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Abstract. The concept and algorithmic details of a new corrupted-pixel-
identification- (CPI)-based estimation filter are presented. The approach
is by transforming a noisy subimage centered on a corrupted pixel into its
discrete cosine transform (DCT) domain, and approximating the trans-
formed subimage by its DC (average) coefficient only, an estimation of
the noise distribution is made by combining the knowledge of the number
of corrupted pixels in the subimage and the pixel intensity of the noise
term. This enables the DC coefficient of the restored image in the DCT
domain to be determined, and from this, the restored pixel intensity can
be calculated by an inverse DCT. The whole restored image can be
obtained after all the corrupted pixels are exhausted. From an extensive
performance evaluation, it was found that the new algorithm has a num-
ber of desirable characteristics. First, the CPI-based estimation algorithm
performs extremely well when heavily degraded images are concerned.
Second, the CPI-based estimation algorithm has acceptable feature-
preserving properties, far better than the conventional median filter.
Third, the new algorithm can be applied iteratively to the same noisy
image. Fourth, the computing speed of the CPI-based estimation algo-
rithm is almost three times faster than the conventional median filter, and
1.6 times faster than the original CPI algorithm, making it the fastest
algorithm in this class so far. © 1996 Society of Photo-Optical Instrumentation
Engineers.
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1 Introduction

Image filtering is commonly employed in digital image pro
cessing applications where images are degraded by r
domly populated noise of the signal dependent and ind
pendent kinds.1,2 Of these, additive random white impulses
are fairly common due to poor input sampling of the imag
and/or the image is being interfered by an external sour
during transmission.2,3 Digital image filters are designed,
therefore, with the primary goal to recover the original im
age from the noisy image. Ideally, if the noise distributio
is known exactly, the original image can be recovered fro
the noisy image completely in the additive case. Howeve
it is often not possible to know exactly the nature of th
noise, and the spatial randomness of the noise makes
determination of the noise content a process of estimatio
As a result, the restored image resembles the original, bu
never the same. In this respect, the process of image filt
ing becomes a matter of minimizing the errors representin
the difference between the original and the restored imag
such that the restored image is both objectively and subje
tively acceptable. A typical image degradation and restor
tion model is shown2–5 in Fig. 1. Mathematically, the ad-
ditive nature of the noise enables the noisy image to b
represented by the summation of the original image and
noise distribution as given by Eq.~1!, whereg(x,y) de-
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notes the noisy image,f (x,y) denotes the original image,
andh(x,y) denotes the additive noise term:

g~x,y!5 f ~x,y!1h~x,y!. ~1!

From Eq.~1!, the process of image filtering can be inter-
preted as giveng(x,y) and thea priori knowledge of the
statistical nature ofh(x,y), an approximation,f̂ (x,y) can
be determined. Iff (x,y) is also known, an objective mea-
surement may be performed, which relies on calculating the
mean-square error between the original image and the re-
stored image.6 This is given by

sms5
(y51
H (x51

W @ f ~x,y!2 f̂ ~x,y!#2

W3H
, ~2!

whereW3H is the dimension of the image.
Many noise filtering algorithms in the spatial domain

have been developed. Typical examples of these filters are
the median filter,2,7–13 the averaging filter,4,8,9 the sigma
filter,4 the box filter,2,4 and the general rank filter.2 These
spatial filtering algorithms are mostly designed for remov-
ing a specific noise distribution. For example, the median
filter is designed to remove impulse noise, while the sigma
filter is designed to remove Gaussian noise. Of all these, the
median filter is the most widely used for two reasons. First,
/$6.00 © 1996 Society of Photo-Optical Instrumentation Engineers
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Lai and Yung: New feature preserving filter algorithm . . .
it is rather effective in removing salt-and-pepper noise an
similarly effective in removing white or black impulses if
the SNR is high. Second, it introduces a relatively sma
amount of distortion to lines and edges in the image com
pared with some other filter algorithms. These two featur
are desirable, as the ideal result of image filtering is to ha
all the noise removed and none of the image features
fected. The performance of the median filter is close to thi
Similarly, the sigma filter has noise removal and feature
preserving characteristics comparable with the median filt
in the case of removing Gaussian noise. In general, t
sigma filter performs slightly better for images degraded b
Gaussian noise, whereas the median filter performs sligh
better for images degraded by impulse noise.

Furthermore, it is observed that all these filtering algo
rithms share one common characteristic: every single pix
in the image is subjected to the same filtering process d
regarding the nature of the pixel. The reason is simply th
such filtering algorithms do not have any knowledge of th
nature of the pixels. In other words, they are not designe
to distinguish which pixel is affected by the noise distribu
tion and which is not. Therefore, all the pixels must b
considered equally and treated in exactly the same wa
This approach has two obvious effects at least. First, sin
the pixels unaffected by noise are also processed, cert
distortion to the image content will be inevitably introduced
as a result, especially when these pixels are usually in t
majority. Such distortion may be unacceptable as it ca
reduce the sharpness of lines, edges, and boundaries. S
ond, processing the whole image wastes a significa
amount of computing resources and may become critical
real-time applications. This problem will likely become
worse as the size of image is becoming larger in multim
dia processing, and the real-time demand of such applic
tions is stringent.

