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New feature-preserving filter algorithm based on
a priori knowledge of pixel types

Andrew H. S. Lai, MEMBER SPIE Abstract. The concept and algorithmic details of a new corrupted-pixel-
Nelson H. C. Yung identification- (CPI)-based estimation filter are presented. The approach
University of Hong Kong is by transforming a noisy subimage centered on a corrupted pixel into its
Department of Electrical and Electronic discrete cosine transform (DCT) domain, and approximating the trans-

Engineering formed subimage by its DC (average) coefficient only, an estimation of
Pokfulam Road, Hong Kong the noise distribution is made by combining the knowledge of the number
E-mail: nyung@hkueee.hku.hk of corrupted pixels in the subimage and the pixel intensity of the noise

term. This enables the DC coefficient of the restored image in the DCT
domain to be determined, and from this, the restored pixel intensity can
be calculated by an inverse DCT. The whole restored image can be
obtained after all the corrupted pixels are exhausted. From an extensive
performance evaluation, it was found that the new algorithm has a num-
ber of desirable characteristics. First, the CPI-based estimation algorithm
performs extremely well when heavily degraded images are concerned.
Second, the CPI-based estimation algorithm has acceptable feature-
preserving properties, far better than the conventional median filter.
Third, the new algorithm can be applied iteratively to the same noisy
image. Fourth, the computing speed of the CPI-based estimation algo-
rithm is almost three times faster than the conventional median filter, and
1.6 times faster than the original CPI algorithm, making it the fastest
algorithm in this class so far. © 1996 Society of Photo-Optical Instrumentation
Engineers.
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impulse white noise; noise estimation; mean-square error; selective filtering.
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1 Introduction notes the noisy imagd,(x,y) denotes the original image,

Image filtering is commonly employed in digital image pro- and7(x,y) denotes the additive noise term:

cessing applications where images are degraded by ran- _

domly populated noise of the signal dependent and inde_g(x,y)—f(x,y)+ n(X.y). (1)
pendent kinds:? Of these, additive random white impulses
are fairly common due to poor input sampling of the image
and/or the image is being interfered by an external source

during transmissiof Digital image filters are designed, be determined. If(x,y) is also known, an objective mea-

therefore, with the primary goal to recover the original im-  g;rement may be performed, which relies on calculating the

is known exactly, the original image can be recovered from stored imagé&.This is given by

the noisy image completely in the additive case. However,
it is often not possnple to know exactly the nature of the Eyzlixwzl[f(X,y)—f(X,y)]z
noise, and the spatial randomness of the noise makes ther .=
determination of the noise content a process of estimation.
As a result, the restored image resembles the original, but is

never the same. In this respect, the process of image filter- Many noise filtering algorithms in the spatial domain

ing becomes a matter of minimizing the errors representing have been developed. Typical examples of these filters are
the difference between the original and the restored imagesthe median filtef:’~23 the averaging filtef:#9 the sigma

such that the restored image is both objectively and subjec-f”ter,zt the box filter>* and the general rank filtérThese

tively acceptable. A typical image degradation and restora- gpatial filtering algorithms are mostly designed for remov-
tion model is showfT® in Fig. 1. Mathematically, the ad-  ing a specific noise distribution. For example, the median
ditive nature of the noise enables the noisy image to be filter is designed to remove impulse noise, while the sigma
represented by the summation of the original image and afilter is designed to remove Gaussian noise. Of all these, the
noise distribution as given by Edl), whereg(x,y) de- median filter is the most widely used for two reasons. First,

From Eq.(1), the process of image filtering can be inter-
preted as givery(x,y) and thea priori knowledge of the
statistical nature ofy(x,y), an approximationf(x,y) can

WXH ' @

whereWXx H is the dimension of the image.
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corrupted pixel identificatiofCPI) algorithm, which di-

ooy Input Channels/ o) Restored vides the whole image into subimages and identify the pix-
————p{ Lansmission medum/ o I L B els’ natures within each subimage using a threshold crite-
Digitizers rion. The CPI algorithm coupled with a median filter as its

filter section(CPI-median has been evaluated extensively
and the results show that it offers a number of attractive
properties. First, it is faster both in theory and practice for
filter window size larger than 3. Second, it is more capable
of removing black or white impulses, Gaussian, and salt-
and-peﬁper impulses than the median, sigma, and averaging
filters 2415 And third, it also has a good feature-preserving
property that is missing in other conventional filter algo-
rithms. The distortion introduced by the CPI-median algo-
rithm is almost negligible compared with the other filter
algorithms. However, the CPIl-median algorithm fails under

Fig. 1 Image degradation and restoration model.

it is rather effective in removing salt-and-pepper noise and
similarly effective in removing white or black impulses if

the SNR is high. Second, it introduces a relatively small
amount of distortion to lines and edges in the image com-
pared with some other filter algorithms. These two features
are desirable, as the ideal result of image filtering is to have

all the noise removed and none of the image features af_heavily corrupted cases. One of the reasons is that the me-

fected. The performance of the median filter is close to this. dian filteri loved t th ted pixel
Similarly, the sigma filter has noise removal and feature- . lan fi'tering core émployed 1o process the corrupted pixels

preserving characteristics comparable with the median filter 'S Unable to remove noise pixels that are clustered together.
in the case of removing Gaussian noise. In general, theTh'S is due to the fact that the median filter operates on the

