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Modeling, Analysis, and Experimentation of Chaos in a
Switched Reluctance Drive System

K. T. Chau and J. H. Chen

Abstract—In this brief, modeling, analysis, and experimentation of chaos
in a switched reluctance (SR) drive system using voltage pulsewidth mod-
ulation are presented. Based on the proposed nonlinear flux linkage model
of the SR drive system, the computation time to evaluate the Poincaré map
and its Jacobian matrix can be significantly shortened. Moreover, the sta-
bility analysis of the fundamental operation is conducted, leading to de-
termine the stable parameter ranges and hence to avoid the occurrence of
chaos. Both computer simulation and experimental measurement are given
to verify the theoretical modeling and analysis.

Index Terms—Bifurcation, chaos, drive system, stability, switched reluc-
tance (SR) motor.

I. INTRODUCTION

Chaos in switching dc-dc converters has been actively investigated
for a number of years [1]–[4]. Recently, chaotic behaviors in electric
drive systems have also been discussed [5]–[9]. Namely, chaos in an in-
verter-fed induction drive system using pulsewidth modulation (PWM)
was investigated by numerical simulation [5]; a strange attractor in an
idealized brushless dc drive system was modeled by using a Lorenz
equation [6]; chaos in dc drive systems was modeled, analyzed, and
experimented [7], [8]; and chaos in a switched reluctance (SR) drive
system was preliminarily investigated by computer simulation [9].

Among various modern drive systems, the SR drive system has been
identified to have promising industrial applications [10]. It takes the
advantages of high efficiency, high power density, high reliability, and
low manufacturing cost, but suffers from the drawbacks of high non-
linearities and control complexity [11]. Thus, it is anticipated that the
SR drive system is more prone to chaos. The purpose of this brief is
to first present the modeling, analysis, and experimentation of chaos in
an SR drive system using voltage PWM regulation. To the best of the
authors’ knowledge, the investigation of chaos in electric drive systems
was covered only in a few studies [5]–[9], and the experimental confir-
mation of chaos in the SR drive system was absent in literature.

II. SYSTEM MODELING

Fig. 1 shows a typical three-phase SR motor drive for exemplifica-
tion. The corresponding speed control is achieved by applying PWM
chopping to its motor voltages. The commutation strategy uses rotor
position feedback to select the turn-on angle�o and turn-off angle�c
of those lower-leg power switches (A2,B2, andC2). When the phase
windings are conducted in turn, the dwell interval�d = �c � �o of
each phase winding is selected to be equal to the commutation angle
�s = 2�=(mNr), wherem is the number of phases, andNr is the
number of rotor poles. As shown in Fig. 2, the stator phase A winding
starts to conduct at� = �o and ends at� = �o + �s. Subsequently, the
phase B winding conducts from� = �o + �s to � = �o + 2�s, and
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the phase C winding conducts from� = �o + 2�s to � = �o + 3�s.
For each cycle of conduction of all phase windings, the rotating angle
of the rotor is a total of2�=Nr. Fig. 2(a) also indicates that each phase
winding conducts at the instant of decreasing magnetic reluctance be-
tween the stator and rotor, hence producing a positive torque to drive the
rotor. For the sake of synchronizing the voltage PWM regulation with
the phase commutation, the ramp voltagevr for each phase winding is
a function of the instantaneous rotor displacement�

vr = vl + (vu � vl)
[(� � �o)mod�T ]

�T
(1)

wherevl andvu are the lower and upper bounds of the ramp voltage,
�T = �d=n� is its period,n� is an integer, and(� � �o)mod �T is
defined as the remainder of (���o) divided by�T . As shown in Fig. 1,
sincev! andv�! are linear functions of the instantaneous speed! and
reference speed!�, respectively, the speed control signalvc can be
expressed as

vc = g (! � !�) (2)

whereg is the overall feedback gain incorporating both the F/V con-
verter and the op-amp OA. Then, bothvr andvc are fed into the com-
parator CM which outputs the signal to turn on or off those upper-leg
power switches (A1, B1 andC1), depending on the phase commuta-
tion. Whenvc exceedsvr , the upper-leg switch is the same phase of
the turn-on lower-leg switch, which is off; otherwise, it is on. The other
phase switches remain off. The corresponding waveforms ofvc andvr ,
as well as switching signals, are shown in Fig. 2(b).

