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Spectral Modeling of 
Switched-Mode Power Converters 

C. C .  Chan, Fellow, IEEE, and Kwok-Tong Chau, Member, IEEE 

Abstract-A new modeling approach for the spectral analysis 
of pulsewidth modulated (PWM) converters with independent 
inputs is developed. The key of this approach is to extend the 
Volterra functional series to nonlinear systems with multiple in- 
dependent inputs. After formulating the state-space equations de- 
scribing the dynamical behavior of PWM converters, the Volterra 
transfer function characterizing the output frequency response 
can be obtained, which is then symmetrised to form the spectral 
model. Since the model is developed in a closed form, it is suitable 
for computer analysis. The modeling approach has been applied 
to various PWM converters, and the results are verified. The 
spectral models of different power converters can readily be 
obtained by using this general approach. 

I. INTRODUCTION 

S the switching operation of power converters turns A linear time-invariant systems into nonlinear time-varying 
systems, the modeling of power converters is one of the 
major research areas in power electronics. In general, i t  can 
be classified as the frequency-domain modeling [ I ]  and the 
time-domain modeling [ 2 ] .  The most systematic frequency- 
domain modeling approach has been that of the state-space 
averaging [3], which was successfully applied to all pulsewidth 
modulated (PWM) converters. The use of this technique has 
been made in deriving an approximated small-signal model of 
power converters, which provides a tool to access the local 
stability and is of capital importance in the design of feedback 
control loop. However, the small-signal modeling can neither 
handle the large-signal perturbations nor assess the spectral 
purity of waveforms in power converters. Although the spec- 
tral analysis is a well-established tool in signal processing, 
that finds wide applications in many branches of science and 
engineering, its application to power electronics is surprisingly 
little. 

In [4], a nonlinear modeling approach was proposed to 
predict the higher harmonic spectral components of the con- 
verter output. The approach simply adopted the Taylor series 
expansion to model the extracted PWM switch. However, 
the extraction of the nonlinear switching element from the 
linear part of the overall system is a rough approximation, 
and it is also ill-suited to predict the intermodulation spectral 
components. Due to the presence of output low-pass filters, 
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the low-frequency intermodulation spectral components have 
more significant effects than the higher harmonic spectral 
components on the purity of output waveforms. 

The Volterra functional series has been used extensively 
in the spectral analysis of nonlinear circuits and systems. 
The general theory was mainly developed for single-input 
nonlinear systems with multiple tones [SI-[7], which were 
loosely named in [SI as systems with multiple inputs for 
single-input multitone communication receivers. Hence, the 
Volterra functional series has recently been applied to the 
spectral analysis of power converters [8]. However, this spec- 
tral analysis has been confined to the output voltage spectrum 
only contributed by the control signal input, and the spectral 
contamination contributed by the supply line input has been 
omitted. In fact, due to the inherent constraint in single-input 
systems, it is not possible to determine the converter output 
spectrum contributed simultaneously by the control and line 
inputs, which are independent of one another 191. 

It is the purpose of this paper to newly extend the Volterra 
functional series to nonlinear systems with multiple indepen- 
dent inputs; in the following, for convenience, they are called 
multiinput systems. Hence, the spectral modeling of power 
converters, in the presence of independent inputs, is derived. 
In order to simplify the subsequent derivation, typical PWM 
converters (including buck, boost, and buck-boost topologies) 
are exemplified, where the control signal and line voltage are 
the independent inputs while the load voltage is the output. The 
spectral models of different power converters can be obtained 
by using this general approach. 

In applying the Volterra functional series to power convert- 
ers, the converter is firstly represented by a nonlinear large- 
signal continuous-time model using the state-space averaging 
technique. From this model, the output frequency response 
can be characterized by the Volterra transfer function. The 
converter spectral model can then be expressed in terms of 
the symmetrised Volterra transfer function. Moreover, various 
types of spectral contamination, such as the higher harmonic 
and intermodulation components, can be individually identified 
and determined. It should be noted that rather than using the 
general term of intermodulation as in single-input systems 
[5]-[8] ,  i t  is divided into the terms of  elf-intermodulation 
and cross-intermodulation for multiinput systems. The former 
one is due to the intermodulation between tones of each input 
while another one is due to tones of different inputs. 