In the light of this, if the nature of the pixels is known,
there would be at least two advantages. First, for pixels
different natures, different treatment may be employed
that fine details in the image can be retained. In the simple
case, corrupted pixels can be processed by a filter windo
while the uncorrupted pixels are not processed at all. Se
ond, if only a selected subset of pixels is processed, su
stantial computing resources can be saved, given the al
rithmic overhead for identifying the pixels’ natures is
smaller than the computing resources wasted on process
the whole image. Along the line of this argument, a gene
alized mean filter algorithm was developed for removin
impulse noise using the concepts of thresholding an
complementation.11 This particular algorithm performs as
well as the median filter, but the computing overhead r
quired for identifying pixel types is high, and its overal
delay is expected to be longer than that of the median filte

Instead of considering every single pixel in the image
Yung and Lai3,14 proposed a subimage approach, called th

Fig. 1 Image degradation and restoration model.
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corrupted pixel identification~CPI! algorithm, which di-
vides the whole image into subimages and identify the pix-
els’ natures within each subimage using a threshold crite-
rion. The CPI algorithm coupled with a median filter as its
filter section~CPI-median! has been evaluated extensively
and the results show that it offers a number of attractive
properties. First, it is faster both in theory and practice for
filter window size larger than 3. Second, it is more capable
of removing black or white impulses, Gaussian, and salt-
and-pepper impulses than the median, sigma, and averagin
filters.14,15 And third, it also has a good feature-preserving
property that is missing in other conventional filter algo-
rithms. The distortion introduced by the CPI-median algo-
rithm is almost negligible compared with the other filter
algorithms. However, the CPI-median algorithm fails under
heavily corrupted cases. One of the reasons is that the me
dian filtering core employed to process the corrupted pixels
is unable to remove noise pixels that are clustered together
This is due to the fact that the median filter operates on the
assumption that noisy pixels are in the minority within the
filter window. The desire to find a CPI-based algorithm that
will replace the median filter core and is capable of han-
dling the heavily corrupted cases and yet still has an accept
able feature-preserving ability becomes the motivation of
the research presented in this paper.

In this paper, the concept and algorithmic details of a
new CPI-based estimation filter are presented. The philoso-
phy of the algorithm is that if we can estimate the noise
distribution within a subimage by using thea priori knowl-
edge of the pixel types, then the reconstructed image within
the subimage can be determined by subtracting the noise
term from the noisy image. This seemingly straightforward
philosophy hinges heavily on how the noise term is esti-
mated, which is partly determined by the nature of the
noise degradation and partly determined by the estimation
algorithm employed. By considering the noise distribution
to be strong, spikelike impulses, the issues of how the
a priori knowledge of the pixel types from the CPI algo-
rithm can be effectively used and the estimation of the re-
stored image by the DC~average! coefficient of the discrete
cosine transform~DCT! on a subimage are considered. The
idea is simply by transforming a noisy subimage centered
on a corrupted pixel into its DCT domain, and approximat-
ing the transformed subimage by its DC coefficient only, an
estimation of the noise distribution is made by using the
knowledge of the number of corrupted pixels in the subim-
age and the pixel intensity of the noise term. This enables
the DC coefficient of the restored image in the DCT do-
main to be determined, and from this, the restored pixel
intensity can be calculated by an inverse DCT. As a result,
the whole restored image can be obtained after all the cor-
rupted pixels are exhausted.

The CPI-based estimation algorithm was evaluated ex-
tensively together with the CPI-median and a conventional
median filter in terms of their noise removal potential
against white impulse noise, their feature-preserving abil-
ity, their effect on the restored image if they are applied
iteratively, and their computing requirements. From the re-
sults of the evaluation, a number of observations can be
made. First, the CPI-based estimation algorithm performs
extremely well when heavily degraded images are con-
cerned. This is the case where CPI-median algorithm fails
3509Optical Engineering, Vol. 35 No. 12, December 1996
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Fig. 2 CPI model.
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to perform. On the other hand, the CPI-based estimati
algorithm does not perform as well as the CPI-media
when SNR is high. In both cases, the performance of th
conventional median filter is some way behind the tw
CPI-based algorithms. Second, the CPI-based estimation
gorithm has an acceptable feature-preserving property,
though it is not as good as the CPI-median algorithm. Th
median filter has the worst feature-preserving performan
among the three. Third, one of the characteristics of th
CPI-median algorithm is that it can be applied iteratively t
improve the mean-square error as well as the visual qual
of the restored image when the image is heavily degrade
On this point, the median filter is not suitable to be applie
iteratively at all due to the substantial distortion cause
after each iteration. In the case of the CPI-based estimat
algorithm, our analysis shows that using the algorithm i
eratively will introduce a small degree of feature distortio
each time, but the effect is not significant. However, it i
best not to apply the algorithm iteratively since the majorit
of the noise is removed after the first iteration. Fourth, th
computing speed of the CPI-based estimation algorithm
almost three times faster than the conventional median fi
ter, and 1.6 times faster than the CPI-median algorithm
making it the fastest algorithm in this class so far.

The organization of this paper is as follows: Sec. 2 give
a brief overview of the CPI algorithm; its decision func-
tions; its identification success rate; and its performanc
merits, and drawbacks. Section 3 brings out the conce
and philosophy of the CPI-based estimation filtering meth
odology and the algorithm in detail. Section 4 presents th
performance evaluation results of the CPI-based estimati
filter, focused on the capability of removing white impulse
noise, feature-preserving property, iterative applicatio
property, and computing requirement of the algorithm. Se
tion 5 concludes the merits and pitfalls of the CPI-base
estimation filtering algorithm.

2 CPI Algorithm

2.1 Pixel Identification Model

The aims of this model are, first, to improve or maintain
noise removal capability comparable with existing conven
3510 Optical Engineering, Vol. 35 No. 12, December 1996
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tional filter algorithms and, second, to achieve a high
feature-preserving property that will enable the algorithm
to be used in applications where even slight feature distor-
tion is not tolerable. Developed on the argument of process-
ing with discrimination, the CPI algorithm was developed
on the basis that, by classifying the nature of the pixels in a
noisy image, the only pixels needed to be processed are the
corrupted pixels.3,4 With this, a number of characteristics
are obvious. First, the computing requirement of the algo-
rithm will be proportional to the number of corrupted pixels
identified instead of the image size. Second, image feature
is preserved because of the selective filtering. Third, the
accuracy of the filtering will be determined by the identifi-
cation success rate~ISR!. If the CPI algorithm has a low
ISR, a poor restored image is to be expected. Fourth, the
CPI algorithm will incur a certain amount of computation
overhead that will have to be comparable with the conven-
tional algorithms, if not better.

