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Large-Signal Dynamic Behavior of Distributed- 
Feedback Lasers Including Lateral Effects 

S. F. Yu, R. G. S. Plumb, L. M. Zhang, M. C. Nowell, and J. E. Carroll 

&street-The large-signal behavior of DFB lasers is analyzed, 
including lateral as well as longitudinal variations in carrier 
density, photon density, and rebctive index. The effective index 
method and other approximations are used to reduce the com- 
plex three-dimensional problem to one dimension. The coupled 
wave and camer rate equations are then solved in a self-con- 
sistent manner. Lateral spatial camer hole burning and lateral 
diffusion are found to affect the relaxation oscillation frequency 
and damping rate of DFB lasers, depending on their detailed 
structure. The effective time-averaged linewidth enhancement 
factor is also affected. 

In symmetric AR-coated A / 4 phase-shifted lasers the side 
mode suppression ratio can be deteriorated significantly by 
lateral spatial hole burning when kL is large. 

I. INTRODUCTION 
XTENSIVE studies have concentrated on the large- E and small-signal dynamic responses of Fabry- 

Perot(FP) lasers under the effect of lateral spatial hole 
burning (SHB) and carrier diffusion [l-61. The dynamic 
responses of the lasers are strongly determined by their 
physical structure. For FP lasers with narrow stripes, 
strong carrier confinement, and index guiding, the lateral 
spatial hole burning of electron density in the active 
region causes gain compression and as a result, signifi- 
cantly damped relaxation oscillation can occur [41, [61. The 
lateral carrier diffusion determines the strength of the 
damping of relaxation oscillation caused by SHB. The 
lateral carrier diffusion also varies the relaxation oscilla- 
tion frequencies [2] and the dynamic wavelength shift 
(frequency chirp) [2], [3] of the devices. It has been shown 
that with optimized laser parameters, the small-signal 
(AM and FM) modulation bandwidth can be increased by 
several gigahertz [2] and the frequency chirp can be 
reduced by several gigahertz [2]. In FP lasers, the longitu- 
dinal variation of carrier density is small and the lateral 
SHB and carrier diffusion effect is fairly constant along 
the longitudinal direction of the laser. This implies that 
the lateral effect is more significant than longitudinal 
effects in FP lasers. 

On the other hand, the dynamic and static characteris- 
tics of distributed-feedback (DFB) lasers are affected by 
longitudinal SHB. The longitudinal carrier SHB induces 
gain compression [7] and the nonuniform index profile 
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varies the modulation response of the lasers [8]. In addi- 
tion, for h/4 phase-shifted DFB lasers with large KL, the 
large number of photons accumulated around the phase- 
shifted region causes severe hole burning and this reduces 
the side mode suppression ration (SMSR) of the lasers. 

However, for low K L  devices, longitudinal SHB is lower 
and the lateral effect may be significant in their dynamic 
behavior. Inaccurate estimation of the dynamic behavior 
of DFB lasers may result if we ignore the importance of 
lateral effects. For strong longitudinal SHB, the lateral 
diffusion effect is no longer uniform along the laser cavity 
and lateral carrier diffusion may modify the effective 
longitudinal carrier profile of the laser, and hence, the 
SMSR. 

In this paper, we compare and analyze two-dimensional 
SHB effects on the dynamic behavior of DFB lasers, 
including the consideration of different laser structures. 
We also analyze the effect of lateral SHB and carrier 
diffusion on mode profiles in the longitudinal direction. 
Detailed three-dimensional laser structures are consid- 
ered in our analysis. The three-dimensional problem is 
simply converted into one-dimensional coupled-wave 
equations through the effective index method [9] and the 
perturbation method [lo]. In order to reduce the excessive 
computing time in computing the lateral SHB, first-order 
approximation of lateral carrier distribution [2], [51 is 
employed in our model. Using this approximation, the 
two-dimensional variation of the refractive index can be 
taken into account; a higher order approximation could 
be used in the same way. The dynamic behaviors of the 
lasers can then be solved self-consistently by using the 
corresponding time-dependent coupled-wave equations 
and rate equations of carrier concentration. 

The paper is organized as follows: in Section I1 we 
present a simple self-consistent dynamic model with the 
lateral as well as longitudinal SHB taken into account. In 
Section I11 we present the numerical simulation results: 1) 
comparison between the lateral and longitudinal SHB 
effect on the dynamic behavior of the lasers, 2) lateral 
effect on the longitudinal modes, and 3) the lateral effect 
on the effective time-averaged linewidth enhancement 
factor under large-signal modulation. A brief discussion 
and conclusion will be given in Section IV. 