sigma filter performs slightly better for images degraded by 2SSumption that noisy pixels are in the minority within the
Ggussian n(F))ise, Wheregs t%e median filtergperfor?ns slight)I/yf'lFer window. The deslre to find a CF’"b?SGd algorithm that
better for images degraded by impulse noise. W[II replace th_e median filter core and is qapable of han-
Furthermore, it is observed that all these filtering algo- dling the heavily corrupted cases and yet still has an accept-
rithms share one common characteristic: every single pixel a0le feature-preserving ability becomes the motivation of
in the image is subjected to the same filtering process dis-the research presented in this paper. _
regarding the nature of the pixel. The reason is simply that !N this paper, the concept and algorithmic details of a
such filtering algorithms do not have any knowledge of the Néw CPI-based estimation filter are presented. The philoso-
nature of the pixels. In other words, they are not designed Phy of the algorithm is that if we can estimate the noise
to distinguish which pixel is affected by the noise distribu- distribution within a subimage by using tiaepriori knowl-
tion and which is not. Therefore, all the pixels must be ©dge of the pixel types, then the reconstructed image within
considered equally and treated in exactly the same way.the subimage can be determined by subtracting the noise
This approach has two obvious effects at least. First, sincet€m from the noisy image. This seemingly straightforward
the pixels unaffected by noise are also processed, certainPhilosophy hinges heavily on how the noise term is esti-
distortion to the image content will be inevitably introduced mMated, which is partly determined by the nature of the
as a result, especially when these pixels are usually in thenoise degradation and partly determined by the estimation
majority. Such distortion may be unacceptable as it can @lgorithm employed. By considering the noise distribution
reduce the sharpness of lines, edges, and boundaries. Sed0 be strong, spikelike impulses, the issues of how the
ond, processing the whole image wastes a significant@ priori knowledge of the pixel types from the CPI algo-
amount of computing resources and may become critical in fithm can be effectively used and the estimation of the re-
real-time applications. This problem will likely become stored image by the DGveragg coefficient of the discrete
worse as the size of image is becoming larger in multime- cosine transforniDCT) on a subimage are considered. The
dia processing, and the real-time demand of such applica-idea is simply by transforming a noisy subimage centered
tions is stringent. on a corrupted pixel into its DCT domain, and approximat-
In the light of this, if the nature of the pixels is known, ing the transformed subimage by its DC coefficient only, an
there would be at least two advantages. First, for pixels of estimation of the noise distribution is made by using the
different natures, different treatment may be employed so knowledge of the number of corrupted pixels in the subim-
that fine details in the image can be retained. In the simplestage and the pixel intensity of the noise term. This enables
case, corrupted pixels can be processed by a filter window,the DC coefficient of the restored image in the DCT do-
while the uncorrupted pixels are not processed at all. Sec-main to be determined, and from this, the restored pixel
ond, if only a selected subset of pixels is processed, sub-intensity can be calculated by an inverse DCT. As a resullt,
stantial computing resources can be saved, given the algothe whole restored image can be obtained after all the cor-
rithmic overhead for identifying the pixels’ natures is rupted pixels are exhausted.
smaller than the computing resources wasted on processing The CPI-based estimation algorithm was evaluated ex-
the whole image. Along the line of this argument, a gener- tensively together with the CPI-median and a conventional
alized mean filter algorithm was developed for removing median filter in terms of their noise removal potential
impulse noise using the concepts of thresholding and against white impulse noise, their feature-preserving abil-
complementation! This particular algorithm performs as ity, their effect on the restored image if they are applied
well as the median filter, but the computing overhead re- iteratively, and their computing requirements. From the re-
quired for identifying pixel types is high, and its overall sults of the evaluation, a number of observations can be
delay is expected to be longer than that of the median filter. made. First, the CPIl-based estimation algorithm performs
Instead of considering every single pixel in the image, extremely well when heavily degraded images are con-
Yung and Lat** proposed a subimage approach, called the cerned. This is the case where CPI-median algorithm fails
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Fig. 2 CPI model.

to perform. On the other hand, the CPI-based estimationtional filter algorithms and, second, to achieve a high
algorithm does not perform as well as the CPI-median feature-preserving property that will enable the algorithm
when SNR is high. In both cases, the performance of the to be used in applications where even slight feature distor-
conventional median filter is some way behind the two tion is not tolerable. Developed on the argument of process-
CPI-based algorithms. Second, the CPI-based estimation aling with discrimination, the CPI algorithm was developed
gorithm has an acceptable feature-preserving property, al-on the basis that, by classifying the nature of the pixels in a
though it is not as good as the CPI-median algorithm. The noisy image, the only pixels needed to be processed are the
median filter has the worst feature-preserving performance corrupted pixels:* With this, a number of characteristics
among the three. Third, one of the characteristics of the are obvious. First, the computing requirement of the algo-
CPI-median algorithm is that it can be applied iteratively to rithm will be proportional to the number of corrupted pixels
improve the mean-square error as well as the visual quality identified instead of the image size. Second, image feature
of the restored image when the image is heavily degraded.is preserved because of the selective filtering. Third, the
On this point, the median filter is not suitable to be applied accuracy of the filtering will be determined by the identifi-
iteratively at all due to the substantial distortion caused cation success rat@SR). If the CPI algorithm has a low
after each iteration. In the case of the CPI-based estimationISR, a poor restored image is to be expected. Fourth, the
algorithm, our analysis shows that using the algorithm it- CPI algorithm will incur a certain amount of computation
eratively will introduce a small degree of feature distortion overhead that will have to be comparable with the conven-
each time, but the effect is not significant. However, it is tional algorithms, if not better.
best not to apply the algorithm iteratively since the majority ~ The model of the CPI algorithm is depicted in Fig. 2. It
of the noise is removed after the first iteration. Fourth, the first divides the imageg(x,y) into subimages of which
computing speed of the CPI-based estimation algorithm is each subimage is tested if the difference between the maxi-
almost three times faster than the conventional median fil- mum intensity and the minimum intensity in the subimage
ter, and 1.6 times faster than the CPI-median algorithm, satisfies a condition. This condition is that if the intensity
making it the fastest algorithm in this class so far. difference within the subimage is large, then no decision
The organization of this paper is as follows: Sec. 2 gives should be made, and further subdivision is required, other-
a brief overview of the CPI algorithm; its decision func- wise the mean intensity of the subimage should be calcu-
tions; its identification success rate; and its performance, lated and used as the threshold to classify the pixels in the
merits, and drawbacks. Section 3 brings out the conceptsubimage. The number of black and white pixels in the
and philosophy of the CPI-based estimation filtering meth- subimage are counted, and the group that is in the minority
odology and the algorithm in detail. Section 4 presents the is considered corrupted. The lists of corrupted pixels of all
performance evaluation results of the CPI-based estimationthe subimages are combined after the whole image has
filter, focused on the capability of removing white impulse been interrogated. The combined list is used for selectively
noise, feature-preserving property, iterative application filtering the noisy image in the filter section. Note that the
property, and computing requirement of the algorithm. Sec- subimage approach is used only for generating the list of
tion 5 concludes the merits and pitfalls of the CPI-based corrupted pixels. The subsequent filtering section could use
estimation filtering algorithm. any filter algorithms or window sizes on the noisy image
itself.

