm2, 
Sm3 ) with a scaling factor S where 1 5 S I 6. Then 
the mappings M I  and M2 are equivalent. 

Suppose Mdrl, 51,  tl) = C I ,  Ml(r2, SZ, t2) = CI,  and 
M3(~1, SI, t l )  = CZ.  That is, 

(mlrl + m2s1 + m3t1) mod 7 = c1, 

(mlr2 + m2s2 + m3t2) mod 7 = c I ,  

S(mlr2 + m2s2 + m3tz) mod 7 = c2. 
From the above equations, we have 

[(mlrl + m2s1 + m3tl) - (mlr2 + m2sz + m&)l mod 7 = 0. 

Hence, 

S[(mlrl + nz2sl + m3t1) - (mlrz + m2s2 + m3tz)] mod 7 = 0. 

Therefore, 
S(mlrl + m2sl + m3tl) mod 7 = S(mlr2 + m2s2 + m3tz) mod 7 ,  

which establishes the equivalence relation. U 
THEOREM 1. Suppose a mapping MI is defined by the 3-tuple 

( ml, m2 m3 ) and another mapping Mz by ( Sml mod 
7, Sm2 mod 7 ,  Sm3 mod 7 ) where 1 5 S I 6. Then the 
two mappings M1 and M2 are equivalent. 

PROOF. First observe the relation 

Smlr2 mod 7 = (Sml mod 7)rz mod 7, 
follows Sml = L S ml / 7 1 x 7 + (Sml) mod 7. 
Similarly, 

Sm2s2 mod 7 = (Smz mod 7)s2 mod 7, 

and 

Smst2 mod 7 = (Sm3 mod 7)tz mod 7. 
Hence, by Lemma 1, 

[(Sml mod 7)rz + (Smz mod 7)sz + (Sm3 mod 7)tz] mod 7 

= (Smlrz + Sm2s2 + Sm&) mod 7 

= c2. U 
COROLLARY 1. In 7-coloring, the mappings ( Sml, Sm2, Sm3 ) 

For instance, mappings ( 1, 1, 2 ), ( 2, 2, 4 ), ( 3, 3, 6 ), 
{ 4, 4, 1 ), { 5 ,  5 ,  3 ), and ( 6, 6, 5 ) are all equivalent, and 
( I ,  1, 2 ) is said to cover the other equivalent mappings. By 
the equivalence theorem, the number of unique mappings can 
be reduced to 22. Compared to the original 216 possible com- 
binations, the reduction in complexity is significant, which 
makes the search for legitimate coloring schemes much less 
expensive. The set comprising the unique mappings is called 
the minimum cover set. 

In the 3-tuple notation, the minimum cover set for 7- 
coloring consists of the following mappings: ( 1, 1, 1 ), 
( 1, 1, 1 ), { 1, 1 ,2  ), ( 1, 1, 3 ), ( 1, 1 , 4  ), ( 1, 1,s ), ( 1, 1, 6 ), 
( 1,2, 3 ), ( L 2 , 4  ), < 1, 2,s ), ( 1, 2, 6 ), ( 1, 3,4 ), ( 1, 3, 5 >, 
( 1, 3 ,6  >, ( L 4 , 5  ), ( 1,4, 6 >, ( 1,5, 6 ), ( 2, 3 , 4  ), ( 2,  3 ,  6 ), 
( 2 ,5 ,6  ), ( 3 ,4 ,5  ), ( 3,4, 6 ), and ( 3,5, 6 ). 

However, not all 22 mappings lead to valid colorings which 
can prevent concurrent write conflicts. For example, Fig. 9 
shows the values of the residual norm as a function of CGNR 
iterations applied to a 3D grid when the mapping { 1, 1 ,  1 ) is 
used to color the grid points. Four processors are used in the 
execution. Obviously, the mapping is not valid for parallel 
processing. 

Thus, the final step in the coloring process is to determine 
the valid mappings in the minimum cover set by eliminating 
the invalid mappings from the set. For this purpose, we resort 
to a combination of geometric and algebraic approaches. 
Similar to the 2D case, the turf of a grid point P at (r, s, t )  is a 
rhomboid with a side length of 3 surrounding P; i.e., it is de- 
fined by the following inequality: 

for  S = 1, 2, 3, 4, 5, 6 are all equivalent. 