Since the theory and properties of Volterra functional series 
for single-input systems have been described in [S]-[8], only 
a brief overview is given in Section 11. Then the Volterra 
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functional series is extended to two-input systems, and finally 
generalized to m-input systems. The output frequency re- 
sponse of multiinput multitone nonlinear systems is discussed 
in Section 111. The spectral model of PWM converters is 
derived in Section IV. Finally, the proposed approach is 
exemplified and verified in Section V. 

11. VOLTERRA FUNCTIONAL SERIES 

Volterra first studied the functional series named after him 
in 1880’s as a generalization of the Taylor series expansion of 
a function [lo]. Volterra’s book was a summary on its appli- 
cation to the study of certain integral and integro-differential 
equations [ 1 I]. The first application of the Volterra theory to 
the analysis of a nonlinear device was by Wiener in 1942 
[ 121. However, the first systematic study of the application 
of the Volterra functional series to nonlinear systems was 
by Barrett in 1957 [13]. The development of the Volterra 
theory of nonlinear systems has led to an extensive study 
of its application to practical problems in many fields of 
science and engineering such as system identification [ 141, 
circuits [ 151, antennas [ 161, communications [ 171, machines 
[IS], fluid mechanics [19], biophysics [20], and physiology 
[2 I]. Nevertheless, its application to problems in electrical 
engineering has been concentrated on single-input multitone 
nonlinear systems. In this section, the application of the 
Volterra functional series is extended to multiinput multitone 
nonlinear systems. 

A. Single-Input Systems 

For single-input analytic systems, the output y(t) can be 
expressed as a Volterra functional series of the input a@).  Thus 

M 

n = O  

y n ( t )  = 

where yn(t) is called the n-th order output of the system, and 
h n ( q 7 r 2 ,  . . .  , T ~ )  is called the n-th order Volterra kernel of 
the system. Its multiple Laplace transform 

is called the n-th order Volterra transfer function of the system. 
Hence, the Volterra model of single-input nonlinear systems 
is shown in Fig. I .  

Notice that the nth order kernel, hence also its transform, 
is not unique in the sense that several distinct nth order 

I I , 
Fig. 1 .  Volterra model of single-input nonlinear systems. 

input. However, the symmetrised kernel and its symmetrised 
transform defined by 

hn(r1772 7 . . . ,7n) 
- A 1  
hn(71,7-2,...,rn) = - n! 

P(TI,Tz,...,T~) 

(3) 
are unique, where p ( . )  denotes all permutations of the ar- 
guments. Hence, one can freely manipulate them without 
questioning the validity of such mathematical operations as 
addition, multiplication, and differentiation, as well as other 
more complex system operations such as cascading one system 
into another. Since all kernels can readily be symmetrised, in 
the following, they will be assumed to be symmetric unless 
otherwise noted and the overbar will be omitted. 

B. Multiinput Systems 

The aforementioned approach is herewith extended to sys- 
tems with more than one input. As it will be realized, such 
an extension is very desirable in the case of power electronics 
systems. Since the first few terms of Volterra functional series 
are usually sufficient to represent the output as long as the 
nonlinearity of the system is not too violent, such as the system 
discussed in this paper, only the first three orders are derived. 
The higher order outputs can similarly be derived with ever 
increasing tedium by using the same procedure. 

Firstly, a system with two inputs a ( t )  and b ( t )  and one 
output y(t) is considered. The inputs are independent multitone 
signals. Then proceeding similar to the single-input case, the 
first few terms of (1) are given by 

= I-, 

kernels may give the same nth order output for the same (6) 
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J-00 J-00 J-00 

x e-  s I 7 1  -SZ 7 2  -53 73 dT2dr3 

(1 1) 
and the corresponding Volterra model is shown in Fig. 2. 