2 CPI Algorithm o )
2.2 Decision Functions

2.1 Pixel [dentification Model The decision functions for the subimage division and pixel
The aims of this model are, first, to improve or maintain a identification of the CPI algorithm are given by equations
noise removal capability comparable with existing conven- (3) and(4). For subimage division:
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Table 1 ISR of the CPI algorithm.

SNR (dB) “Lady” “Mickey” “Lab” “Casino Ticket” “Sample”
50 70.97 70.27 67.26 75.23 93.31
30 74.80 77.48 73.90 81.04 94.04
10 82.22 86.17 81.78 86.11 95.02
0 85.51 89.54 84.56 87.20 95.36
-10 87.98 92.13 86.62 88.45 95.94
-30 91.21 94.68 89.03 88.63 96.45
-50 92.43 95.76 89.87 88.92 96.70
y=n-1 originally corrupted pixels are identified as not corrupted
x=m—1 . .. )
and not filtered. Second, the originally not corrupted pixels
I;,(m,n)= max X+Xi, YtV . e ' ; .
(m.n) “=0 Lo YTyl are identified as corrupted and filtered. Neither of these two
y=0 scenarios is desirable and should be minimized. Ideally, if
all the corrupted and uncorrupted pixels are correctly iden-
y=n-1 tified (100% ISR and the filtering operation can com-
x=m-1 letely reconstruct the original uncorrupted pixels, then the
- min [g(xtxi, yFyik @ estored i ble: . the original | |
“=0 red image resembles exactly the original image. In
y=0 practice, the ISR can be as high as 96% for certain type of

i i ) ) images, using the definition given by E@). It is antici-
where I;(m,n) is the intensity spread of the subimage pated that such a success rate would be maintained or even
Si(m,n), andm andn are the dimension of the subimage. jmproved with better decision functions. As for the filter
If 1;(m,n) is greater than a predefined maximum intensity operation, a perfect reconstruction may not be possible, and
spread and the size of the subimagem,n) is greater than  herefore, a close approximation with a small amount of
the minimum subimage sizeS(mg,ng), then divide oy is to be tolerated. It is the purpose of this section to
Si(m,n) into two equal but smaller subimages according expjore the implications of the ISR. The issue of filter op-
to: If m=n thenS;,;(m/2,n), elseS;,;(m,n/2). eration and a new estimation filter based on the CPI algo-

For pixel identification: rithm are discussed in Sec. 3.
) From the preceding argument, the ISR can be defined by
— 1 if g(x+x%;, y+y;))>M;(m,n)
QX YEV =0 if gix+x, y+y)=Mi(mn) N(Pese) +N(pare)

ISR= WH X100, (5)

for x=0,...m—1 andy=0,...n—1,

(4a) where p,,. is a corrupted pixel identified as corrupted,
pcrc is an uncorrupted pixels identified as uncorrupted,

Corrupted pixels N(p.e) is the number of corrupted pixel identified as cor-
[ g(x+X;, y+y;) where g(x+x;, y+y;)=0 rupted; andN(pz7s) is the number of uncorrupted pixels

identified as uncorrupted.

ntnt mn Extensive evaluation of the ISR with respect to the SNR
when 2 Z g(x+x, y+yj)=—-+bias and the type of images have been conducted and the results
_ y=0x=0 o are showr® in Table 1. These ISR results are obtained for
g(x+x;, y+y;) where g(x+x;, y+y;)=1 SNR ranges from 50 te-50 dB and over five different
n—1m-1 images. Noisy images are generated by adding random im-

pulse white noise to the original images. The distribution
and density of the noisy pixels are calculdfettom the
SNR. These images are “Lady,” a head-and-shoulder pic-
ture against a window; “Mickey,” a Mickey mouse key
ring against a smooth background with fairly clear line and
edge definitions; “Lab,” a busy image of a laboratory
scene with a lot of fine details; “Casino Ticket,” a lottery
ticket with coarse and fine objects; and “Sample,” a
computer-generated image with well-defined lines and
shapes over a smooth background. These images are de-
picted in Fig. 3.

From Table 1, we can make two observations. First, in
2.3 ISR general, the ISR is inversely proportional to the SNR for all
In the CPI filtering model, two possible scenarios could the images tested, implying the CPI algorithm performs
cause the identification accuracy become low. First, the better in the case of heavily degraded images, and not so

_ mn
when >, > g(x+X, y+y;)<— +bias,
\ y=0 x=0 2
(4b)

whereM;(m,n) denotes the mean intensity within the sub-
image and the other variables have their usual definitibns.
The bias in Eq.(4b) is determined by the type of noise
corruption, which can be greater than or equal to zero for
white impulse noise and less than zero for black impulse
noise.
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Fig. 3 (a) “Lady,” (b) “Mickey,” (c) “Lab,” (d) “Sample,” and (e) “Casino Ticket.”