~ = { Q : I A r l + I A s l + l A t l ~ 2 } ,  (7)  
where A stands for the distance along each direction between 
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6 

2 4 6 8 10 12 14 16 18 20 

CGNR Iterations 

Fig. 9. Residual norm versus CGNR iterations in parallel execution with the 
use of ( 1, 1,  1 ) 7-coloring scheme. 

point P and another point Q in the 3D grid. Any other grid 
point in $ is not allowed to have the same color as P. 

From the definition of color mapping, the distance between 
two grid points of the same color satisfies the condition: 

(8) (ml A r + m2 A s + m3 A t )  mod 7 = 0. 

Hence, the goal is to find values of ml, m2, and m3 such that any 
point Q E x, Q # P will have a different color than P. From (7), a 
point in $ other than P satisfies one of the following conditions: 

One of IA rl, IA S I ,  IA tl is 2, the others are 0; 
One of IA rl, IA S I ,  IA tl is 1, the others are 0; 
Two of IA rl, IA SI, IA tl are 1, the third is 0. 

In the first two cases, since 1 I ml, m2, m3 I 6, the condition 
in (8) is violated, hence Q and P will have different colors. In 
the last case, (8) is satisfied only if 

(9) 

(10) 

A direct consequence of (10) is that any coloring scheme with 
two or more identical weights will lead to WAW conflicts and 
should be eliminated from the minimum cover set. Likewise, 
mappings with two weights that add up to 7 are also prohib- 
ited. Based on these criteria, only five coloring schemes, 
( 1 , 2 , 3  >, ( 1 , 2 , 4  >, ( 1, 3 , 5  ), ( 2, 3, 6 >, and ( 3,5,  6 >, and 
their equivalent mappings produce the valid 7-colorings. 

Although the foregoing discussion was focused on 7- 
coloring applied to a 3D grid, more general rules can be for- 
mulated for a b-coloring scheme when a 5-star or 7-star stencil 
is used on a 2D or 3D grid, respectively. Let ( m,, .._, md ) be 
the coloring scheme where d = 2 or 3. We have the following 
set of rules on the selection of the weights: 

(m, -c m,) mod 7 = 0 for i # j .  

m, = m, or m, + m, = 7 for i # j .  

Because 1 I m, I 6, the condition (9) holds if 

1) 0 I m, S b for all i. 
2) 2 m, # b for all i .  
3)m,+m,#b, 1 < i , j S d .  
4) m, # m,, 1 I i, j I d. 

Based on these rules, it is straightforward to determine valid 
choices for the weights. Moreover, using these rules, we can 
show that neither 4-coloring for a 2D grid nor 6-coloring for a 
3D grid is valid. For instance, if 6-coloring is applied to a 3D 
grid, the possible choices for any of the three weights are from 
1 to 5. Value 3 is disallowed since it violates rule 2. The num- 
bers 1 and 5 cannot appear together since rule 3 will be vio- 
lated, neither can 2 and 4. Also, rule 4 prohibits any number 
from being chosen more than once. Thus, it is impossible to 
form any legitimate 3-tuple, and hence 6-coloring is not feasi- 
ble. Consequently, 5 and 7 are the minimum numbers of colors 
needed for 2D and 3D grids, respectively. The results are con- 
sistent with intuitive reasoning. Aside from theoretical interest, 
larger values of b may have practical applications. For exam- 
ple, in some memory interleaving schemes, b can be chosen to 
improve memory-access efficiency. 

The above rules reflect the similarity in the way turfs for 
5- and 7-star stencils are constructed. For different stencils, 
such as the 9-point stencil used in 2D PDEs with mixed dif- 
ferential terms, these rules need to be modified. Fig. 10 
shows the range and turf of a grid point on a 2D grid when a 
9-point stencil is used. 

0 0 0 0 0  

o b  0 40 
0 0 0 0 0  

0 0 0 0 0  

0 0 0 0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

Fig. 10. The range and turf associated with a grid point in a 2D grid generated 
by a 9-point stencil. 