Similarly, for a system with three inputs u ( t ) ,  b ( t )  and c( t ) ,  
the first-order term has the kemels { h ; " ( T ) ,  hi(.), h ? ( r ) } ,  the 
second-order term has the kemels { h;" ( 7 1 , 7 2 ) ,  hb,b ( T I ,  7 2 ) ,  

h T ( 7 1 , r 2 ) :  I L ; ~ ( T I , ~ ~ ) ,  h ; " ( 7 1 , 7 2 ) :  h P ( q , r 2 ) } ,  and the 3-rd 
order term has the kernels { ,Tau (71, 7 2 , 7 3 ) ,  h!bb ( 7 1 , 7 2 , 7 3 ) ,  

h T " ( 7 1 ;  7 2 ,  7 3 ) ,  htab(71 7 2 , 7 3 ) >  hZbb ( 7 1  r 7 2 , 7 3 ) >  h$""(71, "-2, 

Fig. 2. Volterra model of two-input nonlinear systems. 

TABLE I 
THE FIRST-ORDER OIJTPUT RESPONSE 

Item Frequency Amplitude Type 

1 %I AIH,.ti%l) Linear 

2 4 2  A*HL.tiWd Linear 

3 wbl BIH,bti%J Linear 

4 wb2 B2HIbti%2) Linear 

7 3 ) ,  h$""(71, 7 2 ,  7 3 ) .  hgbc(71; 7 2 , 7 3 ) 2  hFC(71 , 7 2 , 7 3 ) 3  h$bc(71 , 
r2, 7 3 ) ) .  Hence, for a system with m inputs { k i , z  = 
1, . . . , m}, the first-order kernels are { hsi, i = 1, . . . m}, the 
second-order kernels are {h:ik', i ,  j = 1, . . . , m & i 5 j } ,  
and the third-order kemels are {h i ik3kt ,  i ,  j ,  t = 1; . . . , m I% 
i 5 j 5 t } .  

111. OUTPUT FREQUENCY RESPONSE 

Since the output frequency responses of single-input mul- 
titone systems has been described in [5]-[8], in this section, 
it is interested in discussing the output frequency response 
of multiinput multitone systems. Firstly, a two-input two-tone 
nonlinear system is considered. Let 

~ ( t )  = A1 C O S W , l t  + A 2  C O S W , ~ ~  

b ( t )  = B1 COS Wbl  t + B 2  COS W b 2 t  (12) 

be the independent inputs. By substituting (12) into (5) and 
then using (9), the first-order output response can be deter- 
mined. Following the same procedure, the second- and the 
third-order output responses can also be obtained. Due to the 
nonlinearity of the system, the output response consists of var- 
ious spectral components: the fundamental, higher harmonic, 
self-intermodulation and cross-intermodulation components. 
The first-, the second- and the third-order output responses are 
derived and tabulated in Tables I, 11, and 111, respectively. The 
name of each type of nonlinear responses, as labeled because 
of its effect in interference studies, is indicated in the last 
column of the tables. 

From Table I, it is obvious that the first-order output 
response is linearly scaled version of each input because 
there is no interaction between the tones of the two inputs. 
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TABLE I1 
THE SECOND-ORDER OUTPUT RESPONSE 