11. DYNAMIC MODEL 

A. Laser Structure for the Model 
A typical structure of 1.55 pm BH InGaAsP DFB laser 

with second-order gratings is shown in Fig. 1. Although 
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second-order gratings are considered in our analysis, 
first-order gratings can also be studied by neglecting the 
radiation loss coefficient in the coupled-wave equations. 
Fig. l(a) shows the side view of the laser. We assume that 
the structure of the laser is composed of five layers of 
semiconductor materials: the InP cladding layer, the In- 
GaAsP (1.3 pm) guiding layer, the InGaAsP (1.55 pm) 
active layer, the InGaAsP (1.3 pm) buffer layer, and the 
InP substrate. The refractive indexes of the materials in 
these layers are n,,  ng, na,  ab,  and ns,  respectively. The 
refractive indexes of the cladding and substrate layers are 
assumed to be the same. The grating is formed on the 
guiding layer and has a trapezoidal shape with an angle of 
54". The end view of the laser is shown schematically in 
Fig. l(b). The InGaAsP guiding layer, active layer, and 
buffer layer are surrounded by the InP on all sides. The 
change in the dielectric constant between the InP and 
InGaAsP material confines the photons in the lateral and 
transverse directions. In the following calculations, only 
the fundamental-transverse modes and lateral modes will 
be considered. 

B. Theory 

pendent wave equation as 
From Maxwell's equations, we can write the time-de- 

(1) . _  
C L  dt' 

where x ,  y ,  and z are the transverse, lateral, and longitu- 
dinal directions of the waveguide and E is the complex 
permittivity in the waveguide. The transverse electric (TE) 
modes in the waveguide can be approximated as 

(2) 
where E ( z ,  t )  is the slowly varying longitudinal field am- 
plitude. The normalized transverse and lateral field pro- 
files 4 and (Ir are assumed time independent. From the 
Maxwell's equation (l), a set of coupled-wave equations 
for a resonant situation can be derived by combining the 
perturbation solution of the Floquet-Bloch expansion 
theory [lo] and the conventional coupled-mode equations 
for the two guided waves. For a second-order grating, we 
take the longitudinal propagating field within the laser E, 
and the field within the laser leading to surface radiation 
E-, as 

~ , ( x ,  y ,  z ,  t )  = q b 0 ( x ) ~ , ( y ) ( R ( z ,  t)e-jPo* + S(z, t)ejPor) 
(3a) 

E - , ( x ,  y ,  z ,  t )  = q b - l ( x ) ( I r - l ( y ) [ R ( ~ ,  t )  + S(z, t ) l  (3b) 

where R and S are the slowly varying longitudinal for- 
ward and reverse propagating field amplitudes and Po is 
the propagation constant at Bragg frequency. The effec- 
tive index method [91 is used to reduce the two-dimen- 
sional wave equation to one dimension in the z direction. 
Fig. 2 shows the application of effective index method in 
solving the two-dimensional problem in a one-dimensional 
treatment. We assume the field profiles in the x and y 

E ( x ,  y ,  z ,  t )  = + ( x ) ( I r ( y ) E ( z ,  t)e-jwO' 

InP(n) ns I 
longitudinal direction (z) L h (a) 

v - I 

g l  4 

InP(n) ns 

lateral direction (y) T (b) 

Fig. 1. (a) Schematic side view of the DFB lasers investigated in this 
paper. Xgt, Xgud, X,,,, and Xbur represent the grating depth and the 
thickness of the guiding layer, active layer, and buffer layer, respectively. 
The transverse intensity profiles of the guided mode and the radiation 
mode 4,, and 4-, are also shown. (b) The cross section of the DFB 
lasers. nsul, nsu2, nsu3, and nsu4 represent the refractive indexes sur- 
rounding the waveguide In the lateral directions. w is the width of the 
active layer. 

directions satisfy 

where pefi is the effective propagation coefficient in lat- 
eral direction and p is the propagation constant to be 
determined. Caution should be used in calculating the 
propagation coefficient close to its cutoff value, as the 
effective index method becomes inaccurate [ll]. From the 
above, we can obtain the time-dependent coupled-wave 
equations for fields R and S, given as 

1 dR dR 
-- + - = ( g  + i S p  - CY, - h , ) R  + i ( ~  + ih,)S 
ug d t  dZ 

1 dS dS + - = - ( g  + i S p  - a, - h,)S  
ug dt dz 
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Fig. 2. The buried waveguide shown in Fig. l(b) treated by the effective 
index method. (a) Three equivalent guides in the y direction. (b) Resul- 
tant effective guide in the x direction. 

where a, is the absorption and scattering loss in the 
waveguide and g is the field gain given by 

1 

2 active 
g(z ,  t )  = -1 T,g,(N(y, z ,  t )  - N o > $ i ( y )  dy (6) 

where N is the carrier concentration distribution in the 
lateral and longitudinal directions, r, is the transverse 
confinement factor, g, is the differential gain, vg is the 
group velocity, and P is the photon density and is equal to 
the sum of the magnitude squared of the forward and 
reverse field amplitudes. K is the longitudinal coupling 
coefficient and h, is the first-order radiation loss coeffi- 
cient. The expressions for K and h, are given in Appendix 
I. 