VI. MULTICOLORING AND THE DDB MATRICES 

Because of the periodicity of the modulus operation used in 
the multicoloring, the grid points are uniformly distributed 
among the colors for a regular grid with a sufficiently large 
number of grid points. For instance, if b colors are used on a 
2D grid with m x n grid points, the number of grid points in 
each color will be r mn / b 1 for the first (mn mod b)  colors and 
L mn / b 1 for the remaining colors. 

Furthermore, matrices resulting from the use of multicolor- 
ing have a diagonal diagonal block (DDB) structure [21]. The 
grid points are numbered according to the colors. We number 
the grid points of color 1 first, followed by all grid points of 
color 2, and so on. Within each color, the grid points are num- 
bered by natural ordering. This numbering scheme assigns to 
each grid point a unique number. As a result, the grid points 
are partitioned into disjoint sets denoted by G, for 1 I c I b. 
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Consider a 2D grid. We denote the color of a grid point 
(r,  s) by C(r, s) and its order in the coloring scheme by 
order(r, s). Fig. 1 l a  shows the color of each grid point in the 
5-coloring of an 8 x 8 grid by the mapping { 1, 3 ) : 

C(r, s)  = (r  + 3s) mod 5. (1 1) 
There are 13 grid points of colors 1, 2, 4, and 5 each, and 12 
points of color 3. This reflects a uniform distribution property. 
Fig. l l b  shows the ordering of the grid points corresponding 
to the coloring. 

4 2  
5 3  
1 4  
2 5  
3 1  
4 2  
5 3  
1 4  

5 3 1 4 2 5  
1 4 2 5 3 1  
2 5 3 1 4 2  
3 1 4 2 5 3  
4 2 5 3 1 4  
5 3 1 4 2 5  
1 4 2 5 3 1  
2 5 3 1 4 2  
(a) Coloring of grid points 

more than two colors, multicoloring has been used to repre- 
sent the class of general coloring schemes leading to matri- 
ces with DDB structure [21]. In light of this, our use of the 
term is consistent with the convention. 

39 14 52 27 1 40 15 53 
54 28 2 41 16 55 29 3 
4 42 17 56 30 5 43 18 
19 57 31 6 44 20 58 32 
33 7 45 21 59 34 8 46 
47 22 60 35 9 48 23 61 
62 36 10 49 24 63 37 11 
12 50 25 64 38 13 51 26 

(b) Ordering of grid points 

Fig. 11. The color of each grid point using a 5-coloring scheme defined by the map- 
ping (1,3) and the ordering of grid points based on the coloring scheme used. 

The DDB property essentially states that each diagonal 
block corresponding to a group G, of grid points should be 
diagonal. The following theorem is used to test whether a ma- 
trix satisfies the DDB property. 

THEOREM 2. A matrix A satisfies the DDB property, if and 
only i f for  any grid point P E G, noYte of its neigh- 
bors in the stencil belongs to the same set G, 

PROOF. Consider a diagonal block submatrix A, corresponding 
to the grid points in G, for any c in the range of 1 
through b. If there is a grid point of which at least one 
neighbor also belongs to G,, then there is a nonzero 
off-diagonal element in A, in the row corresponding 
to the grid point. Hence, A, is not diagonal. There- 
fore, if A is DDB, then the condition must hold. 

Conversely, if the condition holds, then there is no 
off-diagonal nonzero element in any of the diagonal 
block matrices A, for any color c. Therefore, each of 
the diagonal block matrices is diagonal. Thus, A has a 
DDB structure. A similar proof can be found in [ZO]. 

For 2D and 3D grids, the neighbors of a grid point are all 
in different colors than it. Therefore, the DDB property is 
satisfied with the use of the multicoloring technique. In Fig. 
12, we show the coefficient matrix corresponding to the grid 
in Fig. 11. Each plus sign "+" in the diagram represents a 
nonzero element in the matrix. Clearly, the matrix satisfies 
the DDB property. Besides the implied meaning of using 

Fig. 12. The matrix resulting from the ordering shown in Fig. 1 Ib. 