Item 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Amditude TVX 

Harmonic 

Harmonic 

Harmonic 

Harmonic 

Self-Intermodulation 

Self-Intermodulation 

Self-Intermodulation 

Self-Intermodulation 

Se1 f-Intermodulation 

Self-Intermodulation 

Self-Intermodulation 

12 %l-wbZ BIB2H,bbti%, A%2) Self-Intermodulation 

13 ual+Wbl (1/2)A,BlH,'b(jw,,,j~l) Cross-Intermodulation 

14 w.I-%t ( 1/2)AlB,H,'b(iw,l,-jy,) Cross-Intermodulation 

15 W.I+%2 ( 1/2)A,B2H2"(iw,,,jwb2) Cross-Intermodulation 

16 wal-wbZ ( 1/2)A,B,H2"(jw.,,-j~,) Cross-Intermodulation 

17 %+%I (1/2)A2B,Hz*(jwnJwbI) Cross-Intermodulation 

18 %-%I ( l /2)A2BIH2~(iwn,-j~l)  Cross-Intermodulation 

19 U,+%, ( 1/2)A,B2H2.b(jw.z,jyz) Cross-Intermodulation 

20 w3-wbZ ( l/2)A2B,H2"fiwn,-j%2) Cross-Intermodulation 

For the second-order response listed in Table 11, items 1-4 
are the second harmonic components, items 5-12 are the 
second-order self-intermodulation components contributed by 
two tones of each input, and items 13-20 are the second- 
order cross-intermodulation components contributed by two 
tones of different inputs. It  can be found that items 5,  6, 9, 
and 10 are dc components, which can contribute an additional 
positive or negative dc offset to the output. Similar to the 
second-order response, the third-order response consists of the 
third harmonic, self-intermodulation and cross-intermodulation 
components. It should be noted that both self- and cross- 
intermodulation may contribute to the fundamental frequency 
components { W , ~ ,  w,2, W b l ,  w b 2 ) ;  for example, items 9, 11,57, 
and 58 have contributions at w(Ll.  However, these higher order 
contributions are usually of much smaller amplitude when 
compared with the lowest order contribution at a particular 
frequency. 

In general, for a system with ~ r i  inputs { k i ,  i = 1, . . . , ni} 
and the ith input is composed of Q L  tones {wi,,:c = 
1. . . . . C),}, the corresponding output frequency response 
can similarly be determined with ever increasing tedium 
by using the above procedure. Thus, the first-order output 
response consists of the first-order transfer functions { H f ' ~  z = 
1, . . . ~ v i }  and the fundamental frequency components 
{U,,, 1 = 1.. . . . SrrL & :E = 1, .  . . ~ Qi}. Similarly, the second- 
order output response has the second-order transfer functions 
{ H;lkJ. i,: j  = 1,. . . .7n & i 5 j }  and various frequency 
components {Iwiz f ~ . ~ ~ l , , i , j  = 1 . . . - , r n , x  = 1,...?Qi 

Iv .  SPECTRAL MODELS OF POWER CONVERTERS 

Having extended the Volterra functional series to multiinput 
multitone nonlinear systems and then derived the output fre- 
quency response of two-input two-tone systems, the approach 
is herewith applied to find the spectral model of power 
converters. 

A. Formulation of State-Space Equation 

The first step in deriving the spectral model is to formulate 
the state-space equation of power converters. There is no 
doubt that the state-space averaging technique is one of the 
most systematic methods to obtain a large-signal continuous- 
time model of the converter. This technique is valid when 
the natural frequencies of the converter are all well below 
the switching frequency, which is the case for a practical 
PWM converter with switching frequencies ranging from tens 
of kilohertz to hundreds of kilohertz. 

The generalized state-space equation for various power 
converters operating in the continuous conduction mode can 
be expressed as 

& y = 1. . . .  .Q,} .  The 3-rd order output response has the 
3-rd order transfer functions { H f L h J k f .  L .  1.t = l , . . .  . VL & where is the average parameter of the switch, matrices 
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TABLE 111 
THE THIRD-ORDER OUTPUT RESPONSE. (a) HARMONIC AND SELF-INTERMODULATION COMPONENTS. (b) CROSS-INTERMODULATION COMPONENTS 