Instead of the phase currentik, the phase flux linkage k is chosen
as the state variable so that the system differential equation does not in-
volve the calculation of@ k(�; ik)=@� and@ k(�; ik)=@ik. Sincem
phase windings of the SR motor are conducted in turn, only two adja-
cent phase windings have currents at the same time whenm > 2. For
the sake of clarity and simplicity,m-phase windings conducted in turn
are represented by only two-phase windings (namely 1 and 2, activated
alternately). When the phase winding is controlled by PWM regula-
tion, it is called activated winding; otherwise, it is called inactivated
winding. Considering the winding two lags behind the winding 1 with
�s, the system equation of the SR drive can be expressed as

d�

dt
= !

d!

dt
=

(�B! + Te (�;  1;  2; �s)� Tl)

J
d 1
dt

= �Ri1 (�;  1) + u1(�)

d 2
dt

= �Ri2 (� � �s;  2) + u2 (� � �s)

(3)

Te =�
@

@�

 

0

i1(�;  )d �
@

@�

 

0

i2 (� � �s;  ) d (4)

uk =
Vs" (vr(�)� vc) ; (� mod2�s) 2 �o; �o + �s

�Vs" ( k) ; (� mod2�s) 2 �o + �s; �o + 2�s

(5)

whereuk is the phase voltage,Vs is the dc supply voltage,R is the
phase resistance,B is the viscous damping,J is the load inertia,Te is
the electromagnetic torque,Tl is the load torque, and" is the unit step
function. Because of its high nonlinearity, k(�; ik) is approximated
by a series of two-dimensional (2–D) quadratic Lagrange interpolation
functions of� and ik. These 2-D grids are formulated by using the
manufacturer’s design data or by employing finite element analysis of
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Fig. 1. Schematic diagram of SR motor drive.

Fig. 2. Operation principle of SR motor drive. (a) Rotor positions. (b) Switch-
ing signals.

the SR motor. This approach can significantly reduce the complexity
in the calculation of flux linkages. Moreover,ik(�;  k) can similarly

be obtained by numerical inversion of the relations of k(�; ik). Since
the current is much easier to be measured than the flux linkage, it is
chosen as the output variable. By defining the state vector asX =
(�; !;  1;  2)

T , and the output vector asY = (�; !; i)T , wherei =
i1 + i2, the system equation given by (3) can be rewritten as

_X = ft(X)

Y =Mt(X):
(6)

III. M ODELING OF CHAOS

In order to construct the Poincaré map, a hyperplane� 2 <3 is
defined as

� := fX : [(� � �o)mod�s] = 0g: (7)

The trajectory ofX under observation repeatedly passes through�
when� increases monotonically. Thus, the sequence of� crossing de-
fines a Poincaré mapP : <3 � <3 as given by

(!; 1;  2)
T

n+1
= P (!; 1;  2)

T

n
: (8)

Actually, the solution of this map, the so-called orbit [12], is a sequence
of samples at the turn-on angle of each phase winding. In order to avoid
the calculation of� crossing, the rotor displacement�, rather than time
t, is selected as the independent variable of the system equation given
by (3). The next crossing of the plane�n+1 = �o + (n + 1)�s can
be directly calculated by integrating from�n = �o + n�s to �n+1. To
make� an independent variable, (3) is expressed as

d!

d�
=

(�B! + Te (�;  1;  2; �s)� Tl)

(J!)
d 1

d�
=

(�Ri1 (�;  1) + u1(�))

!
d 2

d�
=

(�Ri2 (� � �s;  2) + u2 (� � �s))

!
:

(9)
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Sinceuk is piecewise continuous in terms of�, it is much easier
to find out the discontinuity points ofuk in (9) than in (3). Accord-
ingly, (9) can be separately solved within different continuous intervals.
Hence, it is much more efficient to use (9) to calculate the Poincaré
map than the use of (3). By redefining the state vector asX(�) =
(!;  1;  2)

T and the output vector asY(�) = (!; i)T , (9) can be
rewritten as

_X = f�(X; �)

Y =M�(X):
(10)

The Poincaré map (8) can also be rewritten as

Xn+1 = P (Xn)

Yn =M� (Xn) :
(11)

Althoughf� is piecewise continuous, the solution of (10) is contin-
uous, and hence,P is also continuous. It should be noted that the map
M� in (10) is a noninvertible map within the whole set of the solu-
tion. For example, if 1 and 2 are simultaneously nonzero,X is a
multivalued function ofY. However, the mapM� in (11) is homeo-
morphism, namelyM� andM�1

� are continuous, because one of 1
and 2 of Xn is zero. It results that a new mapQ: Yn+1 = Q(Yn)
can be defined asQ = M� � P �M�1

� . Thus, the mapsP andQ are
topologically conjugate [13], which means that the corresponding or-
bitsfXng andfYng have the same dynamics although they represent
different physical variables of the SR drive system. For example, ifX

�

is a fixed point ofP , thenY� = M�(X
�) is also a fixed point ofQ.