The deviation from the Bragg condition Sp is given as 
IT " 0  

SP = - n e l ( Z , t )  C 
- - A (7) 

where c is the speed of light and A is the pitch of the 
grating. ne, is the effective refractive index in the longitu- 
dinal direction. The effective refractive index is related to 
the carrier density by 

where is the refractive index at the carrier density 
N = No, am is the material linewidth enhancement fac- 
tor, A, is the free-space wavelength, and AN, is the small 
change of the average carrier distribution in the longitudi- 
nal direction. Here, we assume that the longitudinal modes 
are affected only by the average refractive index distribu- 
tion in the longitudinal direction; however, this average 
refractive index is modified by the lateral SHB. 

The time-dependent rate equation of the carrier con- 
centration is given by 

d N ( y ,  z ,  t )  J ( y ,  z ,  t>  M y ,  z ,  t )  
dt qd r 

- - - 

- v,g,(N(y, z ,  t )  - No)P(y ,  z ,  t )  

+ D V2N(y ,  2 ,  t )  (9) 
where J is the injection current density profile, d is the 
thickness of the active layer, D is the diffusion constant, T 

is the carrier lifetime, and q is the electron charge. The 
photon density distribution P is given as 

P ( y ,  2 ,  t )  = [ IR(z ,  t)l2 + IS(2, t)l2I$,2(y) 

= P ( z ,  t > $ i ( J J ) .  (10) 

To simplify our calculation, the inhomogeneous carrier 
distribution in the lateral direction is expanded in a 
Fourier series. The first-order approximation of the car- 
rier distribution is then given by [2l, [51 

N ( y ,  2 ,  t )  = NJZ, t )  - N,(Z, t )  cos (2 ITy /w)  (11) 

where w is the width of the active region, N, is the 
average carrier distribution at a particular cross section, 
and N, is the perturbation of the carrier concentration in 
the lateral direction. Substituting (11) into (6) and (9), 
with J assumed constant across the active layer and 
integrating (6) and (9) over the active layer, and including 
the gain compression coefficient E, we obtain the modi- 
fied field gain expression given as 

and the rate equations of the carrier densities given as 

dN,(z, t )  J ( z ,  t )  N p ( z ,  t )  
dt qd r 

=--- 

- vgg,(ry(Np(z, t )  - N,) - t , ~ , ( z ,  t ) )  

[1 + EP(2,t)l 

d2N,(z ,  t )  
dZ2 

* P ( z ,  t )  + D 

Where ry is the confinement factor in the lateral direc- 
tion and t1 and t2,  respectively, are the first- and 
second-order coupling parameters of the carriers and the 
optical field $o. Their definitions are given in Appendix I. 
The parameter y is given by 

(13) 

where Le, is the effective diffusion length and is defined 
as Le, = 4%. 

The parameters given in (5) and (12) ( K ,  ry, tl;..,) vary 
slightly with the carrier-induced refractive index change in 
the active region. However, they are assumed to be con- 
stant with a value derived from the initial calculations. If 
we assume that the optical field has a sinusoidal profile 
and is well confined in the lateral direction, we get r,, = 

1.0, t1 = 0.5, and t2 = 0.5. If the field penetrates outside 
the active region, these values are reduced. Table I shows 
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Nonlinear gain suppression coefficient (E) 

Refractive index of cladding layer (ne) 
Refractive index of guiding layer (ne) . 

1743 

IxlO-*'cm~ 
3.17 
3.4 

the values of these parameters with different laser struc- 
tures. 

A self-consistent large-signal calculation can be ob- 
tained by solving (5) and (12) simultaneously. There exist 
several mathematical algorithms that can be employed to 
solve these equations such as the frequency domain power 
matrix method [12] and the time domain traveling wave 
method [13], [14]. In our calculation, the time domain 
method is employed to solve the large-signal dynamic 
behavior of the DFB lasers. 

In our calculation, the longitudinal SHB is taken into 
account by dividing the laser longitudinally into a number 
of small equal sections. In each section, there is an 
average carrier concentration Np that is assumed to be 
constant in that section. There is also a perturbation of 
carrier concentration N, that arises from the lateral SHB. 
The values of Np and N, are allowed to change from 
section to section. The spontaneous noise coupled into 
the forward and reverse fields is introduced into (5). The 
detailed time domain calculation can be found in [14]. 

