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Symbol-Timing Estimation in Space–Time Coding
Systems Based on Orthogonal Training Sequences

Yik-Chung Wu, S. C. Chan, Member, IEEE, and Erchin Serpedin, Senior Member, IEEE

Abstract—Space–time coding has received considerable interest
recently as a simple transmit diversity technique for improving
the capacity and data rate of a channel without bandwidth ex-
pansion. Most research in space–time coding, however, assumes
that the symbol timing at the receiver is perfectly known. In prac-
tice, this has to be estimated with high accuracy. In this paper, a
new symbol-timing estimator for space–time coding systems is pro-
posed. It improves the conventional algorithm of Naguib et al. such
that accurate timing estimates can be obtained even if the over-
sampling ratio is small. Analytical mean-square error (MSE) ex-
pressions are derived for the proposed estimator. Simulation and
analytical results show that for a modest oversampling ratio (such
as equal to four), the MSE of the proposed estimator is signifi-
cantly smaller than that of the conventional algorithm. The effects
of the number of transmit and receive antennas, the oversampling
ratio, and the length of training sequence on the MSE are also ex-
amined.

Index Terms—Approximated log-likelihood function,
space–time coding, symbol-timing recovery, training sequences.

I. INTRODUCTION

SPACE–TIME (ST) processing using ST coding has re-
ceived considerable interest recently as an efficient means

for high-rate data transmission [1]–[10]. Symbol-timing syn-
chronization is an important issue in ST coding systems because
perfect symbol-timing information at the receiver is usually as-
sumed. This problem was first studied in [4], where orthogonal
training sequences are transmitted at different transmit antennas
to simplify the maximization of the oversampled approximated
log-likelihood function. The sample having the largest mag-
nitude, the so-called the “optimal sample,” is assumed to be
closest to the optimum sampling instants (it will be referred
to as the optimum sample selection algorithm in the sequel
for convenience). However, it is shown in this paper that the
mean square error (MSE) of this algorithm is lower bounded by

, where is the oversampling ratio. As a result, the
performance of this timing synchronization method depends
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highly on the oversampling ratio. In fact, relatively high over-
sampling ratios might be required for accurate symbol-timing
estimation.

In thispaper,anewsymbol-timingestimator forSTcodingsys-
tems isproposed. It improves the optimum sample selection algo-
rithm in [4] so that accurate timing estimates can be obtained even
if the oversampling ratio is small. The increase in implementation
complexitywithrespect tothatofoptimumsampleselectionalgo-
rithm is very small. The requirements and the design procedures
for the training sequences are discussed. Analytical expressions
for MSE of the proposed estimator are derived. Both analytical
and simulation results show that, for a modest oversampling ratio
(such as ), the MSE of the proposed estimator is signif-
icantly smaller than that of the optimum sample selection algo-
rithm. Furthermore, the effects of the number of transmit and re-
ceive antennas, the oversampling ratio, and the length of training
sequence on the MSE are also examined.

The paper is organized as follows. The system model of
the ST coding system is first described in Section II. A brief
overview of the optimum sample selection algorithm for
symbol-timing synchronization in an ST coding system is given
in Section III. Requirements and design of training sequences
are discussed in Section IV. The proposed symbol-timing
estimator is then presented in Section V. Analytical MSE
expressions are derived in Section VI. Simulation results and
discussions are then presented in Section VII, and finally
conclusions are drawn in Section VIII.

II. SIGNAL MODEL

Both ST block coding and ST trellis coding systems can be
described by the same basic communication model [4]. The sim-
plified baseband equivalent model, with transmit and re-
ceive antennas, is shown in Fig. 1. The information is encoded
by an ST trellis or block encoder to give the encoded sym-
bols . Each encoded data symbol
is pulse shaped and then transmitted simultaneously via dif-
ferent antennas. A superposition of independently faded signals
from all the transmit antennas plus noise is received at each re-
ceive antenna. The received signal at each receive antenna is
first filtered by a matched filter. It is then passed through the
symbol-timing recovery and the channel estimation units and,
finally, the ST decoder.

For a flat fading channel, the received signal at the th receive
antenna can be written as

(1)

1536-1276/$20.00 © 2005 IEEE
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Fig. 1. Simplified baseband equivalent model for ST coding system.

Fig. 2. Structure of the training sequence for symbol-timing synchronization in a two-transmit antenna system.

where is the symbol energy and s are the complex
channel coefficients between the th transmit antenna and the th
receive antenna and are assumed to be statistically independent
for different transmit/receive antennas (this condition is satis-
fied if the transmit antennas are well separated, e.g., more than

, where is the wavelength of the RF carrier). is the
information symbol transmitted from the th transmit antenna;

is the transmit filter, which is assumed to be a root raised
cosine pulse; is the symbol duration; is the un-
known timing offset; and is the complex-valued circularly
distributed Gaussian white noise at the th receive antenna, with
power density . Throughout this paper, it is assumed that the
channel is frequency flat and quasi-static.