The eigenvalues of their Jacobian matricesDP (X�) andDQ(Y�) are
identical. The orbitfXng is used to locate the periodic and chaotic or-
bits, whereas the orbitfYng is used to illustrate the trajectories and
waveforms.

The Jacobian matrixDP (Xn) of the Poincaré mapP with respect
toXn is the solutionZn+1 = Z(�n+1) 2 <

3 � <3 of the variational
equation of its underlying system, as given by

_Z(�) =
@f�(X(�); �)

@X
Z(�) Z (�n) = Zn: (12)

Considering that the winding 1 is inactivated, it yields

@f�
@X

=

�T +T
J!

1
J!

@i

@�

1
J!

@i

@�
Ri �u

!
��� (� � � )�

R

!

@i

@ 
0

1
!

@u

@!
+ Ri �u

!
0 �R

!

@i

@ 

(13)

where

@u2
@!

=
gVs�� (� � �!)

g (�B! (�!) + Te (�!)� Tl)

(J! (�!))�
(v �v )
�

both@ik=@� and@ik=@ k can be obtained by directly differentiating
ik(�;  k), �� is the Dirac delta function that is the derivative of", � 
and�! are the discontinuity points ofu1 andu2, which can be obtained
by solving 1(� ) = 0 andvr(�!)� vc(�!) = 0, respectively.

For an arbitrary pointXn, the corresponding initial valueZn of the
variational equation given by (12) is usually an identity matrix. How-
ever, since 2(�n) = 0, it results that@Xn=@ 2 = (0 0 0 )T .
Hence, the third column of the identity matrixZn should be replaced
by a zero vector.

Actually, the period of 1 and 2 ofX is always 2�s rather than�s.
In order to attain the period-1 orbit ofP , the winding 1 always stands

for the inactivated winding at each iteration ofP , resulting that 1 and
 2 must exchange their values after each iteration ofP . Thus, the fixed
pointX� of P and its Jacobian matrix are defined as

X
� =CP (X�) (14)

J1 =CDP (X�) (15)

where

C =

1 0 0

0 0 1

0 1 0

:

The fixed pointX� of P can also be located by using the
Newton–Raphson algorithm as given by

X
(i+1) = X(i) � CDP X

(i) � 1
�1

CP X
(i) �X(i)

(16)
whereDP (X(i)) can be evaluated from (12) and (13). By checking
the characteristic multipliers, that is, the eigenvalues of the Jacobian
matrix, the stable region of the period-1 orbit for the fundamental op-
eration can readily be obtained.

IV. A NALYSIS OF CHAOS

In order to assess the proposed modeling of chaos, the corresponding
analysis is carried out based on a practical three-phase SR drive system
that has been designed for an electric vehicle [11]. The parameter
values areVs = 150 V, Ns = 12, Nr = 8, �s = 15�, �o = 3:75�,
R = 0:15 
,B = 0:00075 Nm/rads�1, J = 0:025 kgm2, vu = 5 V,
vl = 1 V, n� = 10, �T = 1:5�, !� = 50 rad/s, andT1 = 8:6 Nm.

Wheng = 1:3 V/rads�1, the steady-state behavior of the SR drive
system is the fundamental operation. The corresponding simulated
waveforms ofvc, vr , and i as well as the simulated phase-plane
trajectory ofi versusvc are shown in Fig. 3, in which� is expressed
as the integer multiple of�s. As shown in Fig. 3(a), there is no
skipping cycle during PWM regulation, namely,vc crosses every
vr. The fluctuation ofvc is also small (from 4.0 to 4.4 V), and the
corresponding! is from 53.1 to 53.4 rad/s. As shown in Fig. 3(b), the
correspondingi is periodic in terms of�s, and its fluctuation is from
23 to 60 A. Sincen� = 10, i has ten peaks within each�s, resulting
that the phase-plane trajectory of this periodic solution is a cycle
having ten peaks, as shown in Fig. 3(c).