Item Frequency Amplitude Type 
1 

2 

3 
4 

5,6 

7 3  
9 

10 

11 

12 

13,14 

15,16 

17 

18 

19 

20 

Harmonic 

Harmonic 

Harmonic 

Harmonic 

Self-Intermodulation 

Self-Intermodulation 

Self-Intermodulation 

Self-Intermodulation 

Self-Intermodulation 

Self-Intermodulation 

Self-Intermodulation 

Self-Intermodulation 

Self-Intermodulation 

Self-Intermodulation 

Self-Intermodulation 

Self-Intermodulation 

Item Frequency Amplitude 

21,22 

23,24 

25,26 

27,28 

29,30 

31,32 

33,34 

35,36 

31 

38 

39 

40 

41,42 

43,44 

45,46 

47,48 

49,50 

5 1,52 

5354 

55,56 

57 

58 

59 

60 

Cross-loter modulation 

Cross-Intermodulation 

Cross-Intermodulation 

Cross-Intermodulation 

Cross-Intermodulation 

Cross-Intermodulation 

Cross-Intermodulation 

Cross-lntermodulation 

Cross-Intermodulation 

Cross-Intermodulation 

Cross-lntermodulatioo 

Cross-Intermodulation 

Cross-Intermodulation 

Cross-Intermodulation 

Cross-Intermodulation 

Cross-Intermodulation 

Cross-lntermodulation 

Cross-Intermodulation 

Cross-Intermodulation 

Cross-Intermodulation 

Cross-Intermodulation 

Crosslntcrmodulation 

Cross-Intermodulation 

C1, C2: D1, Dz, E l ,  E2,  F l ,  and FZ are all functions of the 
converter topology, z is the state vector, U is the excitation, 
and y is the output [22] .  For PWM converters, the average 

the supply line voltage wg, and the matrices F1 and FZ become 

zero. The corresponding state-space equations are rewritten as 
dx 
d t  - = [SCl + (1 - 6 ) C 2 ] X  + [6D1 + (1 - 6)D2]zlus 

vo = [dEl + (1 - d)E,]Z parameter of the switch is the duty cycle 6, the excitation is (14) 
where WO is the output voltage across the resistive load. 
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Perturbations in S and wg causes perturbations in z and WO. 
Thus 

S = Z + S  
wg = ‘Ug + Gg 
2 = : + i  

WO = 770 + Go 

where steady-state and perturbed quantities are indicated with 
a bar and a tilde, respectively. By substituting (15) into (14) 
and then separating the steady-state and perturbed quantities, 
the state-space equation describing the steady-state behavior 
of PWM converters can be expressed as 

- 

(15) 

dz 
dt  
- = pc, + (1 - S)C2]5 + Po1 + (1 - ?)D2]V9 = 0 

vo = [aE1 + (1 - 3)E2]Z (16) 

and the following state-space equation describing its dynam- 
ical behavior 

d2  
- = K13 + K28 + K3Gg + K43S + K58Gg 
d t  
‘&J = K63 (17) 

where 

K1 =W1+(1-6)C2 
K2 = (C, - C2)5 + (Dl - D2)Ug 
K3 = so, + (1 - T)Dz 

K6 =$El + (1 -5)Ez 

K4 = C1 - C2 

Ks = D1- L I Z  

(18) 

can be obtained. It should be noted that the product terms with 
coefficients K4 and K5 in (17) represent the nonlinearity of 
PWM converters. 

B. Determination of Transfer Functions 

Having derived the state-space equation describing the 
dynamical behavior of PWh4 converters, the first-, the second- 
and the third-order Volterra transfer functions can be de- 
termined. A convenient method of evaluating these transfer 
functions is the so-called “probing” or “harmonic input” 
method [5].  The system is first “probed” by two single- 
exponential inputs 

8(t)  = a ( t )  = esat 

G g ( t )  = b ( t )  = esbt 

2 = G;”(s,)eSat + G;(sb)eSbt + . . . 