The DDB structure has an important application in parallel 
processing of preconditioned conjugate gradient algorithms. In 
particular, it is very useful in parallel implementation of pre- 
conditioners based on incomplete LU decomposition of the co- 
efficient matrix [6], [9], [16]. The idea is to use a lower triangu- 
lar matrix L and an upper triangular matrix U, both of which 
have the same sparsity structure as the corresponding parts of the 
coefficient matrix A. Since A has a DDB structure, both L and U 
also have DDB structure. This eliminates a major bottleneck in 
the forward and backward sweeps during the solution of the pre- 
conditioner system, making the sweeps more parallelizable. 

In summary, we have proved the DDB matrices can be ob- 
tained by multicoloring. This transformation is useful in paral- 
lel computation of the preconditioning steps. In conjugate 
gradient methods, preconditioning is an integral part of these 
algorithms. In fact, preconditioning can be used to signifi- 
cantly improve the convergence rate of the CG algorithms [4]. 
Thus, in addition to our original goal of resolving the concur- 
rent write conflicts in extension type of operations, the multi- 
coloring technique can also be used to improve the parallel 
performance of preconditioning operations. 

vn. NUMERICAL RESULTS AND ANALYSIS 

Numerical experiments have been conducted on an Alliant 
FW80 multiprocessor with shared memory. The machine has a 
memory hierarchy consisting of cache and main memory. The 
cache serves a small-capacity, fast-access buffer storage. The 
system also provides compiler directives to facilitate parallel 
execution and vectorization [2]. 

We test the model problems described in Section 11. Only 
the performance data for matrix-vector multiplications are 
collected and expressed in Mflops (Millions of floating-point 
operations per second). The 5-star and 7-star stencils are used 
for 2D and 3D grids, respectively. 
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The total number of nonzero elements in the coefficient 
matrix equals 5mn - 2(m + n) on an m x n 2D grid and equals 
7mnp - 2(mn + mp + np) on an m x n x p 3D grid. For each 
element, two arithmetic operations, one multiplication and one 
addition, are performed. Therefore, the number of floating- 
point operations equals 1Omn - 4(m + n)  and 14mnp - 4(mn + 
mp + np) for 2D and 3D model problems, respectively. This 
information together with the execution time allows us to esti- 
mate the Mflops rate. 

Processing at grid points proceeds by colors. The colors 
define synchronization points for parallel processing. In other 
words, all grid points of the same color must have been proc- 
essed before those of the next color are processed. This allows 
us to define the degree of parallelism (DOP) as the number of 
grid points that can be operated upon simultaneously without 
causing instability to the algorithms used. For the extension 
operation, the DOP is equal to the number of grid points di- 
vided by b when a b-coloring scheme is used. DOP represents 
the software or algorithmic parallelism. When the algorithm is 
executed on an Alliant FW80, the software parallelism must 
match match hardware parallelism which is a combination of 
pipelined vector processing within each processor and concur- 
rent processing across multiple processors. Color assignment 
is performed only once at the beginning with the color infor- 
mation stored for subsequent runs of the PDE solvers. 

The performance of matrix-vector operations depends on 
the problem size and the machine size. In general, we expect 
the performance to improve with an increasing number of grid 
points, since a higher degree of parallelism is expected. Like- 
wise, when hardware parallelism is increased by the use of 
more processors, performance should improve accordingly. 
But certain hardware constraints may limit the speedup from 
grid size increase. 

A. Measured Mflops Performance 

In Fig. 13 we show the measured Mflops as a function of 
the number of processors for two grid sizes, 63 x 63 and 31 x 
31 x 31, respectively. Vector processing is enabled in all 
cases. In each figure, solid curves represent results using the 
diagonal storage format and dashed curves correspond to re- 
sults using the rowwise format. Clearly, with the increase in 
hardware parallelism, the Mflops rate increases monotonically. 
Multicoloring has generated sufficient parallelism to utilize the 
multiprocessor resources. 