Wheng = 4:8 V/rads�1, the SR drive system operates in chaos.
The simulated chaotic waveforms and trajectory are shown in Fig. 4.
Different from the periodic solution, it has skipping cycles within each
�s as shown in Fig. 4(a), in whichvc is higher thanvr, and no intersec-
tion occurs. Furthermore, the number of skipping cycles within each
�s is a random-like variable. It follows that the oscillating magnitudes
of vc (being the same shape of!) andi are all fluctuating, as shown
in Fig. 4(a) and (b), respectively. As expected, Fig. 4(c) shows that the
trajectory ofi versusvc is a random-like bounded phase portrait. It
can be found that even though the fluctuation of! is still acceptable
(from 50.6 to 51.6 rad/s), the fluctuation ofvc is severe (from 2.9 to
7.6 V), resulting that the fluctuation ofi is exceptionally large (from 0
to 120 A), which is highly undesirable.

In order to determine the boundary of the stable fundamental opera-
tion, all period-1 orbits are first located by using the Newton–Raphson
algorithm in (16). Then, their characteristic multipliers are evaluated
by computing the eigenvalues of the corresponding Jacobian matrices
obtained from (12)–(15). By drawing the line such that the magnitude
of the characteristic multipliers is equal to unity, the stable region of
T1 versusg for the fundamental operation can be obtained as shown
in Fig. 5. In case the characteristic multipliers are complex conjugates
while their magnitudes are less than unity, the system is still stable but



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 50, NO. 5, MAY 2003 715

Fig. 3. Simulated fundamental operation withg = 1:3 V/rads . (a) Control
and ramp voltage waveforms. (b) Total current waveform. (c) Trajectory of total
current versus control voltage.

spirally converging to the fixed point. The unstable region for the fun-
damental operation involves both subharmonic and chaotic operations.
It should be noted that Fig. 5 is highly desirable for the designer of SR
drive systems.

V. EXPERIMENTATION OF CHAOS

Based on the same SR drive system, experimentation is conducted.
Since! has a large dc bias while its variation is relatively small, it is not
so clear to assess the speed variation based on the direct measurement
of !. In contrast,vc is the amplified speed error which not only exhibits
a clear pattern of speed variation, but is also easily measurable. Thus,vc

is measured to represent!. The measured trajectory and waveforms of
i andvc wheng = 1:3 V/rads�1 are shown in Fig. 6. This illustrates
that the SR drive system operates in the period-1 orbit, actually the
stable fundamental operation. It can be observed thati andvc are not
of exact periodicity, which is due to the inevitable imperfections of the

Fig. 4. Simulated chaotic operation withg = 4:8 V/rads . (a) Control and
ramp voltage waveforms. (b) Total current waveform. (c) Trajectory of total
current versus control voltage.

Fig. 5. Stable and unstable regions for fundamental operation.
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Fig. 6. Measured trajectory and waveforms of feedback control voltage and
total current at fundamental operation withg = 1:3 V/rads .

Fig. 7. Measured trajectory and waveforms of feedback control voltage and
total current at chaotic operation withg = 4:8 V/rads .

practical SR motor drive, such as the mechanical eccentricity of the
drive shaft and the torsional oscillation of the coupler. Also, it can be
found thati lies roughly between 20 and 60 A, whilevc lies between 4.0
and 4.5 V. By comparing these results with the waveforms and trajec-
tory shown in Fig. 3, the measured results and the theoretical prediction
have a good agreement.

Moreover, by selectingg = 4:8 V/rads�1, the measured trajectory
and waveforms ofi andvc shown in Fig. 7 illustrate that the SR drive
system operates in chaos. It can be found that the boundaries ofi and
vc lie roughly between 0 and 120 A and between 2 and 8 V, respec-

tively. Different from the period-1 orbit in which the measured trajec-
tory and waveforms are directly compared with the theoretical predic-
tion, the chaotic trajectory and waveforms measured in the experiment
can hardly match the theoretical ones because the chaotic behavior is
aperiodic so that the period of measurement cannot be the same with
that of theoretical analysis. Nevertheless, it can be found that the mea-
sured boundaries of the chaotic trajectory shown in Fig. 7 resemble the
theoretical prediction in Fig. 4, which is actually a property of chaos.

VI. CONCLUSION

In this brief, the modeling, analysis, and experimentation of chaos
in the SR drive system using voltage PWM regulation have been pre-
sented. The corresponding experimental confirmation of chaos first
appeared in literature. Based on the proposed nonlinear flux linkage
model of the SR drive system, the computation time to evaluate the
Poincaré map and its Jacobian matrix can be significantly shortened.
Also, the stability analysis of the fundamental operation is carried out,
which can depict the stable operating region of load torque and feed-
back gain. The proposed modeling approach and analysis technique
can readily be applied or extended to other electric drive systems.
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