(19) 

and the state vector is expressed as 

(20) 
where G;L(s,) and G ! ( S b )  are to be determined. The terms 
hidden in the ellipsis in (20) have no contribution to the terms 
of interest and are omitted. By substituting (19) into (5) and 
then using (9), it can be found that the coefficients of eSat and 
esbt are Hf(s , )  and @ ( S b ) ,  respectively. Hence, using (17) 
and (20), the following relationship 

H?(sa) = K 6 G y ( s a )  

Hlb(sb) = K6Gbl(sb) (21) 

can be obtained. By substituting (19) and (20) into (17) and 
then equating the coefficients of esat and esbt, GY(sa) and 
G:(sb) can be determined respectively. Thus (21) can be 
rewritten as 

H;”(s) = K6(81 - Kl)-lK2 

H,b(s) = KG(SJ! - Kl)-lK3 (22) 

which are the first-order transfer functions. 
Proceeding similarly with two two-exponential inputs 

d(t) = a(t> = esalt + esazt 

G g ( t )  = b ( t )  = esblt + esbzt (23) 

and the resulted expressions 

Hia(S1, 8 2 )  = K6[(81 + s 2 ) 1  - K1]-1K4(s11 - Kl)-lK2 

Hib(S1, 52) = K6[(51 + S Z ) l  - K11-l 

x [K4(s21 - Kl)-lK3 + K5] (24) 

are the second-order transfer functions. Following the same 
procedure with two three-exponential inputs, the third-order 
transfer functions 

@(SI,  s2) = 0 

H3aaa(s1, 52733) = K6[(81 + 52 + 5 3 ) 1 -  K11-l 

x K4[(s1 + s 2 ) 1  - K11-l 

X Kq(Sl1- Kl)-lK2 
q a b ( S l r  S2, s3) = KG[(Sl + 32 + 3 3 1 1  - K1I-l 

H;bb(s1, S 2 ,  s 3 )  = 0 

Hjbb(S1, s2, s3 )  = 0 

x K4[(s1 + s3)1 - K11-l 

X [K4(S31 - Ki)-’K3 + K5] 

(25) 

can be deduced. It should be noted that H!jb(s1,s2), 
Hgbb(sl, sp, s3), and Hibb(s l ,  s2, s3) are zero because there 
is no interaction between the tones of Gg as given in (17). 

Since the resulted transfer functions may not be symmetric, 
by using (3), the symmetrised nonzero transfer functions are 
listed as follows 

--a 
Hl(S> = H,” (SI 
Hl(S) = Hlb(4 (26) 
d 

-aa 1 

-ab 1 
H z  (SI ,  32) = z[Hgb(si, 32) + H i b ( s z ,  si)] 

-aaa 1 

H2 (31 ,  SZ) = # q O ( S l ,  92)  + H i a ( S 2 ,  Sl)] 

(27) 

H3 (SlrSZ,S3) = z[H3aUa(s1, 32753) + H3aaa(S1, S 3 , s Z )  

+ H3aaa(SZ, s1 ,53)  + H3aaa(SZ, S 3 , S l )  

+ H3aaa(S3r S 1 , s Z )  + H3oaa(S3, 32,  Sl)] 
1 

Z U b ( S l ,  S2r53)  = #f3aab(s1, % , S 3 )  + HTb(S1 ,  s 3 ,  s2) 

+ H3aab(S2,s1,S3) +H3aab(sZ,S3,S1) 

+ H3aab(S3,S1, 32) + H3aab(S3, s 2 ,  SI) ]  

(28) 
which are used to determine the spectral model of PWM 
converters. 
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25 1 

L - 
I 

0.001 0.0 1 0.015 0.02 0 .025  

Time (sec) 

(a) 

I + I  
(C) 

Fig. 3. ' Typical PWM converters. (a) Buck. (b) Boost. (c) Buck-boost. 

TABLE IV 
SPECTRAL COMPONENTS OF BUCK CONVERTER OUTPUT VOLTAGE 

Frequency (Hz) FFT Magnitude (dB) VFS Magnitude (dB) 