Fig. 14 shows the Mflops rates obtained in extension opera- 
tions using 8 processors for different grid sizes. Parallelism 
exploited increases initially with respect to the number of grid 
points in each dimension. When the grid size is small, there 
exists a mismatch between hardware and software parallelism. 
Hence the Mflops rate is moderate. As the grid size increases, 
the Mflops rate improves rapidly with both storage formats. 
However, when the grid size increases beyond some threshold 
value, the Mflops rate drops sharply. The effect is attributed to 
the fact that the storage space requirement of a large grid ex- 
ceeds the cache capacity. This phenomenon is referred to as 
cache saturation. 

With a 2D grid, the Mflops rate increases to a maximum 
value for a square grid of size 63 x 63 (Fig. 14a). This grid size 

reaches the limit of the cache capacity used in the 8-processor 
system. Beyond the cache saturation point, the dropping in speed 
performance is due to excessive cache miss penalties experi- 
enced in the Alliant FW8O multiprocessor system. The same 
cache becomes saturated for a 3D grid of size 15 x 15 x 15 as 
shown in Fig. 14b. The cache block size also affects the cache 
miss ratio in addition to the effect of total cache capacity. 

I 5 

4.s- 

0 . 5 1 I J I I  

2 3 4 5 6 7 8  2 1 4 5 6 7  

Number of proetsors Number of processors 

(a) A 63 x 63 grid (b)A31x31x3lgrid 

Fig. 13. Mflops achieved with up to eight processors in the Alliant FX/80. 

7 t  
Diagonal 

~ 

I I I I  
I 

8 16 32 64 I28 256 8 I6 32 64 
Number of grid points in each dimension Number of grid poinu in each dimensio 

(a) 2D square grids (b) 3D cubic grids 

Fig. 14. The Mflops rate achieved with different grid sizes using an Alliant 
multiprocessor with eight processors. 

When cache saturation takes place, data have to be loaded 
from main memory frequently, prompting the replacement of 
those already residing in the cache. This data thrashing slows 
down parallel processing considerably. Indeed, at the onset of 
cache saturation, the time spent on memory access may domi- 
nate the overall execution time. A possible way to overcome 
the difficulty of cache saturation is to apply strip mining or 
tiling [25], a technique used to improve the reuse of a data 
item once they are are brought into the cache instead of reload- 
ing the same data from the main memory repeatedly. 

Fig. 15 shows the variation of Mflops rates as a function of the 
gnd size when 3-coloring is used with the rowwise storage format. 
There is a general trend of a declining Mflops rate with an increas- 
ing grid size. All of these grid sizes exceeded the cache limit. The 
fluctuation is caused by variations of cache misses when data items 
are fetched across cache block boundaries. The envelope of the 
fluctuating curve in Fig. 15 shows a steadily declining perform- 
ance as the grid size becomes larger. 
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7 X 7 X 7  
1 5 x  1 5 x  15 
31 X31 X31 
63 X 63 X 63 

80 90 100 110 120 130 140 150 

Number of points on each side of a square grid 

Fig 15. The Mflops rate versus the grid size illustrating the effect of cache 
saturation on the multiprocessor performance. 

3.97 3.53 
7.37 6.14 
5.16 4.12 
4.44 3.70 

The idea of strip mining is to divide the long vectors into 
shorter strips to better fit vector registers or the cache memory. 
In fact, strip mining can be realized by using a larger number 
of colors. In Fig. 16, we show the Mflops rates obtained for a 
2D grid with 255 x 255 points using various numbers of colors 
defined by the mapping ( r  + 2s) mod b where b is the number 
of colors used. 

The curve in Fig. 16 shows that the Mflops rate improves 
when the number of colors increases. With more colors, both 
the source and destination vectors are divided into more seg- 
ments which are loaded to the same vector registers or to the 
same cache blocks This will reduce the detrimental effect of 
data thrashing. 

If the number of colors is large, the number of grid points of 
each color becomes smaller and the degree of parallelism 
dwindles. The choice of a proper number of colors depends on 
the size of grids. The general rule is to strike a balance be- 
tween maintaining a high degree of parallelism and ameliorat- 
ing the damaging effect of data thrashing. The balanced choice 
of the number of colors is affected by the grid size, the cache 
capacity, the cache block size, write-back or write-through 
caches used, and the level-2 cache size being shared. Contin- 
ued research is needed to optimize the grid sizes for different 
cache sizes. We conjecture that the performance would scale 
up if the cache size were unlimited. 