The model of the CPI algorithm is depicted in Fig. 2. It
first divides the imageg(x,y) into subimages of which
each subimage is tested if the difference between the maxi-
mum intensity and the minimum intensity in the subimage
satisfies a condition. This condition is that if the intensity
difference within the subimage is large, then no decision
should be made, and further subdivision is required, other-
wise the mean intensity of the subimage should be calcu-
lated and used as the threshold to classify the pixels in the
subimage. The number of black and white pixels in the
subimage are counted, and the group that is in the minority
is considered corrupted. The lists of corrupted pixels of all
the subimages are combined after the whole image has
been interrogated. The combined list is used for selectively
filtering the noisy image in the filter section. Note that the
subimage approach is used only for generating the list of
corrupted pixels. The subsequent filtering section could use
any filter algorithms or window sizes on the noisy image
itself.

2.2 Decision Functions

The decision functions for the subimage division and pixel
identification of the CPI algorithm are given by equations
~3! and ~4!. For subimage division:
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Table 1 ISR of the CPI algorithm.

SNR (dB) ‘‘Lady’’ ‘‘Mickey’’ ‘‘Lab’’ ‘‘Casino Ticket’’ ‘‘Sample’’

50 70.97 70.27 67.26 75.23 93.31

30 74.80 77.48 73.90 81.04 94.04

10 82.22 86.17 81.78 86.11 95.02

0 85.51 89.54 84.56 87.20 95.36

210 87.98 92.13 86.62 88.45 95.94

230 91.21 94.68 89.03 88.63 96.45

250 92.43 95.76 89.87 88.92 96.70
o

n

s

-

-

I i~m,n!5 max
x50
y50

y5n21

x5m21
@g~x1xi , y1yi !#

2 min
x50
y50

y5n21

x5m21
@g~x1xi , y1yi !%, ~3!

where I i(m,n) is the intensity spread of the subimage
Si(m,n), andm andn are the dimension of the subimage
If I i(m,n) is greater than a predefined maximum intensit
spread and the size of the subimageSi(m,n) is greater than
the minimum subimage sizeS(m0 ,n0), then divide
Si(m,n) into two equal but smaller subimages accordin
to: If m>n thenSi11(m/2,n), elseSi11(m,n/2).

For pixel identification:

ḡ~x1xi , y1yi !5 H10 if g~x1xi , y1yi !.Mi~m,n!

if g~x1xi , y1yi !<Mi~m,n!

for x50,...,m21 and y50,...,n21,

(4a)

Corrupted pixels

55
g~x1xi , y1yi ! where ḡ~x1xi , y1yi !50

when (
y50

n21

(
x50

m21

ḡ~x1xi , y1yi !>
mn

2
1bias

g~x1xi , y1yi ! where ḡ~x1xi , y1yi !51

when (
y50

n21

(
x50

m21

ḡ~x1xi , y1yi !,
mn

2
1bias,

~4b!

whereMi(m,n) denotes the mean intensity within the sub
image and the other variables have their usual definitions14

The bias in Eq.~4b! is determined by the type of noise
corruption, which can be greater than or equal to zero f
white impulse noise and less than zero for black impuls
noise.

2.3 ISR

In the CPI filtering model, two possible scenarios coul
cause the identification accuracy become low. First, th
.
y

g

-
.

r
e
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e

originally corrupted pixels are identified as not corrupted
and not filtered. Second, the originally not corrupted pixels
are identified as corrupted and filtered. Neither of these two
scenarios is desirable and should be minimized. Ideally, if
all the corrupted and uncorrupted pixels are correctly iden-
tified ~100% ISR! and the filtering operation can com-
pletely reconstruct the original uncorrupted pixels, then the
restored image resembles exactly the original image. In
practice, the ISR can be as high as 96% for certain type of
images, using the definition given by Eq.~5!. It is antici-
pated that such a success rate would be maintained or eve
improved with better decision functions. As for the filter
operation, a perfect reconstruction may not be possible, and
therefore, a close approximation with a small amount of
error is to be tolerated. It is the purpose of this section to
explore the implications of the ISR. The issue of filter op-
eration and a new estimation filter based on the CPI algo-
rithm are discussed in Sec. 3.

From the preceding argument, the ISR can be defined by

ISR5
N~pc/c!1N~pc̄ / c̄ !

W3H
3100, ~5!

where pc/c is a corrupted pixel identified as corrupted,
pc̄ / c̄ is an uncorrupted pixels identified as uncorrupted,
N(pc/c) is the number of corrupted pixel identified as cor-
rupted; andN(pc̄ / c̄) is the number of uncorrupted pixels
identified as uncorrupted.

Extensive evaluation of the ISR with respect to the SNR
and the type of images have been conducted and the result
are shown16 in Table 1. These ISR results are obtained for
SNR ranges from 50 to250 dB and over five different
images. Noisy images are generated by adding random im
pulse white noise to the original images. The distribution
and density of the noisy pixels are calculated14 from the
SNR. These images are ‘‘Lady,’’ a head-and-shoulder pic-
ture against a window; ‘‘Mickey,’’ a Mickey mouse key
ring against a smooth background with fairly clear line and
edge definitions; ‘‘Lab,’’ a busy image of a laboratory
scene with a lot of fine details; ‘‘Casino Ticket,’’ a lottery
ticket with coarse and fine objects; and ‘‘Sample,’’ a
computer-generated image with well-defined lines and
shapes over a smooth background. These images are de
picted in Fig. 3.