0 0 0 

200 -13.9 -13.9 

300 -13.9 -13.9 

500 -27.7 -27.6 

700 -13.5 -13.3 

800 -13.3 -13.2 

loo0 -26.8 -26.7 

V. VERIFICATION 
In order to verify the proposed spectral modeling approach 

as well as to testify its accuracy, it is compared with the results 
obtained from PSpice simulation [23]. For a particular case, 
both of the modeling and simulation results are further com- 
pared with the experimental results. Firstly, by using PSpice 
to perform a tedious startup transient time-domain simulation, 
the steady-state output waveform can be obtained. Then by 
applying the Fast Fourier Transform (FFT) to the steady-state 
waveform, the output spectral components can be determined. 
Secondly, by using (22) and (24)-(28) as well as Tables I, 11, 
and 111, the output spectral components can also be determined. 
Hence, the FFT results can be numerically compared with the 
proposed Volterra functional series (VFS) results. It should be 
noted that the FFT results are obtained with the expense of 
several hours for the time-domain simulation while the VFS 
results are obtained within a second. Typical PWM converters 
are used for exemplification. 

A. PWM Buck Converters 

As shown in Fig. 3(a), the PWM buck converter operating 
at 50 lcHz has component values of L = 500 pH, C = 10 pF, 
and R = 10 fl. The control signal and line voltage 

S = 0.5 + 0.1 COS 2a(700)t + 0.1 COS 2a(800)t 
wg = 20 + 4CoS 2 ~ ( 2 0 0 ) t  + 4 C o S  2 ~ ( 3 0 0 ) t  v (29) 

are the two independent two-tone inputs. 

(C) 

Fig. 4. 
Spectrum using FIT. (c) Spectrum using VFS. 

Output voltage of buck converter. (a) Waveform using PSpice. (b) 

The steady-state output voltage waveform resulted from 
the PSpice simulation is shown in Fig. 4(a). Excluding the 
dc component, the corresponding FFT spectrum is plotted in 
Fig. 4(b). By comparing with the spectrum obtained from the 
proposed approach, namely the VFS spectrum as shown in 
Fig. 4(c), it can be seen that the VFS spectrum follows the 
FFT spectrum very closely. Moreover, the relative magnitude 
of significant spectral components with respect to the dc 
component is tabulated in 'Table IV, and the agreement is seen 
to be very good. 

Since C1 and C2 in (14) are the same for the PWM buck 
converter, K4 in (17) becomes zero, which implies that there 
is no interaction between the tones of each input. Apart from 
the fundamental comp_onents, only the second-order interaction 
between the tones of 6 and g exists. Thus, there is no spectral 
component at 100 Hz or above 1100 Hz, which can be 
observed from Fig. 4(b) or (c). 

B. PWM Boost Converters 

The schematic of the PWM boost converter is shown in 
Fig. 3(b). It is also operated at 50 kHz and has component 
values of L = 500 pH, C = 10 pF, and R = 10 R. The 
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TABLE V 
SPECTRAL COMPONENTS OF BOOST CONVERTER OUTPUT VOLTAGE 

Frequency (Hz) FFT Magnitude (dB) VFS Magnitude (dB) 

0 0 0 
200 -14.1 -14. I 
300 -14.2 -14.1 

500 -28.0 -28.1 

700 

800 

loo0 

1400 

-12.5 

-12.3 

-25.5 

-26.0 

-12.6 

-12.3 

-25.3 

-25.9 

1500 -21.1 -20.8 

I600 -26.9 -26.8 

I I 

E ‘“I I I 

Frequency (Hz) 

(C) 

Fig. 5 .  
Spectrum using FIT. (c) Spectrum using VFS. 

Output voltage of boost converter. (a) Waveform using PSpice. (b) 

TABLE VI 
SPECTRAL COMPONENTS OF BOOST AMPLIFIER OUTPUT LOAD CURRENT 

Frequency 
(Hz) 
600 
700 

800 

900 

1400 

1500 

1600 

2100 

2200 

2300 

2400 

Measurement FFT Magnitude VFS Magnitude 
(dB) (dB) (dB) 
-27 

0 

0 

-27 

-17 

-11  

-17 

-39 

-28 

-30 

-41 

-28.0 

-0.4 

0 

-27.9 

-15.9 

-10.1 

-16.6 

-35.5 

-26.7 

-28.1 

-39.0 

-28.2 

-0.4 

0 

-28.2 

-15.9 

-10.2 

-16.6 

-35.5 

-27.0 

-28.2 

-39.1 

0 00s 0 0 1  0 0 . 5  0 02 0 02s 

Time (sec) 

Fig. 6. PSpice simulated output load current waveform of boost amplifier. 