well for the lightly degraded images. As the identification according to the list of corrupted pixels supplied by the CPI
decision function only conducts a binary decision, the algorithm. Each corrupted pixel on the list is visited and the
chances of the uncorrupted image feature being identifiedmedian is calculated over all the 25 pixels with the cor-
as corrupted in the lightly degraded case would be higher rupted pixel being at the center of the filter window, disre-
compared with the heavily corrupted case. Therefore, suchgarding whether any of the neighborhood pixels are cor-
a result is not entirely unexpected. Second, the ISRs of therupted or not. Figure @ depicts the original image of
four images are not the same. For similar images such as‘Casino Ticket,” which has a number of well-defined fea-
the “Lady” and “Mickey,” their ISRs are expected to be tures as well as some fine details at the bottom and toward
similar. The “Mickey” image has an ISR about 3% better the right of the image. The ISR for this image is expected
than the “Lady” image. This can be explained by the bet- to be between those of the “Mickey” image and “Lab”

ter line and edge definitions of the “Mickey” image. Fur- image. Figure &) shows the noisy image corrupted by
thermore, the “Lab” image has the worst ISR throughout white impulses at SNR—50 dB, and Figs. &) and 4d)

the entire SNR range, which can be attributed to the present the restored images using the conventional median
amount of detail in the image being misidentified as cor- filter and the CPI-median filter, respectively. It can be seen
rupted. On the other hand, the well-defined computer- from these two images that for a heavily degraded image, a
generated “Sample” image has the best ISR at almost all conventional median filter fails to remove some of the
values of SNR. In conclusion, the ISR of the CPI algorithm nojse pixels due to high local noise density. As a result,
is image sensitive, and it works better with images that they appear as noise clusters in the restored image. More-
have well-defined line and edge features, and less effec-gver, the median filter also has a detrimental effect on the
tively if the image contains a large amount of fine details. fine details of the image, for example, the characters at the
. ) bottom of the image have almost disappeared because of
2.4 Performance of the CPI-Median Algorithm the filtering. In the case of the CPIl-median filter, there are
To demonstrate the performance of the CPI algorithm, a still noise clusters left in the restored image, but the sever-
5X5 median filter is selected to be used in the filter section, ity of such looks to be less than the median filter. Further-
as depicted in Fig. 2. In principle, the median filter operates more, more original image features are preserved as a result

i N

(a) (b) (©) (d)

Fig. 4 (a) Original image, (b) noisy image (SNR=-50 dB), (c) restored by the conventional median
filter, (d) and restored by the CPI algorithm with a median filter as its filter section.
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of the selective nature of the algorithm. The example illus- pixel types, then the reconstructed image can be determined
trated here agrees well with the extensive performanceby subtracting the noise term from the noisy image. This
evaluation given in Yung and L3t*and Yung and Yungd® seemingly straightforward philosophy hinges heavily on

) how the noise term is estimated, which is partly determined
2.5 Merits and Drawbacks by the nature of the noise degradation and partly deter-
To simply quote the results from Yung and L}aithere are ~ mined by the estimation algorithm employed. With respect
a number of merits due to the CPI algorithm. First, it pre- to the former, the estimation algorithm must be able to deal
serves high-frequency image features where other conven-Wwith the certain type of noise degradation involved, which
tional or nonselective filters smooth out. This is a desirable can be accommodated in the design of the estimation algo-
property, as in applications such as video phone, the re-rithm. For the estimation algorithm used, its goals must be
stored image is preferred to resemble the original image to ensure a very high percentage of the noise degradation is
closely. Second, when white or black impulses or Gaussianbeing removed, and equally, a very high percentage of the
noise is concerned, the CPI algorithm has the best noiseoriginal features are preserved. Based on this philosophy,

removal performance among filters such as the median andthe following concept was developed.

sigma algorithms. The objective measure of the mean-
square errofMSE) and the subjective visual inspection
consistently highlight the superiority of the algorithm.
Third, the computing resource requirement of the CPI al-
gorithm is lower than that of the other filters both theoreti-
cally and practically. In theory, the CPI algorithm performs
better than the median filter f¢2N+1)>3. In practice, the

By considering the noise distribution to be strong, spike-
like impulses, the issues of how tlaepriori knowledge of
the pixel types from the CPI algorithm can be effectively
used and the estimation of the restored image by the DC
coefficient of the DCT on a subimage are considered. The
idea is that by transforming a noisy subimage centered on a
corrupted pixel into its DCT domain, and approximating

CPI algorithm approaches two times faster than the medianthe transformed subimage by its DC coefficient only, an

filter. Fourth, due to the feature preservation property of the
CPI algorithm, it can be applied iteratively when the noisy
image has very low SNRs. Evaluation of this particular

estimation of the noise distributiafin this case, the white
impulses is made by using the knowledge of the number of
corrupted pixels in the subimage and the pixel intensity of

property shows that an optimal result can be obtained afterthe noise term. This enables the DC coefficient of the re-

two or three iterations depending on the noise content.

stored image in the DCT domain to be determined, and

However, there are a number of drawbacks associatedfrom this, the restored pixel intensity can be calculated by

with the CPI algorithm as well. First, if both black and
white noise appear in the image, as both the black and
white pixels have similar probability of being the corrupted
pixels, the decision function in determining the majority
pixels could wrongly identify either the black or white pix-

an inverse DCT. As a result, the whole restored image can
be obtained after all the corrupted pixels are exhausted. The
conceptual diagram of the new filter algorithm is depicted
in Fig. 5.

els as the uncorrupted pixels. Second, although the subim-3 5 Algorithm

age approach is relatively fast compared with the conven-
tional approaches, the errors due to low ISR could be
significant if the SNR of the noisy image is high. Never-

The purpose of the DCT filter is to filter only the noisy
pixel of concern(the center pixel inside the filtering win-

theless, these errors would be translated into errors in thedoW) and leave the other pixels inside the window un-

restored image as corrupted pixels that are not processe
(insufficient noise removgland uncorrupted pixels that are
processedfeature degradationThird, the filtering stage is
performed by a conventional filter operat@mediarn, in
which the median is calculated based on all the pixels in the
window, disregarding whether these neighboring pixels are
corrupted or not. Since the knowledge of which pixel is
corrupted isa priori, there is no reason why the filtering
should not be carried out on a more selective basis, for
example, in the median case, only the uncorrupted pixels
are included in the calculation of the median. Preliminary
results obtained recently indicate that substantial improve-
ment is possible if the knowledge of pixel type is consid-
ered appropriatel{® Section 3 essentially further explores
this possibility and presents a new algorithm that uses the
a priori knowledge. The result of combining the CPI phi-
losophy with selective filtering is that the new algorithm
gives a much better filter performance, especially for
heavily degraded images.