111. NUMERICAL RESULTS 
In the following calculation, the lengths of the lasers 

are 400 pm, and they are divided into 40 equal-length 
sections. A transfer matrix is introduced in each section to 
ensure the accuracy of the calculation. We ignore the 
longitudinal carrier diffusion as the separation between 
sections is much longer than the diffusion length. h/4 
DFB lasers with first-order gratings and both facets per- 
fectly antireflection coated are employed to investigate 
the dynamic behavior with lateral effects. The value of h,  
is set to zero in (5) and the effect of radiation loss is not 
considered. Nonlinear gain compression of value E = 1.0 
x cm3 is introduced. The other parameters used in 
the calculation are given in Table 11. 

A. Relaration Oscillation Frequency and Damping Rate 
Fig. 3 shows the variation of the normalized relaxation 

oscillation strength and period with effective diffusion 
length. The relaxation oscillation strength is defined as 
the first overshoot power divided by the subsequent un- 
dershoot [l], [6]; the greater the oscillation strength, the 
less the damping will be. The lasers are biased just at 
threshold and modulated with a step function. The modu- 
lation amplitude is 2 to 2.5 times threshold and the 
steady-state optical power from the AR facets is around 8 
mW. 

The structures under investigation are h/4 DFB lasers 
with KL = 0.8, 1.24, and 3.2. The value of the coupling 
coefficient is assumed to be changed by the height of the 
grating. The variation of r, is small in this range of 
grating depth and is assumed to be unchanged. The widths 
of the active region in pm are set to w = 3.0, 2.5, 1.5, 
1.25, and 1.0 (types A-E, see Table I). For KL = 1.24, the 
longitudinal carrier distribution is relatively uniform. For 
KL = 3.2, SHB is strong in the phase-shift region, but for 
KL = 0.8 SHB is strong near the facets. Fig. 4 shows the 
longitudinal carrier distributions in lasers with KL = 0.8, 

Refractive index of cladding layer (n.) 
Refractive index of cladding layer (n,,) 
Refractive index of cladding layer (nJ 

TABLE I 
PARAMETERS DEFINING THE LATERAL STRUCTURE OF THE LASERS 

3 54 
3 4  
3 17 

This set of parameters represents the lasers, while KL varies between 
0.8 and 3.2 (which corresponds to a change of the height of the grating 
X by 0 075 pm). These parameters do not change much in this range 

*This is the extreme case where the grating occupies the whole guide 
layer thickness, Le., Xgud = X,,,. 

+These parameters are obtained only when the refractive indexes 
surrounding the active layers are set to 3.25, as opposed to 3.17 used 
elsewhere. 

O G L .  ' 

TABLE I1 
PARAMETERS USED IN THE MODEL 

1.24, and 3.2 without the lateral effect. In our time do- 
main model, the spontaneous emission noise is generated 
from a Gaussian-distributed random number generator 
[ 151; this implies that the spontaneous emission coupled 
into the propagating fields is slightly different in each run 
of the calculation even with the same set of laser parame- 
ters. This varies the relaxation oscillation strength and 
period slightly. Fig. 3 shows average curves for several 
runs of the calculations. 

The lateral and longitudinal effects on the relaxation 
oscillation strength and period can be summarized as 
below (note that other laser structures will show the same 
effects, but possibly with different relative magnitudes). 

1) In the range of KL, 0.8 to 3.2, the longitudinal SHB 
has less of an effect on the dynamic response of the lasers 
than the lateral carrier diffusion and SHB. The reduction 
of oscillation strength can be as large as 90 percent or 
higher by the lateral effect. 
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c 1.25 
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2 
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1 
0.721) 2 4 6 8 1 0 1 2  

Normalid effedive carrier diffusion length (LeffNV) 

(d) 

E 
0.88 - 

z 0.8 

O.72: 2 4 . 6 . 8 . 10 :2 

Normalised effective carrier diffusion length (Leffw Normalised effective carrier diffusion length (LMw 

(e) (0 
Fig. 3. Variation of the normalized relaxation oscillation strength and period with the normalized effective carrier diffusion 

length for lasers type A-E. (a) and (b) KL = 0.8; (c) and (d) KL = 1.24; (e) and (f) KL = 3.2. 

2)  The damping and the oscillation frequency are re- 
duced as the width of the active region get smaller. This is 
because the lateral coupling between the optical field and 
the carrier concentration is reduced. In this range of K L ,  
lasers with type A structures have maximum damping and 
relaxation oscillation frequencies. 