Different to the buck converter, K4 in (17) is not zero for 
the boost converter, which implies that the interaction between 
the tones of 8 as well as the interaction between the tones of 
8 and Vg exist. Thus the frequency band of the spectrum as 
shown in Fig. 5(b) or (c) is much wider than that for the buck 
converter. 

Moreover, the boost converter can be used as an amplifier 
by translating perturbations in the control signal into voltage 
excursions at the converter output while maintaining the 
supply line voltage constant. By using the same boost amplifier 
as that of [XI ,  the steady-state output load current waveform 
resulted from the PSpice simulation is shown in Fig. 6. Thus 
the FFT and the VFS spectral components are compared with 
the experimental results obtained in [8]. As seen in Table VI, 
the agreement is good. 

C. PWM Buck-Boost Converters 
Since it is interesting to apply the proposed approach to 

other commonly used converter topologies, the approach is 
further applied to the PWM buck-boost converter as shown in 
Fig. 3(c). Also, in order to show the validity of the resulted 
model under other switching frequencies, the converter is 
operated at 20 kHz while its component values and large- 
signal perturbations are the same as those of the buck and 
the boost converters. Following the previous procedure, the 
steady-state output voltage waveform is shown in Fig. 7(a), 
the FFT suectrum is plotted in Fig. 7(b), the VFS sDectrum is 

control and line inputs are the same as those of the buck 
converter given by (29). 

the steady-state output voltage waveform is shown in Fig. 5(a), 
the spectrum is Plotted in Fig. 5(b), the VFS specmm is 

the Same procedure used for the buck 

- ,  

Plotted in Fig. 5(Ch and the significant spectral components 
are tabulated in Table V. As expected, the agreement between 
the FFT and the VFS results is very good. 

plotted in Fig. 7(c), and the significant spectral components 
are tabulated in Table VII. Again, the agreement is very 
good. 
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TABLE VI1 
SPECTRAL COMPONENTS OF BUCK-BOOST CONVERTER OUTPUT VOLTAGE 

Frequency (Kz) F F I  Magnitude (dB) VFS Magnitude (dB) 

0 0 0 
200 -14.0 -13.9 

300 -14.1 -13.9 

500 -22.9 -23.2 

700 -8.3 -8.2 

800 -8.5 -8.4 

loo0 -23.5 -23.7 

I400 -22.3 -22.4 

1500 -17.7 -17.4 

I600 -23.3 -23.4 

DO I 

Freqvency (Hz) 

(C) 

Fig. 7. 
(b) Spectrum using FIT and (c) spectrum using VFS. 

Output voltage of buck-boost converter. (a) Waveform using PSpice. 

Similar to the boost converter, K4 in (17) is not zero for the 
buck-boost converter. Thus the frequency band of the spectrum 
as shown in Fig. 7(b) or (c) is much wider than that for the 
buck converter. 

VI. CONCLUSION 
The spectral modeling of power converters has been pro- 

posed and verified. The modeling approach is to newly extend 
the Volterra functional series to nonlinear multiinput systems, 

such as PWM converters with control signal and supply line 
inputs. The spectral model of PWM converters has been 
developed in a closed form, which is very useful for computer- 
aided spectral analysis. Thus, by adjusting proper system 
parameters, one can minimize certain spectral components 
which may be harmful to the system. 

The modeling approach has been successfully applied to 
various PWM converters including the buck, the boost, and 
the buck-boost topologies. It can be found that the buck 
converter has a relatively narrow frequency band of output 
voltage spectrum while the frequency band of the boost or the 
buck-boost converter is much wider, which can be accurately 
predicted by the proposed approach. Finally, the approach is 
so general that it can readily be extended to other power 
conversion systems. 
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