3 CPI-Based Estimation Filter Algorithm
3.1 Concept and Philosophy

douched. In other words, if there are more than one noisy

pixels inside the filtering window, only the noisy pixel at
the center will be filtered out during the operation. Other
noisy pixels are considered when they are in the center of
the window. This is explained in Fig. 6. Let us define the
following:

f(x,y) = original image

7(X,Y) = additive noise term

a(x,y) = noisy image

?(x,y) = restored image

€ = approximated noise intensity

Fon+1(0,0 = DC component of(u,v) over a
subimage siz¢2N+1)?

G,n4+1(0,0 = DC component of5(u,v) over a
subimage siz€2N+1)?

|52N+1(0,0) = DC component oiE(u,v) over a
subimage siz€2N+1)?

S = number of corrupted pixels identified

by the CPI algorithm.

The philosophy of the algorithm is that if we can estimate The discrete cosine transform &fx,y) and its inverse are

the noise distribution using tha priori knowledge of the

given by"18
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Fig. 5 Conceptual diagram of the new feature-preserving filter algorithm.

F(uv)= SNT1 C(u)C(v)
N N
(2x+1Lyumw
|2y y;N fO0y) cosZoRT D)
y+Lluvm
XCOSW , (6&)
N N
fay) =551 | 2, 2, CWCF(UL)
(2x+1)umw y+Llvw
XCOSTONTT) PS202N+ 1) (6b)

where Eq.(6a) represents the forward DCT and E@b)
represents the inverse DCT. The DC componerff(cnf v)
whenu=v =0 over a window size of2N+1)? is given by
Eq. (7a, and the inverse is given by E¢rb). Equations
(7a) and(7b) form a simplified DCT pair:

N N
Fon-1(00= gy | 2, 2 Foa) |, (7a)
Fan+1(0.0
f(X,Y)=W, (7b)

noise

original subimage

noisy subimage

whereF,y, 1(u,v) is zero everywhere except atv=0.
By taking the DCT of Eq.1) and foru=v=0, the DC
component of the noisy imagg(x,y) is given by

N N
2 2 g(x.y)

N N

Gon+1(0,0=

(2N+1)

1
(2N+1)

2 E n(x.y) |-

x=—Ny=—N

®

(2N+ 1)

Assume all the additive noise pixels within the filtering
window have approximately the same intengitythen the
intensity of the noise pixels can be estimated by

_Je if g(xy) is corrupted
”(X'y)‘[o otherwise. ©

This assumption is designed to deal with the white impulse
noise in question. For other types of noise distributions, Eq.
(9) can be generalized to the average value or the sum of
7(x,y) over the window(2N+1)? can be approximated by
the noise distribution.

With the number of corrupted pixé& being given by the
CPI algorithm, we approximate the sum gfx,y) in Eq.
(8) by Se, from which G,y 1(0,0) can be rewritten by

DCT
Filter

(xy) (x,y)

filtered subimage

Fig. 6 Expectation of the filter algorithm.
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N N

> EN f(x,y)

x=—Ny=-—

Gon+1(0,0=

2N+ 1) TNt

=Font1(0,0+ (10

(2N+1)"

From Eq.(10), if the corrupted pixel at the center of the
subimage is restored, then the number of corrupted pixels

left in the subimage becoméS—1), and the imagé (x,y)

is still degraded byzn(x,y) everywhere in the subimage
except at the center. Therefore the DC coefficient of the

DCT of f(x,y) can be represented by

(S—1)e

Fan+1(0.0=Fan2(0.0+ gy (11)
Combining Eqgs(10) and(11), we have

- e
Font1(0,0=Gon+1(0,0 = (2N+1)’ (12
Let the approximated noise intensity be given by
e=g(x,y) = f(xy), (13

and substituting Eqg.7b) and (13) into Eq. (10) and rear-
ranging, we have

Fon+1(0,00=G,n41(0,0 -

(2N+1)
B Sg(x,y)—f(x,y)]
=Gon+1(0,0 - 2N+1)
=Gon+1(0,0 - 2NFD)
Fon+1(0,0)
X Q(X,Y)—(Zl\l—+1) : (14
By further rearranging Eq14), we have
S
Font1(0,0)1— (2N+1)2
S
=Gon+1(0,0 - 2NTD) g(x,y),
or
S
Gont1(0,0 - 2NFD) a(x,y)
Fon+1(0,0= (15

1-[S/(2N+1)?]

By substituting Eqs(7b), (13), and(15) into Eq. (12), the
DC component of,y . 1(0,0) is given by

R e
Faon+1(0,0=G,n+1(0,0 — 2N+ 1)

=Gyn+1(0,0— 2NT1)
y 3 Fan+1(0,0)
9xY) = "oN+1)
1 1
=Gon+1(0,0 - 2NT D) g(x,y)— (2NF D)

Gon+1(0,00— [S/(2N+1)] g(x,y)
1-[S/(2N+1)?]

1
=Gon+1(0,0] 1+ MTS} —g(x,y)
2N+1
X 2NT 12—/ (16)

As g(x,y) is given, G,y 1(0,0) calculated fromg(x,y),

and with the knowledge ofs from the CPI algorithm,
Fon+1(0,0 can be determined. Onée,y, 1(0,0) is known,
f(x,y) can be deduced from Eg7h).

4 Performance Evaluation

The purpose of this performance evaluation is to determine
how well the new CPIl-based estimation filter algorithm
performs compared with the conventional median filter, and
the CPI-median filter as described in Sec. 2. The compari-
son is based on evaluating the MSE between the restored
image f(x,y) and the original imagd(x,y) in all cases
where the “Casino Ticket” image is degraded by white
impulses for SNRs ranging from-50 to +50 dB. The
“Casino Ticket” consists of 256 gray levels ranging from
0 (black) to 255 (white) and having a spatial dimension of
227x533. The features of this image are that there are quite
a large number of objects and characters on the ticket, the
edges and lines representing the objects and characters are
fairly well defined, and there are a few character fonts used
such as the designed font used at the(fgor contragt the
font used for the dollar valuggiood contragt and the dot-
matrix printed font at the bottom of the tickgboor print
quality).