From Table 1, we can make two observations. First, in
general, the ISR is inversely proportional to the SNR for all
the images tested, implying the CPI algorithm performs
better in the case of heavily degraded images, and not so
3511Optical Engineering, Vol. 35 No. 12, December 1996
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3

Fig. 3 (a) ‘‘Lady,’’ (b) ‘‘Mickey,’’ (c) ‘‘Lab,’’ (d) ‘‘Sample,’’ and (e) ‘‘Casino Ticket.’’
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well for the lightly degraded images. As the identificatio
decision function only conducts a binary decision, t
chances of the uncorrupted image feature being identifi
as corrupted in the lightly degraded case would be hig
compared with the heavily corrupted case. Therefore, s
a result is not entirely unexpected. Second, the ISRs of
four images are not the same. For similar images such
the ‘‘Lady’’ and ‘‘Mickey,’’ their ISRs are expected to be
similar. The ‘‘Mickey’’ image has an ISR about 3% bette
than the ‘‘Lady’’ image. This can be explained by the be
ter line and edge definitions of the ‘‘Mickey’’ image. Fur
thermore, the ‘‘Lab’’ image has the worst ISR througho
the entire SNR range, which can be attributed to t
amount of detail in the image being misidentified as co
rupted. On the other hand, the well-defined comput
generated ‘‘Sample’’ image has the best ISR at almost
values of SNR. In conclusion, the ISR of the CPI algorith
is image sensitive, and it works better with images th
have well-defined line and edge features, and less ef
tively if the image contains a large amount of fine detail

2.4 Performance of the CPI-Median Algorithm

To demonstrate the performance of the CPI algorithm
535 median filter is selected to be used in the filter sectio
as depicted in Fig. 2. In principle, the median filter opera
512 Optical Engineering, Vol. 35 No. 12, December 1996
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according to the list of corrupted pixels supplied by the CP
algorithm. Each corrupted pixel on the list is visited and th
median is calculated over all the 25 pixels with the co
rupted pixel being at the center of the filter window, disre
garding whether any of the neighborhood pixels are co
rupted or not. Figure 4~a! depicts the original image of
‘‘Casino Ticket,’’ which has a number of well-defined fea
tures as well as some fine details at the bottom and tow
the right of the image. The ISR for this image is expecte
to be between those of the ‘‘Mickey’’ image and ‘‘Lab’’
image. Figure 4~b! shows the noisy image corrupted by
white impulses at SNR5250 dB, and Figs. 4~c! and 4~d!
present the restored images using the conventional med
filter and the CPI-median filter, respectively. It can be se
from these two images that for a heavily degraded image
conventional median filter fails to remove some of th
noise pixels due to high local noise density. As a resu
they appear as noise clusters in the restored image. Mo
over, the median filter also has a detrimental effect on t
fine details of the image, for example, the characters at
bottom of the image have almost disappeared because
the filtering. In the case of the CPI-median filter, there a
still noise clusters left in the restored image, but the seve
ity of such looks to be less than the median filter. Furthe
more, more original image features are preserved as a re
Fig. 4 (a) Original image, (b) noisy image (SNR5250 dB), (c) restored by the conventional median
filter, (d) and restored by the CPI algorithm with a median filter as its filter section.
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of the selective nature of the algorithm. The example illus
trated here agrees well with the extensive performan
evaluation given in Yung and Lai3,14and Yung and Yung.16

2.5 Merits and Drawbacks

To simply quote the results from Yung and Lai,14 there are
a number of merits due to the CPI algorithm. First, it pre
serves high-frequency image features where other conve
tional or nonselective filters smooth out. This is a desirab
property, as in applications such as video phone, the r
stored image is preferred to resemble the original imag
closely. Second, when white or black impulses or Gaussi
noise is concerned, the CPI algorithm has the best no
removal performance among filters such as the median a
sigma algorithms. The objective measure of the mea
square error~MSE! and the subjective visual inspection
consistently highlight the superiority of the algorithm
Third, the computing resource requirement of the CPI a
gorithm is lower than that of the other filters both theoret
cally and practically. In theory, the CPI algorithm perform
better than the median filter for~2N11!.3. In practice, the
CPI algorithm approaches two times faster than the medi
filter. Fourth, due to the feature preservation property of th
CPI algorithm, it can be applied iteratively when the nois
image has very low SNRs. Evaluation of this particula
property shows that an optimal result can be obtained af
two or three iterations depending on the noise content.

However, there are a number of drawbacks associat
with the CPI algorithm as well. First, if both black and
white noise appear in the image, as both the black a
white pixels have similar probability of being the corrupted
pixels, the decision function in determining the majority
pixels could wrongly identify either the black or white pix-
els as the uncorrupted pixels. Second, although the subi
age approach is relatively fast compared with the conve
tional approaches, the errors due to low ISR could b
significant if the SNR of the noisy image is high. Never
theless, these errors would be translated into errors in t
restored image as corrupted pixels that are not process
~insufficient noise removal!, and uncorrupted pixels that are
processed~feature degradation!. Third, the filtering stage is
performed by a conventional filter operator~median!, in
which the median is calculated based on all the pixels in th
window, disregarding whether these neighboring pixels a
corrupted or not. Since the knowledge of which pixel i
corrupted isa priori, there is no reason why the filtering
should not be carried out on a more selective basis, f
example, in the median case, only the uncorrupted pixe
are included in the calculation of the median. Preliminar
results obtained recently indicate that substantial improv
ment is possible if the knowledge of pixel type is consid
ered appropriately.16 Section 3 essentially further explores
this possibility and presents a new algorithm that uses t
a priori knowledge. The result of combining the CPI phi-
losophy with selective filtering is that the new algorithm
gives a much better filter performance, especially fo
heavily degraded images.

3 CPI-Based Estimation Filter Algorithm

3.1 Concept and Philosophy

The philosophy of the algorithm is that if we can estimat
the noise distribution using thea priori knowledge of the
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pixel types, then the reconstructed image can be determined
by subtracting the noise term from the noisy image. This
seemingly straightforward philosophy hinges heavily on
how the noise term is estimated, which is partly determined
by the nature of the noise degradation and partly deter-
mined by the estimation algorithm employed. With respect
to the former, the estimation algorithm must be able to deal
with the certain type of noise degradation involved, which
can be accommodated in the design of the estimation algo-
rithm. For the estimation algorithm used, its goals must be
to ensure a very high percentage of the noise degradation is
being removed, and equally, a very high percentage of the
original features are preserved. Based on this philosophy,
the following concept was developed.

