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Abstract- We demonstrate that by adding a time-domain 
window function to the recently developed Fourier series analysis 
technique can reduce the propagation error in solving the non- 
linear soliton propagation equation. With suitable modification 
of window function parameters, the number of sampling points 
as well as computational time required for the calculation can 
be minimized even with higher order dispersion terms taken into 
consideration. 

NTENSIVE RESEARCH work has been carried out to 
study the enormous potential of using soliton in long- 

haul communication since the first successful demonstration of 
using optical soliton in dielectric fiber [l]. Split-step Fourier 
method (SSFM) [2] is the commonly used numerical technique 
to study the propagation of solitons in an optical fiber. Apart 
from this method, a general Fourier series analysis technique 
(FSAT) is also developed [3] to analyze the soliton propagation 
behavior. The main advantage of FSAT over SSFM is that 
much fewer sampling points are required to calculate the same 
problem. However, the manipulation efficiency of FSAT is 
limited if the higher order dispersion is taken into account. 
In this letter, we propose a time-domain window function 
(TDWF) to enhance the performance of FSAT. The effects 
of higher order dispersion are considered and the results are 
compared with the original FSAT (without TDWF). 

The general soliton equation, which includes fiber loss, 
higher order dispersive, and nonlinear effects, can be expressed 
as follows [4]: 

d u  - 1 d 2 u  d3U dJU12U --j--+B-----C- 
dx 2 d T 2  dT3 dT  

where u ( z , T )  is the normalized complex amplitude of the 
soliton pulse, z represents the normalized distance along 
the direction of propagation, T represents the normalized 
time, B is the third-order dispersion coefficient, r is the 
normalized loss factor, and C and TR are higher order non- 
linear coefficients. The first and second terms on the right- 
hand side of (1) are, respectively, the second- and third- 
order group velocity dispersions. The third to fifth terms are 
nonlinear terms governing the effects of self-steeping, retarded 
nonlinear response and self-phase modulation. The last term 
is the attenuation term corresponding to the fiber loss. By 
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transforming (1) into another form of expression through 
the FSAT, we obtained a set of 2 N f  1 first-order partial 
differential equations 

linear term 

Vu-v+X=n 

nonlinear term 

- jCEn fi,(z)fi?(z)iim(.) 
Vk-Z+m=n 

nonlinear term 

vp+q=n 
\ " / 

nonlinear term 

where 

O,(X) = a,(z)fi;(z) 
Vu-b=q 

n, p, U ,  A,  k ,  1, m,p, q ,  a, and b are integers between -N and 
N ,  and is the fundamental frequency of Fourier series. (2) can 
be solved by the Merson form of Runge-Kutta Method. The 
effects of higher order nonlinear terms are to shift the soliton 
pulses away from their center position and to cause the decay 
of higher order solitons. However, in solving of (2) with higher 
order dispersion takes into account, dispersive tail is formed 
at the trailing edge of the soliton pulse. This dispersive tail 
gets longer as soliton pulse propagates further away along 
the optical fiber. As a result, separation with adjacent pulses 
at another bit period should increase in order to prevent any 
interaction happens. Therefore, a large number of sampling 
points is required to avoid the influence of the dispersive tail. 

A TDWF can be utilized to' attenuate the dispersive tail 
of the soliton pulse in order to improve the accuracy and 
efficiency of the FSAT. The TDWF of the soliton envelope 
is given by the following expression: 

W ( X ,  T )  = G .  H ( T  - To) . (T - TO) . U ( Z ,  T )  ( 3 )  

where TO is a cut-off point of the window function, G is the 
slope of the TDWF, H ( T  - TO) is a unit step function and 
~ ( z ,  T )  is the soliton envelope. We can express each term on 
the right-hand side of (3) as a Fourier series, which can then 
be multiplied together to give the Fourier series of the whole 
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function. The Fourier series of the term (T - To) is given by 

(7' - To)j exp(-jLET) . dT & L:;E 
Texp( - jLcT)  exp(-jLET) 

(LE) 
+ 

2n -jLE 

TO e x p ( - j ~ E T )  1 T'c 

j LE T=-T/E 
+ 

(4) 

Because L is an integer, using sin(Ln) = 0 and cos(Ln) = 
(-l)L, we can simplify the solution to: 

for L # 0.  
for L = 0 

(5) 

Finally, the Fourier series of the time-delayed unit step func- 
tion H ( T  - To) is given by 

H ( T  - To) exp(-jmET) . dT 

From (3) ,  (5), and (6), the Fourier series of the TDWF can 
be obtained as 

n=-N 

-cos(meTo)+j sin(mET0) 
exp (jmd!') 

2nm j 

(7) 

where k + L + m = n. Making use of the orthogonal properties 
of the complex exponential terms, (7) can be simplified as 

-(-l)m + cos(rr1eTo) - J sin(mcT0) 
2nm . (8) 

As a result, by applying the TDWF to the soliton propagation 
equation a system of first-order partial differential equations 
is obtained as (9), found at the bollom of the page. 