The evaluation is focused on a number of aspects:

1. noise removal capability over images degraded by
white impulses

2. smoothing effect caused by the various filter algo-
rithms

3. effect of applying these filter algorithms iteratively to
the same image

4. computing resources requirement in each case.

In the evaluation, the paramethris set to 2 in all cases,
meaning the conventional median usesxb5vindow, and

the subimage size is either equal to or greater than the size
of the filter to have meaningful results. Based on this argu-
ment, the CPI-median algorithm uses &% median filter

and the CPI-based estimation filter algorithm also uses a
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Table 2 Comparison of MSEs among different filters. MSE versus SNR
SNR (dB) Before Filtering Median CPI-Median CPI-Estimate 5000
50 804.82 961.70 284.74 391.98 4000
30 1866.98 1085.84 309.19 373.46 2000 —e— Median
10 3664.43 1455.62 437.61 378.30 Z’ —m— CPHmedian
2000 .
0 4708.02 1783.01 568.87 388.89 —&— CPrestimate
-10 5697.65 2209.70 789.32 414.33 1000 4
-30 7146.99 3523.78  1532.82 473.69 0¥ , . ‘ [
-50 7863.48 4823.39 2289.47 511.27 50 30 10 0 10 -30 -50

SNR

Fig. 7 MSEs of the three filters versus SNR.
5X5 subimage size for simplicity. In addition, the CPI al-
gorithm uses a maximum intensity spre@dlIS) equal to

32, which corresponds to the acceptable intensity variation jines and edges are more distorted than the other two algo-
of a pixel with its neighborhood pixels. For the reason for yithms, This can be seen at the top region where the word
choosing these values, refer to Yung and Yai. “NEVADA” is, and also the words “BAR” and the dot-
. - matrix printed words at the bottom of the ticket. For the

4.1 Noise Removal Capability CPI-based filters, the CPI-median filter appears to have the
Table 2 depicts the MSE for all the three cases, including least distortion and all the noise pixels are successfully re-
the MSE of the noisy image before filtering. These values moved. This is also true for the CPI-based estimation filter
are plotted in Fig. 7 with the MSE versus SNR. From Fig. except that the restored image appears to be blurred more
7, a number of points can be observed. First, all the threethan the CPIl-median image. This can be seen from the
filter algorithms remove noise as expected. Judging from horizontal lines on the image. Broadly, the CPI-median im-
the figures, the CPIl-based filters are more effective than theage is most pleasing to look at among the three.
median filter over the whole range. Second, the MSE be- In the case of SNRO dB (Fig. 9), the restored images
havior over the SNR range is monotonic. The MSEs of all are still considered acceptable visually except that small
the filters increase with decreasing SNR, with the MSE of isolated noise clusters can be detected in the restored im-
the CPI-based estimation filter increasing fairly slightly, the ages by the median filter and the CPIl-median filter, on
CPI-median algorithm increasing at a faster rate, and the close inspection. The median filtered image has lines and
median filter increasing at the fastest rate. Third, for an edges that are obviously blurred to an extent that the char-
SNR above 30 dB, the CPIl-median performs best. For anacters printed at the bottom of the ticket are now totally
SNR below 10 dB, the CPI-based estimation filter has the unrecognizable. This is partly attributed to the poor print
best MSE consistently. quality of the characters in the first place. On the other

For subjective inspection, the restored images for SNR hand, the two CPl-based filters perform very well, with
=50, 0, and—50 dB are shown in Figs. 8, 9, and 10, their restored images of fairly high quality. There are, how-
respectively. In the case of a lightly degraded imégig. ever, two minor differences between the two. First, there
8), the restored images of all the three filter algorithms are are isolated noise clusters on the CPI-median image, but
acceptable, perhaps, in the case of the median filter, certaimot on the CPI-based estimation filter. Second, the contrast

(@ (b © (d) ()

Fig. 8 (@) Original image, (b) noisy image (SNR=+50 dB), (c) restored by median filter, (d) restored
by CPI-median filter, and (e) restored by CPI-based estimation filter.
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Sore | | TR
| MR 02477 ﬁl:ﬁiﬂ 5
@ ® © @ ©

Fig. 9 (a) Original image, (b) noisy image (SNR=0 dB), (c) restored by median filter, (d) restored by
CPI-median filter, and (e) restored by CPI-based estimation filter.

of the CPI-based estimation filter seems to be a little less edges are well preserved, apart from the minor distortion

than the CPI-median filter. This contrast reduction is a mi- that is still evident on close inspection. This makes the

nor feature of the CPI-type algorithms. CPl-based estimation image the most acceptable visually,
In the heavily degraded case as depicted in Fig. 10, theand its low MSE compared with the other two algorithms

image restored by the median filter contains extensive noisealso indicates its superior performance when low SNR is

clusters that makes it visually unacceptable. Its severity is concerned.

such that even the well-contrasted dollar numerals on the

right of the ticket are heavily distorted as well as the ob- .

jects and other characters on the ticket. This poor result4-2 Feéature Preserving Property

accounts for the large MSE for this case, as shown in Table This evaluation aims to identify how well a filter algorithm

2. The image restored by the CPIl-median filter also has apreserves features when undertaking the noise filtering pro-

large amount of noise clusters, but the clusters are notice-cess. The three different filters: conventional median, CPI-

ably smaller and not as intense as in the median case. Nevimedian, and CPl-based estimate filters are applied to the

ertheless, the existence of the noise clusters in the restoredriginal image as depicted in Fig. (). From the MSE

image makes it visually unacceptable. On the other hand, measured and the visual inspection of the restored images,

the features of the ticket are still very much intact, with the feature preserving property of each filter algorithm can

distortion mainly due to the presence of noise clusters. In be studied. The restored images are depicted in Fig) 11

the case of the CPl-based estimation filter, the restored im-to 11(d). Their absolute and relative MSEs are tabulated in

age is virtually free of noise clusters and the lines and Table 3.