By considering the noise distribution to be strong, spike-
like impulses, the issues of how thea priori knowledge of
the pixel types from the CPI algorithm can be effectively
used and the estimation of the restored image by the DC
coefficient of the DCT on a subimage are considered. The
idea is that by transforming a noisy subimage centered on a
corrupted pixel into its DCT domain, and approximating
the transformed subimage by its DC coefficient only, an
estimation of the noise distribution~in this case, the white
impulses! is made by using the knowledge of the number of
corrupted pixels in the subimage and the pixel intensity of
the noise term. This enables the DC coefficient of the re-
stored image in the DCT domain to be determined, and
from this, the restored pixel intensity can be calculated by
an inverse DCT. As a result, the whole restored image can
be obtained after all the corrupted pixels are exhausted. The
conceptual diagram of the new filter algorithm is depicted
in Fig. 5.

3.2 Algorithm

The purpose of the DCT filter is to filter only the noisy
pixel of concern~the center pixel inside the filtering win-
dow! and leave the other pixels inside the window un-
touched. In other words, if there are more than one noisy
pixels inside the filtering window, only the noisy pixel at
the center will be filtered out during the operation. Other
noisy pixels are considered when they are in the center of
the window. This is explained in Fig. 6. Let us define the
following:

f (x,y) 5 original image
h(x,y) 5 additive noise term
g(x,y) 5 noisy image
f̂ (x,y) 5 restored image
« 5 approximated noise intensity
F2N11~0,0! 5 DC component ofF(u,v) over a

subimage size~2N11!2

G2N11~0,0! 5 DC component ofG(u,v) over a
subimage size~2N11!2

F̂2N11~0,0! 5 DC component ofF̂(u,v) over a
subimage size~2N11!2

S 5 number of corrupted pixels identified
by the CPI algorithm.

The discrete cosine transform off (x,y) and its inverse are
given by17,18
3513Optical Engineering, Vol. 35 No. 12, December 1996
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3

Fig. 5 Conceptual diagram of the new feature-preserving filter algorithm.
F~u,v !5
2
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C~u!C~v !

3F (
x52N

N

(
y52N

N

f ~x,y! cos
~2x11!up

2~2N11!

3cos
~2y11!vp
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f ~x,y!5
2

2N11 F (
u52N

N

(
v52N

N

C~u!C~v !F~u,v !

3cos
~2x11!up

2~2N11!
cos

~2y11!vp

2~2N11! G , ~6b!

where Eq.~6a! represents the forward DCT and Eq.~6b!
represents the inverse DCT. The DC component ofF(u,v)
whenu5v50 over a window size of~2N11!2 is given by
Eq. ~7a!, and the inverse is given by Eq.~7b!. Equations
~7a! and ~7b! form a simplified DCT pair:

F2N11~0,0!5
1

~2N11! F (
x52N

N

(
y52N

N

f ~x,y!G , ~7a!

f ~x,y!5
F2N11~0,0!

~2N11!
, ~7b!
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whereF2N11(u,v) is zero everywhere except atu5v50.
By taking the DCT of Eq.~1! and for u5v50, the DC
component of the noisy imageg(x,y) is given by

G2N11~0,0!5
1

~2N11! F (
x52N

N

(
y52N

N

g~x,y!G
5

1

~2N11! F (
x52N

N

(
y52N

N

f ~x,y!G
1

1

~2N11! F (
x52N

N

(
y52N

N

h~x,y!G . ~8!

Assume all the additive noise pixels within the filtering
window have approximately the same intensity«, then the
intensity of the noise pixels can be estimated by

h~x,y!5 H «
0

if g~x,y! is corrupted
otherwise. ~9!

This assumption is designed to deal with the white impulse
noise in question. For other types of noise distributions, Eq.
~9! can be generalized to the average value or the sum of
h(x,y) over the window~2N11!2 can be approximated by
the noise distribution.

With the number of corrupted pixelS being given by the
CPI algorithm, we approximate the sum ofh(x,y) in Eq.
~8! by S«, from whichG2N11~0,0! can be rewritten by
Fig. 6 Expectation of the filter algorithm.
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G2N11~0,0!5
1

~2N11! F (
x52N

N

(
y52N

N

f ~x,y!G1
S«

~2N11!

5F2N11~0,0!1
S«

~2N11!
. ~10!

From Eq.~10!, if the corrupted pixel at the center of the
subimage is restored, then the number of corrupted pixe
left in the subimage becomes~S21!, and the imagef (x,y)
is still degraded byh(x,y) everywhere in the subimage
except at the center. Therefore the DC coefficient of th
DCT of f̂ (x,y) can be represented by

F̂2N11~0,0!5F2N11~0,0!1
~S21!«

~2N11!
. ~11!

Combining Eqs.~10! and ~11!, we have

F̂2N11~0,0!5G2N11~0,0!2
«

~2N11!
. ~12!

Let the approximated noise intensity be given by

«5g~x,y!2 f ~x,y!, ~13!

and substituting Eqs.~7b! and ~13! into Eq. ~10! and rear-
ranging, we have

F2N11~0,0!5G2N11~0,0!2
S«

~2N11!

5G2N11~0,0!2
S@g~x,y!2 f ~x,y!#

~2N11!

5G2N11~0,0!2
S

~2N11!

3Fg~x,y!2
F2N11~0,0!

~2N11! G . ~14!

By further rearranging Eq.~14!, we have

F2N11~0,0!F12
S

~2N11!2G
5G2N11~0,0!2

S

~2N11!
g~x,y!,

or

F2N11~0,0!5

G2N11~0,0!2
S

~2N11!
g~x,y!

12@S/~2N11!2#
. ~15!

By substituting Eqs.~7b!, ~13!, and~15! into Eq. ~12!, the
DC component ofF̂2N11~0,0! is given by
ls

e

F̂2N11~0,0!5G2N11~0,0!2
«

~2N11!