3) The relaxation oscillation damping and frequency 
vary with the normalized carrier diffusion length (Le f f /w) ;  
a value between 1 and 2 gives minimum oscillation strength 
and maximum frequency, and hence, may be optimum for 
high-frequency direct modulation. This optimum is rela- 
tively broad and depends only weakly on the width of the 
active region w, and the value of K L .  For large values of 
L,,/w (> 101, the oscillation strength and period are 
close to the values calculated without considering the 
lateral effect; this is because the lateral carrier distribu- 
tion is almost uniform. As Lef f /w  reduces to the order of 

unity, spatial changes in the carrier density become com- 
parable with the active region width, and diffusion damp- 
ing of relaxation oscillation becomes significant. Note that 
in this analysis, the carrier recombination time T is not 
varied with Le,, so reducing L,,/w corresponds to re- 
ducing the diffusion coefficient.) As L,,/w is reduced 
further still, strong lateral hole burning will still occur, but 
the movement of the carriers is over distances smaller 
than the active width, which has little effect, and diffusion 
damping becomes insignificant again, as for L,,/w large. 
Fig. $a) shows the dynamic response of a “type A” laser 
(see Table I) with K L  = 0.8 with Le,/w varied from 5.0 
down to 0.5, and also the simpler case including no lateral 
effects. 

The effects of the gain compression factor E interact 
strongly with lateral diffusion. Values of E from 1 X 
up to about 7 X are currently used in the literature, 
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0 100 200 300 400 
Longitudnal position (pn) 

Fig. 4. The longitudinal average carrier concentration profile Np of the 
lasers with KL = 0.8, 1.24, and 3.2. 

70 1 I 

no lateral effect 

-0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
Time (ns) 

(a) 

"0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
Time (ns) 
(b) 

Fig. 5. Comparison between the transient response of power output 
from the facets with and without lateral effect. The effective carrier 
diffusion length is set to L,,/w = 1.6 and 5.0. The laser has KL = 0.8 
and is under large-signal modulation, (a) E = 1 X cm3 and (b) 
E = 5 x 1 0 - l ~  cm3. 

depending on the laser structure and matters such as 
carrier transport in quantum-well structures. Fig. 5(a) uses 
1 x (at the low extreme of the range), which makes 
the effects of lateral diffusion very obvious. Fig. 5(b) uses 
5 X which is toward the high end of accepted 
values and the effects of lateral diffusion are less, al- 
though still clearly visible. Lateral diffusion is seen to 

have a roughly comparable effect on laser response to 
direct gain compression, and since values for the latter 
are derived from observed laser responses, it may be that 
true values for gain compression are slightly lower than 
used previously, with lateral diffusion making up the dif- 
ference. 

The interaction between lateral and longitudinal carrier 
profiles is difficult to explain concisely, but may be de- 
scribed as follows. Fig. 6(a) shows the dynamic response of 
the average carrier density profile Np. The lateral SHB 
strength profile Nl is shown in Fig. 6(b) (the larger the 
amplitude of N,,  the higher the lateral SHB). The laser is 
type A with K L  = 3.2 and the effective diffusion length is 
set to L e f f / w  = 1.6. The laser is modulated with a step 
function. 

At time S when the first overshoot happens, lateral 
SHB occurs strongly at the phase-shifted region [in other 
words N, is large; see Fig. 6(b)] and the average gain in 
the phase-shifted region is reduced by the lateral SHB 
through the parameter 5,. The reduction of gain has the 
effect of increasing the average carrier concentration Np 
at the phase-sift region. This reduces the longitudinal 
SHB [see Fig. 6(c)]. Similar effects also occur for K L  = 0.8 
and 1.24. From the above it is clear that lateral effects on 
DFB lasers are different from those in FP lasers because 
the dynamic behavior of DFB lasers is strongly affected by 
their longitudinal uniformity. 

The damping caused by lateral SHB and diffusion can 
be explained in terms of gain saturation [5], but only when 
L e f f / w  s 1. For other values of L e f f / w  the present more 
complex analysis must be employed. Statically, the effect 
of carrier diffusion is straightforward: gain compression 
results from spatial hole burning, which increases with 
decreasing Le,.  Dynamically, although short carrier dif- 
fusion length reduces gain, it does not cause the damping 
associated with conventional gain compression. Under 
large-signal modulation, strong damping only occurs for 
the special case of L, , /w  = 1 and the oscillation strength 
is determined by the structure of the laser. The oscillation 
strength is also affected by the parameter t1 given in (12). 
Fig. 7 shows that t1 has a significant effect on damping 
(using the same laser parameters as in Fig. 6). From (12c), 
6, is strongly related to the rate of change of the lateral 
carrier profile dN, /d t ,  which hence, has an effect on 
damping. This is an additional term to those employed in 
[51. 