60,3
Vo ec
a9 M

@ (b) © @ ©

Fig. 10 (a) Original image, (b) noisy image (SNR=—50 dB), (c) restored by median filter, (d) restored
by CPI-median filter, and (e) restored by CPI-based estimation filter.
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Table 3 Comparison of absolute and relative MSEs among different

l fiters.
i ' Median CPI-Median CPI-Estimate

bR Bk :1"' |
AAj y Absolute 920.1 285.57 421.21
A O 2 *Y Relative 3.22 1 1.47
00.]
s D\ 8
eee.1 (%8
) $$...
KTV . " YO8 R.C.
04 M 0N% M3
@ (®) ©) @
) o o Table 4 lterative performance of different filters on noisy image at
Fig. 11 (a) Original image, (b) restored by median filter, (c) restored SNR=-10 dB.
by CPIl-median algorithm, and (d) restored by CPI-based estimation
algorithm. . . . .
Iterations Median CPI-Median CPI-Estimate
. . X1 2209.70 789.32 414.33
_ Frorr_1 Table 3, it can be seen that the .CPI-medlan algo- 2993.68 589.08 706.66
rithm gives the lowest MSE compared with the CPI-based
. . . . . - 2346.94 589.09 964.55
estimation algorithm, whose MSE is 1.47 times higher, and
2444.32 634.75 1217.13

the conventional median algorithm, whose MSE is 3.22 X
times higher. These values agree with the results presented
in the previous sections that the CPI-median offers the low-
est MSE at high SNR, followed by the CPI-based estima-
tion. The median filter is the worst performer in such an
SNR range. On visual inspection, the CPI-median image
appears to resemble the original image closely with almost
all features preserved. The CPIl-based estimation image ap-

pears to have fine blurring at the lines and edges of objects

and characters, and the dynamic range seems to be reduced

more. Note, however, that these effects are minor and as a

whole, most features are reasonably preserved. For the me7Jable 5 lterative performance of different filters on noisy image at
dian image, blurring can be obviously seen across the SNR="50 dB.

whole image. In particular, the characters at the bottom of

- ! . . Iterations Median CPI-Median CPI-Estimate
the ticket are severely distorted, the object outlines are - : : :
blurred and some of the fine features are now merged to- «q 4823.39 2289.47 511.27
gether with their adjacent features. %2 2150 64 1034.94 76717

. S . . X3 4026.85 848.39 983.51
4.3 lIterative Application of the Filter Algorithms “a 4028.97 817 84 1203.06

The purpose of this evaluation is to develop an understand

ing of how each filter algorithm performs if it is applied

iteratively to the same noisy image. Although noise filters

are not normally used in this way, iterative application may

be useful if the image is heavily degraded. In this case, the

noisy “Casino Ticket” images degraded at SNR-10 and

—50 dB were subjected to repeated application of the same

algorithm for up to four times. Their MSE values are tabu-

lated in Tables 4 and 5, respectively. 0.4500
From Table 4 and Fig. 12, it can be seen that the MSE 04000

for the median filter rises slowly as the number of iterations § %3°%

increases. At SNR—10 dB, this result is expected, as gjggg

most of the noise would have been removed after the first

& median
—&— CP-median

MSE (normalized)

0.2000 >
iteration. Further application of the same algorithm will 0.1500 —#— CPrestimate
only introduce more blurring and distortion to the restored 0.1000
image. In the CPI-median case, the MSE has a minimum  %95%
. . . 0.0000 + t
after the second iteration, and it rises very slowly beyond 1 o A @

that. This can be explained by the fact that most of the
remaining noise pixels/clusters are removed after the sec-
ond iteration, after Wh'_Ch: there is no more significant noise Fig. 12 iterative performance (normalized) of different filters on
removal other than slight feature distortion. For the CPI- noisy image at SNR=-10 dB.

Iterations
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0.7000
0.6000 ,\‘\‘——4 3 = | |
3 s i
0.5000 + > - ~ o 4
¢ median .
0.4000 _ Th
—@— CPimedian “ o Jaw.
0.3000 , 5
—a— CPrestimate Yo 1
0.2000 o8
0.1000 0‘0 's
.
0.0000 + + + ! w
x1 x2 x3 x4 -
-
Iterations "‘ l‘
3 -

U s

MSE (normalized)

1>

€=

YYY
447
00."
4y
T b ¥

1@<

Fig. 13 lterative performance (normalized) of different filters on bl ; 0 ¢ “Newe 2 C.

noisy image at SNR=-50 dB. ‘ o M BNR N2

based estimation algorithm, the initial MSE is the lowest.  (a) Median (b) CPI-median (c) CPI-estimate

But when applied iteratively, its MSE increases rapidly

above the CPI-median MSE. This can be explained by the Fig. 15 Second iteration.

fact that the CPI-based estimation algorithm effectively re-

moved most of the noise after the first iteration. Further

:’:)esrs tlrggilt?r;rgri)rl]y;ﬁ%shee? I\sl)rSeE.features in the image to be deduce_d that the CPI-mec_JIian algprithm gives the_best re-
As depicted in Table 5 and Fig. 13, the MSE behavior of stored image at the fourth iteratipRig. 17b)]. Essentially,

the median filter is different when the SNR is ldw 50 almost all noise clusters are removed from the image and

- t of the image features are preserved.
dB). Instead of rising, the MSE decreases as the number of Mos =2 X
iterations increases. This is because of the extensive noisearngrntge Caﬁl'biﬁetiss“r@a%ogaclgggtshm’ﬁgfeMZE&%SEHZ
clusters that still remain in the image after the first iteration, par wi previou , WNETe 1S MSE |
which are further removed in the subsequent iterations. Vi- better after one or two iterations, and rises to just slightly
sually, this can be seen in Figs. 14 to 17. The number of above the CPI-median’'s MSE at the fourth iteration. The
noise clusters is reduced noticeably after a number of itera-9€N€ral trend agrees with the previous case and can be ex-
tions, but unfortunately, the degree of distortion has in- Plaineéd by the fact that the CPI-based estimation algorithm
creased to such an extent that the restored image is severel?a a lot more effecﬂye In noise rer_noval 'and therefore gives
blurred [Fig. 17@)]. In the case of the CPl-median, the _he best MSE after just one iteration. Visually, the restored
MSE decreases as the number of iterations increases. ThéTaggthalsc.’ appelgirg to be tth(;al béﬁg. 140)]. When the .
reduction is quite substantial by almost three times after the ai)g(jolr ! tmbls f‘prﬁ "\3/ drepﬁg ?n %’ detrr? airrﬁ no fmo;ernmscr-:‘
fourth iteration. This indicates that the extensive noise clus—g €IS b(I) eded 0 te "ta i hﬁ ead, ef ?ge eatures are
ters remaining in the image after the first iteration are being €ing biurred due 1o 1s siightly poorer feature-preserving
removed further. A minimum in this MSE curve is ex- ab'I'Fy than the CPl-median algorithm. This accounts for
pected at a higher number of iterations, after which the the increase in the MSE over the number of iterations. It
MSE will increase as in Fig. 12. From the images restored ¢ also be seen visually that the images restored by the
by the CPI-median as shown in Figs. 14 to 17, it can be CPl-based estimation algorithm have deteriorating visual