5G2N11~0,0!2
1
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1
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3FG2N11~0,0!2 @S/~2N11!# g~x,y!

12 @S/~2N11!2# G J
5G2N11~0,0!F11

1

~2N11!22SG2g~x,y!

3F 2N11

~2N11!22SG . ~16!

As g(x,y) is given,G2N11~0,0! calculated fromg(x,y),
and with the knowledge ofS from the CPI algorithm,
F̂2N11~0,0! can be determined. OnceF̂2N11~0,0! is known,
f̂ (x,y) can be deduced from Eq.~7b!.

4 Performance Evaluation

The purpose of this performance evaluation is to determine
how well the new CPI-based estimation filter algorithm
performs compared with the conventional median filter, and
the CPI-median filter as described in Sec. 2. The compari-
son is based on evaluating the MSE between the restored
image f̂ (x,y) and the original imagef (x,y) in all cases
where the ‘‘Casino Ticket’’ image is degraded by white
impulses for SNRs ranging from250 to 150 dB. The
‘‘Casino Ticket’’ consists of 256 gray levels ranging from
0 ~black! to 255 ~white! and having a spatial dimension of
2273533. The features of this image are that there are quite
a large number of objects and characters on the ticket, the
edges and lines representing the objects and characters ar
fairly well defined, and there are a few character fonts used
such as the designed font used at the top~poor contrast!, the
font used for the dollar values~good contrast!, and the dot-
matrix printed font at the bottom of the ticket~poor print
quality!.

The evaluation is focused on a number of aspects:

1. noise removal capability over images degraded by
white impulses

2. smoothing effect caused by the various filter algo-
rithms

3. effect of applying these filter algorithms iteratively to
the same image

4. computing resources requirement in each case.

In the evaluation, the parameterN is set to 2 in all cases,
meaning the conventional median uses a 535 window, and
the subimage size is either equal to or greater than the size
of the filter to have meaningful results. Based on this argu-
ment, the CPI-median algorithm uses a 535 median filter
and the CPI-based estimation filter algorithm also uses a
3515Optical Engineering, Vol. 35 No. 12, December 1996
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535 subimage size for simplicity. In addition, the CPI a
gorithm uses a maximum intensity spread~MIS! equal to
32, which corresponds to the acceptable intensity variat
of a pixel with its neighborhood pixels. For the reason f
choosing these values, refer to Yung and Lai.14

4.1 Noise Removal Capability

Table 2 depicts the MSE for all the three cases, includ
the MSE of the noisy image before filtering. These valu
are plotted in Fig. 7 with the MSE versus SNR. From Fi
7, a number of points can be observed. First, all the th
filter algorithms remove noise as expected. Judging fr
the figures, the CPI-based filters are more effective than
median filter over the whole range. Second, the MSE b
havior over the SNR range is monotonic. The MSEs of
the filters increase with decreasing SNR, with the MSE
the CPI-based estimation filter increasing fairly slightly, th
CPI-median algorithm increasing at a faster rate, and
median filter increasing at the fastest rate. Third, for
SNR above 30 dB, the CPI-median performs best. For
SNR below 10 dB, the CPI-based estimation filter has
best MSE consistently.

For subjective inspection, the restored images for SN
550, 0, and250 dB are shown in Figs. 8, 9, and 10
respectively. In the case of a lightly degraded image~Fig.
8!, the restored images of all the three filter algorithms a
acceptable, perhaps, in the case of the median filter, cer

Table 2 Comparison of MSEs among different filters.

SNR (dB) Before Filtering Median CPI-Median CPI-Estimate

50 804.82 961.70 284.74 391.98

30 1866.98 1085.84 309.19 373.46

10 3664.43 1455.62 437.61 378.30

0 4708.02 1783.01 568.87 388.89

210 5697.65 2209.70 789.32 414.33

230 7146.99 3523.78 1532.82 473.69

250 7863.48 4823.39 2289.47 511.27

Lai and Yung: New feature
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lines and edges are more distorted than the other two algo
rithms. This can be seen at the top region where the word
‘‘NEVADA’’ is, and also the words ‘‘BAR’’ and the dot-
matrix printed words at the bottom of the ticket. For the
CPI-based filters, the CPI-median filter appears to have the
least distortion and all the noise pixels are successfully re-
moved. This is also true for the CPI-based estimation filter
except that the restored image appears to be blurred mor
than the CPI-median image. This can be seen from the
horizontal lines on the image. Broadly, the CPI-median im-
age is most pleasing to look at among the three.

In the case of SNR50 dB ~Fig. 9!, the restored images
are still considered acceptable visually except that small
isolated noise clusters can be detected in the restored im
ages by the median filter and the CPI-median filter, on
close inspection. The median filtered image has lines and
edges that are obviously blurred to an extent that the char-
acters printed at the bottom of the ticket are now totally
unrecognizable. This is partly attributed to the poor print
quality of the characters in the first place. On the other
hand, the two CPI-based filters perform very well, with
their restored images of fairly high quality. There are, how-
ever, two minor differences between the two. First, there
are isolated noise clusters on the CPI-median image, bu
not on the CPI-based estimation filter. Second, the contras

Fig. 7 MSEs of the three filters versus SNR.
Fig. 8 (a) Original image, (b) noisy image (SNR5150 dB), (c) restored by median filter, (d) restored
by CPI-median filter, and (e) restored by CPI-based estimation filter.
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Fig. 9 (a) Original image, (b) noisy image (SNR50 dB), (c) restored by median filter, (d) restored by
CPI-median filter, and (e) restored by CPI-based estimation filter.
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of the CPI-based estimation filter seems to be a little le
than the CPI-median filter. This contrast reduction is a m
nor feature of the CPI-type algorithms.