B. Side Mode Suppression Ratio of the Longitudinal Modes 

As we have shown above, if the lateral SHB is strong in 
the phase-shifted region, it will tend to reduce longitudi- 
nal SHB. However, for lasers with large K L  (> 2.4) and 
with a relatively short lateral carrier diffusion length, 
strong lateral SHB can occur near the facets rather than 
the phase-shifted region. This will enhance longitudinal 
SHB and reduce SMSR. 

Fig. 8 shows the dynamic response of a laser under 
large-signal modulation. The laser is type G with K L  = 2.6 
(i.e., ry = 0.95, t1 = 0.45, and t2 = 0.3). The normalized 
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is of type A, and is under large-signal modulation. The normalized 
effective carrier diffusion length is set to L,,/w = 1.6. 
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(b) 

L 

1.85 v \  without lateral effect 

0 100 200 300 400 
1.8 

Longitudinal position (urn) 

Fig. 6. (a) Large-signal modulation transient response of the cross-sec- 
tional average carrier concentration profile N The laser has KL = 3.2 
with structure of type A. The normalized cam& diffusion length L,,/w 
is set to 1.6. (b) Large-signal modulation transient response of the lateral 
SHB strength ( N I )  along the laser cavity. At time equal to S when the 
first overshoot occurs, the lateral SHB strength is high in the center of 
the laser cavity. (c) Comparison of the longitudinal carrier distribution 
with and without lateral carrier diffusion at time S when the first 
overshoot occurs. The normalized effective carrier diffusion length is set 
to 0.1, 1.6, and 10.0. 

(C) 

K L=2.6 
Laser type G 

E 
.g 20 
n 
Y 

0 

B lo 

0 
-0 1 2 3 4 

Time (ns) 
(a) 

Y - 1  B -20 

4000 5000 6000 7000 8000 9000 10000 

Relative frequency deviation (GHz) 

(b) 

Fig. 8. (a) Large-signal modulation transient response of the output 
optical power. The laser is type G with KL = 2.6. The normalized 
effective carrier diffusion length is set to Leff/w = 0.1. Mode beating 
starts at time p8,  caused by the side mode interfering with the main 
mode. (b) Fourier transform spectrum of time domain signal (last 1 ns) 
given in (a). 

lateral carrier diffusion length is set to L,,/w = 0.1. The 
h e r  is divided into 200 sections to ensure the accuracy of 
the calculation. The laser is first biased at threshold 
(around 2300 A/cm2) and then switched to a level of 5600 
A/cm2. Fig. 8(a) shows the transient response of the 
laser. The laser switches on with a single-mode pulse (with 
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no mode beating), but after nearly 2 ns, the output power 
starts to oscillate as a consequence of the beating of two 
modes. The optical spectrum can be obtained by Fourier 
transform of the time-dependent field. Fig. 8(b) shows the 
spectrum of the oscillating signal taken from 3 to 4 ns in 
which two modes can be clearly seen. However the beat- 
ing can be removed if we increase L,,/w to 2.0 or higher 
and this is strongly dependent on the structure of the 
lasers. 

Dynamic changes to the side modes can be understood 
from the dynamic variation of the lateral SHB strength NI 
shown in Fig. 9(a). We can clearly see that the longitudi- 
nal profile of N ,  changes dramatically after the laser is 
switched on for 1 ns. The profile changes from convex to 
concave. This implies that strong lateral SHB is changed 
from around the phase-shifted region to near the end 
facets. Referring to Fig. Na), the average carrier profiles 
Np, at time pl (the first overshoot) and at time p 8  (the 
eighth overshoot) are shown in Fig. 9(b) and (c) together 
with similar profiles where the lateral effect has been 
ignored. At time p l ,  the longitudinal SHB is reduced by 
the lateral SHB as in Fig. 6(c). However, at time p8, the 
longitudinal SHB is enhanced and reduces SMSR. 

The final longitudinal carrier concentration profile (after 
a long time) is dependent on the strength of the side 
mode. Whatever the relative powers of the main and side 
modes, the carrier distribution will follow the total field- 
intensity profile. Because the field-intensity profile of the 
side mode is more uniform than the main mode [16], the 
longitudinal carrier distribution profile has less SHB at 
the phase-shifted region when a side mode is present. 

Fig. 9(d) shows the variation of the average SMSR with 
the normalized effective diffusion length for the laser 
parameters used earlier in this section. At L,,/w = 0.5, 
SMSR is about 10 dB, reducing further for even lower 
values of L,,/w. However, as L,,/W increases to 3, 
SMSR goes up to around 50 dB. This shows that high 
lateral SHB reduces SMSR. 

We also investigate this effect in lasers with low KL( = 

0.8) for the laser types (A-G) shown in Table I. Fig. 10 
shows the typical dynamic variation of lateral SHB strength 
NI of the lasers. The lateral SHB is strong near the facets 
and weak in the phase-shifted region. The shape of the 
lateral SHB strength does not have a significant change 
for L e f f / w  = 0.1. For low K L  devices, single-mode opera- 
tion remains undisturbed regardless of laser type. 