The computation of the FSAT with TDWF together with the 
nonlinear terms can be performed by solving (9). Comparing 
with the original FSAT given in (2) ,  there is no increase in 
the number of first-order partial differential equations. The 
major effects of the higher order nonlinear terms are to shift 
the soliton position and to cause the decay of higher order 
solitons [6]. In order to focus on the elimination of third-order 
dispersion tails by the use of TDWIF, the coefficients of higher 
order nonlinear terms C and TR are set to zero for simplicity. 
Fig. 1 shows the propagation profile of a fundamental solitcin 
pulse for a distance of z = 3 (i.e., 150 m) in an optical 
fiber. The step size of propagation is automatically adjusted 
in order to maintain the calculation accuracy of IOp6. The 
parameters used in the calculation are a! = 0.2 dB/krn, 

2N + 1 = 101, G = 1, To = 8. The normalized peak power is 
defined as Iu(z, T)I2. It is observed from Fig. 1 that there is 
an exponential decrease in the peak power of the soliton pulrie 
due to the fiber absorption loss md  third-order dispersion. 
Dispersive tail is obtained at the lrailing edge of the soliton 
pulse and gets longer as the soliton pulse propagates. 

In order to compare with the case without using TDWF 
in the calculation, the results of solving (1) with the original 
FSAT is shown in Fig. 2. The parameters used in the calcula- 
tion are identical to that given in Fig 1. It is observed that at 
the beginning of the propagation, the soliton profiles are the 
same for both cases. As the soliton pulse further propagates 
along the fiber (x > 1.5), the results obtained in Fig. 2 become 
inaccurate. Instead of a steady change in the soliton peak 
power, the peak power is observed to be moving up and down 
and shifting left and right. The sampling density in both casIes 
is p = (2N+ 1)/(2n/~) = 2.57 points per unit time. In the 
Fourier series analysis, there exists a bit period, Tp = 2 n / ~ ,  
such that the soliton pulse repeal itself after Tp. The error 
obtained in Fig. 2 is due to the dispersive tail propagates to 
the adjacent pulse (i.e., the dispersive tail passed the point 
at T = T / E ) .  Using the same number of sampling poinls, 

p2 -2 ps2/ km, ,& = 0.1 ps3/km, t o  = 0.01 PS, E = 0.16, 

, + ., 
nonlinear term nonlinear term linear term 

(9) ( - I ) ~  -(-I)m + cos(m~T0) - jsin(m~T0) 
+TRE q i i , ( ~ ) O , ( ~ ) -  GGk(z).- .  LE 2nm Vp+q=n Vk+L+m=n 
\ \ / 

.# " 
nonlinear term time window function term 
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Fig 1 
sion-shifted optical fiber with the TDWF employed 

The 2-D plot of the fundamental soliton propagation in a disper- 
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Fig. 2. 
sion-shifted optical fiber without using the TDWF 

The 2-D plot of the fundamental soliton propagation in a disper- 

FSAT with and without using the TDWF gives roughly the 
same computational time. However, the FSAT gives a wrong 
result without using the TDWF unless changing the value of 
E to 0.1 and 2N+ 1 to 161 (i.e., increase the bit period and 
maintain the sampling density) correct result can be obtained. 
The computational time of a 133 MHz Pentium PC requires for 
this calculation is 296 min whereas only 72 min is required for 
the same accuracy with the TDWF employed. As a result, the 
computational time can be reduced by 75% as TDWF is used. 

The parameter G given in (3) is defined as the slope of the 
TDWF, the larger the value of G, the larger the attenuation on 
the dispersive tail can be obtained. Fig. 3 shows the soliton 
profile obtained at 2 = 3 (after 150 m of propagation) for 
various magnitudes of G. For the case without the TDWF 
(i.e., G = O), the calculated soliton profile is distorted. By 
increasing the value of G to 0.1, the distortion level is found 

4 -2 0 2 4 6 8 10 

T 

Fig 3 The soliton waveforms obtained after a propagation distance of 5 = 
3 in a dispersion-shifted fiber of (a) G = 0, (b) G = 0 1, (c) G = 0 5 and 
(d) G = 1 with E = 0 16 for all cases 

to be reduced. At G = 1, correct result can be obtained and 
the dispersive tail is almost vanished at T = 10 and the soliton 
profile remains unchanged for G greater than 1. As a result, 
G = 1 is the optimum value that we should choose for the 
calculation. 

In conclusion, the efficiency of FSAT in solving the soli- 
ton propagation along an optical fiber with absorption loss 
and higher order dispersion is improved significantly by the 
TDWF. The advantage of using TDWF is that the computa- 
tional time can be reduced by 75% or more with the increase of 
propagation distance. This is because original FSAT requires 
more sampling points as well as computational time to achieve 
the same accuracy. Furthermore, any dispersive component 
due to the fiber absorption loss and third-order dispersion can 
also be eliminated by the TDWF. The slope G of the TDWF 
determines the attenuation strength on the dispersive tail of the 
soliton pulse and the optimum value of G is found to be 1. This 
is because for G less than 1 gives inaccurate result, however, 
for G greater than 1 the calculation efficiency does not improve 
significantly. Therefore the efficiency and accuracy of FSAT 

both be improved by using the TDWF. 
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