B. Comparison With Saad's Results 

We compare our results with those reported by Saad in [21] 
for AV operation using the columnwise storage scheme. Table 
I1 lists the Mflops rates from our experiments. Their results 
were obtained on a similar Alliant FX80 with 8 processors. 
The same software environment was used in our experiments. 
Our results show an improvement factor of more than 30 over 
the Mflops rate obtained by Saad on an identical Alliant FW80 
multiprocessor. Checking the last column of Table 11, we also 
observe the better scalability with respect to the increase in 
grid size before the cache is saturated. 

5 -  

4.8 - 

B 
8 E 4.6 - 
c 
-3 

2 4.4 - 

4.2 ~ 

4 -  

3.8 - 

I 
20 40 60 80 100 120 

3.6' 

Numbers of colors 

Fig. 16. The Mflops rate versus the number of colors assigned. 

TABLE I1 
COMPMSON OF MF'LOPS RATES FOR THE AV MULTIPLICATION 

AS EXTENSION OPERATIONS 

C. Reduction and Extension Operations 

Finally, we compare the performance results of reduction 
and extension operations using the same storage format. Table 
111 shows the Mflops rates for the operations AV and ATv re- 
spectively using the diagonal storage format. The results were 
obtained for a 3D grid on 8 processors with vector processing. 
In all cases, the reduction operation outperforms the extension 
operation by a factor of 10% to 20%. The difference may be 
attributed to the higher DOP in the reduction operation and the 
need for extra memory accesses to retrieve the color informa- 
tion in extension operations. 

TABLE 111 
MFLOPS RATES FOR REDUCTION AND EXTENSION OPERATIONS 

I Grid size I AV 1 ATv 1 

VIII. CONCLUSIONS 

Shared-memory access conflicts may badly slow down grid- 
structured PDE solvers on a symmetric multiprocessor. What 
we have developed is a simple coloring approach that elimi- 
nates potential memory conflicts in solving PDE problems. 
The main contribution of this paper is to provide a systematic 
method for parallelizing sparse matrix-vector multiplications. 
Thus, the multicoloring technique offers a useful tool for par- 
titioning grid-structured data elements for efficient parallel 
processing on a shared-memory multiprocessor. 
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We have characterized matrix-vector multiplications as re- 
duction and extension operations depending on the sparse ma- 
trix storage scheme used. For extension operations, concurrent 
writes can diverge the numerical algorithm. The multicoloring 
technique can effectively avoid memory-access hazard condi- 
tions and improve the multiprocessor performance. The intro- 
duction of ranges and turfs reveals the memory hazard condi- 
tions and suggests methods for their avoidance. 

By recasting multicoloring in an algebraic mapping setting, a 
systematic approach has been derived to assign colors to grid 
points in a straightforward manner. Using this method, we obtain 
improved performance far superior to those without coloring. 
Another advantage of the multicoloring scheme is that it imposes 
very little overhead compared to other parallelization techniques. 
The property ensures a high quality of parallel computation [ 121, 
[ 141 with the proposed coloring technique. 

To be precise, two types of overhead are incurred: one with 
the determination of colors for individual grid points, and the 
other for the access of color information during execution. 
Both costs are negligible compared to the main computations 
involved in the PDE algorithm. The low overhead associated 
with our approach makes it attractive for implementation on 
real multiprocessors. 

The proposed multicoloring scheme can transform a charac- 
teristic matrix into one with the desirable DDB structure, 
making it suitable for parallel preconditioning in CG-like PDE 
methods. By numbering the grid points according to their col- 
ors and coordinates rather than by coordinates alone (as in 
natural ordering), we have developed a method for obtaining 
DDB matrices. The proposed multicoloring can be generalized 
to parallelize any grid-structured sparse-matrix problems such 
as those used in large database manipulation and general sci- 
entific simulation modeling. 
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