C. Effectice Time-Averaged Linewidth Enhancement Factor 
The effective time-averaged linewidth enhancement 

factor (Yd under large-signal modulation can be estimated 
from [17] 

Af,/, A t , / ,  = 0.444- (14) 
where the time interval At , / ,  is the full-width half-maxi- 
mum (FWHM) of the first overshoot pulse of the laser 
under large-signal modulation. A f,/? is the FWHM of the 
spectrum of that pulse. This equation assumes that the 
first overshoot pulse has a Gaussian shape [17]. However, 

non-Gaussian shapes can be accommodated by changing 
the coefficient 0.44 in (14) [20], although given the accu- 
racy of the approximation, the shapes in this work can be 
regarded as Gaussian (see Fig. 5 and 6). 

Fig. 11 shows the typical shape of the spectrum of the 
pulse. Because of the DFB spectrum “rabbit ear” [17] 
shape, it is difficult to define the FWHM width sensibly. 
In our calculation, the first spike is ignored and the 
spectral height for FWHM purposes is taken as that of 
the central part of the profile. 

Fig. 12 shows the average variation of the normalized 
time-averaged linewidth enhancement factor with the nor- 
malized effective diffusion length. The calculation proce- 
dure is similar to that for the results shown in Fig. 3. The 
structures under investigation are y/4 lasers with K L  = 

0.8, 1.24, and 3.2. Only the laser structure types A and E 
are shown in the diagram. 

In general, the time-averaged linewidth enhancement 
factor reduces with carrier diffusion length. This is due to 
the dynamic reduction of longitudinal SHB caused by 
lateral SHB [see Fig. 6(c)]. A maximum reduction of 55 
percent of the time-averaged linewidth enhancement fac- 
tor can be obtained. This reduction is strongly dependent 
on the structure of the laser. Lasers of type A have large 
reduction of the time-averaged linewidth enhancement 
factor as the lateral effect is enhanced. 

IV. DISCUSSION AND CONCLUSION 
From the analysis of Section 111, the optimum width of 

the active region should be equal to or slightly less than 
(90 percent) the effective diffusion length of carriers in 
the InGaAsP active region. In addition, in order to obtain 
maximium coupling between the optical field and carriers 
in the lateral direction, the optical field should be com- 
pletely confined in the active region. The effective carrier 
diffusion length in the active region is dependent on the 
mobility of the carriers and temperature and varies with 
external current injection. In FP InGaAsP lasers, the 
estimated value [2] is 2-3 pm, so the optimum width 
calculated from Section I11 can be realized in BH DFB 
lasers of this type. 

The relaxation oscillation frequency or and the damp- 
ing frequency o, of DFB lasers vary with K L  even if their 
optical power outputs are the same. The general expres- 
sion of the relaxation oscillation frequency and the damp- 
ing rate can be written as [181 

respectively, where (S)  is the average photon density 
within the active region and rp is the photon lifetime. 
Equation (15) is deduced from a simple photon rate 
equation and has already been applied to FP lasers. The 
equation can also be used to estimate the dynamic behav- 
ior of DFB lasers provided that we know their photon 
lifetimes and the photon density profiles. 

Photon lifetimes of DFB lasers depend on the laser 
structure and the value of K L .  For symmetric h/4 phase- 
shifted DFB lasers with large KL ( > 3.01, photon lifetime 
is large compared to that for similar low KL (< 1.0) 

U,‘ = ( s ) g N v g / r p  and Wd = v g g N / E ,  (15) 
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Fig. 9. (a) Large-signal modulation transient response of the lateral SHB strength ( N , )  along the laser cavity. At time pl 
when the first overshoot occurs, the lateral SHB strength is high in the phase-shifted region. At time equal to p 8  when the 
eighth overshoot occurs, the lateral SHB strength is high near the facets of the laser. (b) Comparison of the cross-sectional 
average carrier distributions Np with and without lateral carrier diffusion calculated at time pl when the first overshoot 
occurs [see Fig. 8(a)l. The difference in carrier concentration between the phase-shifted region and the facets is reduced by 
lateral carrier diffusion. (c) Comparison of the cross-sectional average carrier distributions N,, with and without lateral 
carrier diffusion calculated at time pl when the first overshoot occurs [see Feg. 8(a)]. The difference in carrier concentration 
between the phase-shifted region and the facets is increased by lateral carrier diffusion. (d) Average side mode suppression 
ration (SMSR) against the normalized effective carrier diffusion length ( Leff/W). 