In the heavily degraded case as depicted in Fig. 10,
image restored by the median filter contains extensive no
clusters that makes it visually unacceptable. Its severity
such that even the well-contrasted dollar numerals on
right of the ticket are heavily distorted as well as the o
jects and other characters on the ticket. This poor res
accounts for the large MSE for this case, as shown in Ta
2. The image restored by the CPI-median filter also has
large amount of noise clusters, but the clusters are noti
ably smaller and not as intense as in the median case. N
ertheless, the existence of the noise clusters in the resto
image makes it visually unacceptable. On the other ha
the features of the ticket are still very much intact, wit
distortion mainly due to the presence of noise clusters.
the case of the CPI-based estimation filter, the restored
age is virtually free of noise clusters and the lines an
ss
i-

he
ise
is
he
-
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le
a
e-
ev-
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In
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d

edges are well preserved, apart from the minor distortio
that is still evident on close inspection. This makes the
CPI-based estimation image the most acceptable visuall
and its low MSE compared with the other two algorithms
also indicates its superior performance when low SNR i
concerned.

4.2 Feature Preserving Property

This evaluation aims to identify how well a filter algorithm
preserves features when undertaking the noise filtering pr
cess. The three different filters: conventional median, CP
median, and CPI-based estimate filters are applied to th
original image as depicted in Fig. 11~a!. From the MSE
measured and the visual inspection of the restored image
the feature preserving property of each filter algorithm ca
be studied. The restored images are depicted in Figs. 11~b!
to 11~d!. Their absolute and relative MSEs are tabulated in
Table 3.
Fig. 10 (a) Original image, (b) noisy image (SNR5250 dB), (c) restored by median filter, (d) restored
by CPI-median filter, and (e) restored by CPI-based estimation filter.
3517Optical Engineering, Vol. 35 No. 12, December 1996
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From Table 3, it can be seen that the CPI-median al
rithm gives the lowest MSE compared with the CPI-bas
estimation algorithm, whose MSE is 1.47 times higher, a
the conventional median algorithm, whose MSE is 3.
times higher. These values agree with the results prese
in the previous sections that the CPI-median offers the lo
est MSE at high SNR, followed by the CPI-based estim
tion. The median filter is the worst performer in such a
SNR range. On visual inspection, the CPI-median ima
appears to resemble the original image closely with alm
all features preserved. The CPI-based estimation image
pears to have fine blurring at the lines and edges of obje
and characters, and the dynamic range seems to be red
more. Note, however, that these effects are minor and a
whole, most features are reasonably preserved. For the
dian image, blurring can be obviously seen across
whole image. In particular, the characters at the bottom
the ticket are severely distorted, the object outlines
blurred and some of the fine features are now merged
gether with their adjacent features.

4.3 Iterative Application of the Filter Algorithms

The purpose of this evaluation is to develop an understa
ing of how each filter algorithm performs if it is applied
iteratively to the same noisy image. Although noise filte
are not normally used in this way, iterative application m
be useful if the image is heavily degraded. In this case,
noisy ‘‘Casino Ticket’’ images degraded at SNR5210 and
250 dB were subjected to repeated application of the sa
algorithm for up to four times. Their MSE values are tab
lated in Tables 4 and 5, respectively.

From Table 4 and Fig. 12, it can be seen that the M
for the median filter rises slowly as the number of iteratio
increases. At SNR5210 dB, this result is expected, a
most of the noise would have been removed after the fi
iteration. Further application of the same algorithm w
only introduce more blurring and distortion to the restor
image. In the CPI-median case, the MSE has a minim
after the second iteration, and it rises very slowly beyo
that. This can be explained by the fact that most of t
remaining noise pixels/clusters are removed after the s
ond iteration, after which, there is no more significant noi
removal other than slight feature distortion. For the CP

Fig. 11 (a) Original image, (b) restored by median filter, (c) restored
by CPI-median algorithm, and (d) restored by CPI-based estimation
algorithm.
3518 Optical Engineering, Vol. 35 No. 12, December 1996
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Fig. 12 Iterative performance (normalized) of different filters on
noisy image at SNR5210 dB.

Table 3 Comparison of absolute and relative MSEs among different
filters.

Median CPI-Median CPI-Estimate

Absolute 920.1 285.57 421.21

Relative 3.22 1 1.47

Table 4 Iterative performance of different filters on noisy image at
SNR5210 dB.

Iterations Median CPI-Median CPI-Estimate

31 2209.70 789.32 414.33

32 2223.68 589.08 706.66

33 2346.94 589.09 964.55

34 2444.32 634.75 1217.13

Table 5 Iterative performance of different filters on noisy image at
SNR5250 dB.

Iterations Median CPI-Median CPI-Estimate

31 4823.39 2289.47 511.27

32 4150.64 1034.94 767.17

33 4026.85 848.39 983.51

34 4028.97 817.84 1203.06
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Lai and Yung: New feature preserving filter algorithm . . .
based estimation algorithm, the initial MSE is the lowes
But when applied iteratively, its MSE increases rapidl
above the CPI-median MSE. This can be explained by t
fact that the CPI-based estimation algorithm effectively re
moved most of the noise after the first iteration. Furthe
iterations simply cause more features in the image to
lost, resulting in a higher MSE.

As depicted in Table 5 and Fig. 13, the MSE behavior o
the median filter is different when the SNR is low~250
dB!. Instead of rising, the MSE decreases as the number
iterations increases. This is because of the extensive no
clusters that still remain in the image after the first iteration
which are further removed in the subsequent iterations. V
sually, this can be seen in Figs. 14 to 17. The number
noise clusters is reduced noticeably after a number of iter
tions, but unfortunately, the degree of distortion has in
creased to such an extent that the restored image is seve
blurred @Fig. 17~a!#. In the case of the CPI-median, the
MSE decreases as the number of iterations increases. T
reduction is quite substantial by almost three times after t
fourth iteration. This indicates that the extensive noise clu
ters remaining in the image after the first iteration are bein
removed further. A minimum in this MSE curve is ex-
pected at a higher number of iterations, after which th
MSE will increase as in Fig. 12. From the images restore
by the CPI-median as shown in Figs. 14 to 17, it can b

Fig. 13 Iterative performance (normalized) of different filters on
noisy image at SNR5250 dB.