| N

.-

TR

287 || 8887 247 A
991|808 805 0
$00.5 | (0003 E 06
$68.]| | 998§.] 988." L L
(a) Median  (b) CPI-median  (c)CPI-estimate (a) Median (b) CPI-median (c) CPI-estimate

Fig. 14 First iteration. Fig. 16 Third iteration.
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Table 6 Computing times required for different filters.
SNR (dB) Median Filter CPI-Median CPI-Estimate
YYD 50 47 s 25 s 16s
il o 30 47 s 21s 14s
v Y 10 47 s 25 s 16s
TY 0 47 s 22's 14s
¢' # -10 47 s 21s 13s
.A J\ -30 47 s 22's 14s
;S -50 47 s 24 s 15s
: Yy
L g
0N M
performance evaluation given in Sec. 4.1, it can be noted
(a) Median (b) CPI-median  (c) CPlI-estimate that its noise removal capability is more effective for im-
ages heavily corrupted by white impulses, whereas the CPI-
Fig. 17 Fourth iteration. median filter is more suitable for lightly corrupted images.

On the other hand, the CPI-based estimation filter possesses
a less effective feature preserving property compared with
quality as the number of iterations increases. The extent ofthe CPI-median filter. This is clearly demonstrated in Secs.

blurring is not as severe as the median imddeg. 17c)]. 4.2 and 4.3, where its restored images exhibit more blurring
and line/edge distortion than the CPI-median filter. How-
4.4 Computing Resources ever, it is fair to note that the feature-preserving ability of

the CPI-based estimation filter is much higher than the con-
ventional median filter. Although the median filter is often
considered as introducing the least amount of distortion to
the restored image compared with filters such as averaging
and other rank filters, its feature-preserving ability is still a
long way from that of the CPI-based filters. In terms of
computing speed, as given in Sec. 4.4, the CPIl-median fil-
ter has been reported to be 1.6 times faster than the median
filter before, and the further improvement to 2 times faster
simply reinforces this point. On this point, the CPI-based
estimation filter is almost three times faster than the median
filter, making it the fastest filter in this class with a very

. : : ..~ acceptable performance both objectively and visually. Re-
requirement depends on the size of the image and the ﬁltergarding the iterative application of the CPI-based estima-

operation. Both of these parameters are constant, disregardtion algorithms. our analvsis in Sec. 4.3 shows that it is
ing the severity of noise degradation. For the CPI-median indeedg not neéessar fo¥ the CPI-Baséd ostimation alqo-
filter, the results improve on the performance presented be- . -ssary 1ol . 9

fore, which is around two times faster. This is attributed to rithm to be applied iteratively as the restored image after

the different hardware platforms used. For the CPI—based\t,Ciﬁ Egslfsge{:g& ?elsdgﬂgéft?oor?iﬁqﬁg%rr};aFléanrcgﬁifégni
estimation filter, the average time taken is around 1.46 S this, the CPI-mediangfiIter is not as effe(?ti\}e for heavil
which is almost three times faster than the median filter. ’ y

Such comparison indicates the superiority of the CPI-basedSj?gg??gn']rg\?gen%isaendDﬁfrtgf?trse’h;cufq?f;eg?&?goqzsg?\lﬁnto
filters over the conventional filters. ’ 9 P 9

ability, higher numbers of iterations do not have much im-
. pact to the image features.
5 Conclusion Regarding future directions, a number of aspects will be
Generally, the CPI-based algorithms outperform the con- studied. First, Eq(10) will be investigated as to how dif-
ventional median filter algorithm in terms of objective MSE ferent noise distributions can be representedebyCur-
measurement, subjective visual inspection, and computingrently,  is treated as a constant to represent the white im-
speed. Although the CPI approach appears to be more comypulses. If another type of noise distribution, such as
plex, the eventual outcome is attractive as algorithms basedGaussian white, is to be considered,may represent a
on the CPI concept have a better noise removal capability function that is to be determined by the noise distribution.
than conventional filters and can be applied iteratively to It would be interesting to identify how this can be incorpo-
improve the MSE as well as visual quality. In addition, rated into the estimation df,y . 1(0,0 and subsequently
their feature-preserving property and faster computing f(x,y). Second, as presented in Secs. 2.2 and 2.3, the iden-
speed are desirable characteristics in areas such as multitification success rate is a measure of how successful both
media processing. the subimage and pixel identification decision functions
In particular, the CPI-based estimation algorithm has its are. With possible variants in the CPI-based algorithms,
own special features and properties. From the results of thefurther investigation into the variations of the decision

It has been proven that CPI-median filter is 1.6 times faster
than the conventional median filtérin practice. This sig-
nificant improvement makes the CPI-based filtering algo-
rithms more likely to be used in real time. In addition to
this basic improvement, the CPI-based estimation filter em-
ploys a set of equations that is expected to perform even
faster than the CPI-median filter. The computing times re-
quired to filter the images given in this paper by different
filters are tabulated in Table 6. The hardware platform used
is a Silicon Graphic workstatiofindy).

Obviously, the conventional median filter takes the same
computing time for all the images because its computing
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nctions, or a completely new set of decision functions

could point to more effective noise removal algorithms

wi

th high ISR.
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