f . r ~ ~ 1 8 c m 9  

Fig. 10. Large-signal modulation transient response of the lateral SHB strength ( N I )  along the laser cavity. The laser has 
K L  = 0.8 with structure of type G. The normalized carrier diffusion length L,,/w is set to 0.1. 

lasers. For high KL, more photons accumulate in the 
phase-shifted region as evidenced by the low carrier den- 
sities near the center of the high KL laser in Fig. 4; this 
also implies that this structure has a relatively low loss (5 
is large). For low KL, more photons are accumulated near 

the facets and relatively large losses are expected. How- 
ever, applying the above to (14), this does not mean that 
low KL devices have relatively high resonance frequen- 
cies: this is because we have to take into account the total 
photon energy (S) stored inside the laser cavity. For 
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Fig. 12. Comparison of the normalized time-averaged linewidth en- 
hancement factor of lasers with KL = 0.8,1.24, and 2.3 with the normal- 
ized effective carrier diffusion length varied from 0.2 to 10. 

lasers with same output power, the energy stored inside 
those with large K L  is much larger than that in low K L  
devices. The resonance frequencies calculated in Section 
I11 are normalized; however, we should note that large 
KL devices have relatively large resonance frequencies, as 
shown above. 

The damping frequency (or inverse damping rate) in 
(14) is independent of the structure of the laser and it is 
determined only by the gain compression factor E and the 
differential gain. It is valid if the lasers have uniform 
longitudinal carrier profiles. In DFB lasers, E is enhanced 
by longitudinal SHB [7]. For large KL devices, slight 
increases in damping rate are expected. 

The lateral effect in symmetric h/4 phase-shifted DFB 
lasers with high K L  (> 3.0) causes increased relaxation 
oscillation frequencies and damping as well as reduced 
chirp. Large K L  devices may also have a low threshold 
current density and a low linewidth-power product; see 
Whiteaway [161. 

However, there is a major disadvantage of high K L  
devices, which is the low SMSR arising from longitudinal 
SHB. Although lateral SHB can reduce longitudinal SHB 

with a suitable choice of active region width, the optimum 
value still does not eliminate side modes for K L  > 3.0. 
One of the possible ways to enhance the SMSR is to 
introduce first-order radiation loss (h , )  [14]. We have 
performed extra calculations for the laser ( K L  = 3.2) in- 
cluding a second-order grating. The same parameters 
were used as in Fig. 3, except a, = 15 cm-' and h,  = 5.0 
cm-'. Similar results are obtained, showing h, does not 
degrade the performance of the devices, but the SMSR is 
enhanced by more than 30 dB. 

In conclusion, we have developed a detailed model to 
analyze the large-signal dynamic behavior of BH DFB 
lasers. By using the effective index method together with 
the perturbation method, the complex three-dimensional 
laser structure is reduced into a one-dimensional prob- 
lem. We have taken into account lateral as well as longi- 
tudinal carrier variation and the consequent refractive 
index variation. To the best of our knowledge, this is the 
first time the large-signal two-dimensional dynamic behav- 
ior of a DFB laser has been considered. 

This model has been used to analyze the large-signal 
dynamic behavior of symmetric h/4 phase-shifted BH 
DFB lasers. We found that lateral SHB and carrier dif- 
fusion have significant effects on the performance of 
such lasers. Damping rate, relaxation oscillation fre- 
quency, SMSR, and the time-averaged linewidth enhance- 
ment factor are affected. Laser structures with strong 
lateral optical field confinement and effective carrier dif- 
fusion length close to the width of the active region are 
optimum for relaxation oscillation frequency and damp- 
ing, and the time-averaged linewidth enhancement factor 
is also reduced. The maximum reductions are more than 
95 percent in relaxation oscillation strength and 30 per- 
cent in relaxation oscillation period. The effective time- 
averaged linewidth enhancement factor under large-signal 
modulation can also be reduced by 40 percent. 

We have demonstrated the importance of lateral effects 
on the dynamic behavior of DFB lasers. Ignoring the 
lateral effects may result in an inaccurate estimation or 
interpretation of the performance of DFB lasers. Al- 
though we only simulated symmetric BH h/4 devices, 
other waveguide structures can also be modeled, as can 
lasers employing facet reflections or pure gain-coupled 
devices. 

APPENDIX I 
The transverse confinement factor r' is given by 

The longitudinal coupling coefficient K and the first-order 
radiation loss coefficient h,  are given by 

layer 
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layer 

. h ) ( y > &  1 ( y )  dxdy  (A3) 
where A - ,  and A - ,  are the Fourier coefficients of the 
dielectric grating and K~ is the wave vector in free space. 

The lateral confinement factor ry is given by 

layer 

and the first-and second-order coupling parameters are 
given by 

The fields given satisfy the normalization condition 

and the transverse field can be solved using the same 
method as given in [19]. 
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