Fig. 14 First iteration.
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deduced that the CPI-median algorithm gives the best re
stored image at the fourth iteration@Fig. 17~b!#. Essentially,
almost all noise clusters are removed from the image and
most of the image features are preserved.

For the CPI-based estimation algorithm, the MSE results
are on a par with the previous cases, where its MSE is
better after one or two iterations, and rises to just slightly
above the CPI-median’s MSE at the fourth iteration. The
general trend agrees with the previous case and can be e
plained by the fact that the CPI-based estimation algorithm
is a lot more effective in noise removal and therefore gives
the best MSE after just one iteration. Visually, the restored
image also appears to be the best@Fig. 14~c!#. When the
algorithm is applied repeatedly, there are no more noise
pixels to be removed, and instead, the image features ar
being blurred due to its slightly poorer feature-preserving
ability than the CPI-median algorithm. This accounts for
the increase in the MSE over the number of iterations. It
can also be seen visually that the images restored by th
CPI-based estimation algorithm have deteriorating visua

Fig. 15 Second iteration.

Fig. 16 Third iteration.
3519Optical Engineering, Vol. 35 No. 12, December 1996
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Lai and Yung: New feature preserving filter algorithm . . .
quality as the number of iterations increases. The extent
blurring is not as severe as the median images@Fig. 17~c!#.

4.4 Computing Resources

It has been proven that CPI-median filter is 1.6 times fast
than the conventional median filter14 in practice. This sig-
nificant improvement makes the CPI-based filtering algo
rithms more likely to be used in real time. In addition to
this basic improvement, the CPI-based estimation filter em
ploys a set of equations that is expected to perform ev
faster than the CPI-median filter. The computing times re
quired to filter the images given in this paper by differen
filters are tabulated in Table 6. The hardware platform us
is a Silicon Graphic workstation~Indy!.

Obviously, the conventional median filter takes the sam
computing time for all the images because its computin
requirement depends on the size of the image and the fil
operation. Both of these parameters are constant, disrega
ing the severity of noise degradation. For the CPI-media
filter, the results improve on the performance presented b
fore, which is around two times faster. This is attributed t
the different hardware platforms used. For the CPI-bas
estimation filter, the average time taken is around 1.46
which is almost three times faster than the median filte
Such comparison indicates the superiority of the CPI-bas
filters over the conventional filters.

5 Conclusion

Generally, the CPI-based algorithms outperform the co
ventional median filter algorithm in terms of objective MSE
measurement, subjective visual inspection, and computi
speed. Although the CPI approach appears to be more co
plex, the eventual outcome is attractive as algorithms bas
on the CPI concept have a better noise removal capabil
than conventional filters and can be applied iteratively t
improve the MSE as well as visual quality. In addition
their feature-preserving property and faster computin
speed are desirable characteristics in areas such as m
media processing.

In particular, the CPI-based estimation algorithm has i
own special features and properties. From the results of t

Fig. 17 Fourth iteration.
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performance evaluation given in Sec. 4.1, it can be note
that its noise removal capability is more effective for im-
ages heavily corrupted by white impulses, whereas the CP
median filter is more suitable for lightly corrupted images.
On the other hand, the CPI-based estimation filter possess
a less effective feature preserving property compared wit
the CPI-median filter. This is clearly demonstrated in Secs
4.2 and 4.3, where its restored images exhibit more blurrin
and line/edge distortion than the CPI-median filter. How-
ever, it is fair to note that the feature-preserving ability of
the CPI-based estimation filter is much higher than the con
ventional median filter. Although the median filter is often
considered as introducing the least amount of distortion t
the restored image compared with filters such as averagin
and other rank filters, its feature-preserving ability is still a
long way from that of the CPI-based filters. In terms of
computing speed, as given in Sec. 4.4, the CPI-median fi
ter has been reported to be 1.6 times faster than the medi
filter before, and the further improvement to 2 times faste
simply reinforces this point. On this point, the CPI-based
estimation filter is almost three times faster than the media
filter, making it the fastest filter in this class with a very
acceptable performance both objectively and visually. Re
garding the iterative application of the CPI-based estima
tion algorithms, our analysis in Sec. 4.3 shows that it is
indeed not necessary for the CPI-based estimation algo
rithm to be applied iteratively as the restored image afte
the first iteration is often good enough. Further iterations
will cause feature degradation in the image. In contrast to
this, the CPI-median filter is not as effective for heavily
degraded images, and therefore, further iterations help t
further remove noise. Due to its higher feature preserving
ability, higher numbers of iterations do not have much im-
pact to the image features.

Regarding future directions, a number of aspects will be
studied. First, Eq.~10! will be investigated as to how dif-
ferent noise distributions can be represented by«. Cur-
rently, « is treated as a constant to represent the white im
pulses. If another type of noise distribution, such as
Gaussian white, is to be considered,« may represent a
function that is to be determined by the noise distribution
It would be interesting to identify how this can be incorpo-
rated into the estimation ofF̂2N11~0,0! and subsequently
f̂ (x,y). Second, as presented in Secs. 2.2 and 2.3, the ide
tification success rate is a measure of how successful bo
the subimage and pixel identification decision functions
are. With possible variants in the CPI-based algorithms
further investigation into the variations of the decision

Table 6 Computing times required for different filters.

SNR (dB) Median Filter CPI-Median CPI-Estimate

50 4.7 s 2.5 s 1.6 s

30 4.7 s 2.1 s 1.4 s

10 4.7 s 2.5 s 1.6 s

0 4.7 s 2.2 s 1.4 s

210 4.7 s 2.1 s 1.3 s

230 4.7 s 2.2 s 1.4 s

250 4.7 s 2.4 s 1.5 s
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functions, or a completely new set of decision function
could point to more effective noise removal algorithm
with high ISR.
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