Let the received signal be sampled at a rate times faster than
the symbol rate . The sampled and matched filtered signal
at the th receive antenna is given by

(2)

where1 ,
, and denotes the matched filter.

III. TIMING SYNCHRONIZATION BY OPTIMUM

SAMPLES SELECTION

As proposed in [4], orthogonal training sequences can be pe-
riodically transmitted in between data symbols (as shown in
Fig. 2) to assist the timing synchronization. The idea is that at
the receiver, if the position of the orthogonal training sequences
can be correctly located, the signal from any one of the transmit

1Notation stands for “is defined as,” and 
 denotes convolution.

antennas can be extracted (and signals from other antennas are
removed) by multiplying the received signal with the orthogonal
sequence transmitted from that antenna. Note that the structure
of training sequences in this paper is different from that pre-
sented in [4]. In this paper, a cyclic prefix and cyclic suffix, each
of length , are included in order to remove the intersymbol in-
terference (ISI) from the random data transmitted before and
after the orthogonal training sequences. Since is usually kept
as a small number, the increase in length of training is very
small, especially when the length of the orthogonal training se-
quences is large.

Let be the th
orthogonal training sequence of length to be trans-

mitted from the th transmit antenna. The sampled signal at the
th receive antenna can be obtained by replacing in (2)

with . Further, let and
, where

and denotes the nearest integer less than or equal to ) so
that each sample is indexed by the th training bit and the th
phase. In order to maintain the orthogonality between the re-
ceived training sequences and the local copies, the first phase
is taken at such that all the samples for the
th training bit are taken from . Then,

the received signal , due to the orthogonal training
sequences, can be rewritten as

for

and

(3)
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Fig. 3. � (k) with the scaled version of jp(t)j for �T=2 � t � T=2 (dotted line).

where . Note that has been dropped from the
index of since a fixed time shift does not affect the
noise statistics. In practice, it is sufficient to estimate only
as it represents the time difference between the first sample of
the training sequence and the next nearest optimum sampling
instance. Grouping the samples with the same phase, one can
form the vector as in (4) and (5), shown at the bottom of
the page. Please also refer to the other equation shown at the
bottom of the page.2

Define the sequence , where denotes
the transpose conjugate of . Since s are orthogonal to each
other when the relative delay is zero, it follows that

(6)

for is the norm of , which
is a constant. is the same as but with the th column
removed, and is the same as but with the th

2Notation x denotes the transpose of x.

entry removed. The second term in (6) represents the ISI if the
training sequences are not orthogonal when the relative delay is
not zero. The last term in (6) is the noise term.

From (6), it can be observed that if the second and third terms
are very small [a training sequence design procedure that makes
the second term zero is discussed in the next section; the third
term is small at high signal-to-noise ratios (SNRs)], has
the same shape as for , except that it is
scaled by a complex channel gain and is corrupted by additive
noise. In order to remove the effect of the channel, consider the
sequence . Now, the sequence should
have a similar shape to the function for

. This is illustrated in Fig. 3, where an example sequence of
is shown ( and in the absence

of noise). Note that a scaled version of for
is also shown (in dotted line) for comparison. It can be seen

that the optimum sampling time is at and the sample with
maximum amplitude is the one closer to the optimum sampling
instant than the remaining samples.

A simple symbol-timing synchronization algorithm is to
choose a value of closest to the optimum sampling instants.
That is, the optimum sampling phase is selected such that

(4)

(5)

...
...

...
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it maximizes . Since the channels for different antennas
are independent, the average of over all and is maxi-
mized (see (8), where the scaling factor is not included
in order to preserve a simplified notation). As mentioned in [4],
this represents the samples of an approximated log-likelihood
function for symbol-timing synchronization, when the ISI plus
noise term in (6) is assumed to be Gaussian. Therefore, the
optimum sampling phase is selected as [4]

(7)
with

(8)

Under the optimistic assumption that the samples closest
to the optimum sampling positions are correctly estimated (at
high SNRs), the estimation error, normalized with respect to
the symbol duration, is a uniformly distributed random variable
in the range . Therefore, the MSE is .
Thus, a relatively high oversampling ratio might be required in
order to obtain a small MSE.

IV. DESIGN OF TRAINING SEQUENCES

The performance of the proposed timing estimator is directly
influenced by the presence of ISI and noise terms in (6). In order
to minimize the contribution of the ISI term in (6), the training
sequences need to be designed such that

(9)

for all combinations of and . Combining with the fact that se-
quences from different antennas have to be orthogonal when the
relative delay is zero, the problem of training sequences design
resumes to finding sequences such that

if
if

where denotes the identity matrix. This is exactly the problem
of designing multiple -perfect sequences [11]–[13],
with each of length . Here, we just mention the procedures for
designing the training sequences, interested readers can refer to
the original papers [11]–[13] for details.

1) Construct a sequence
with length such that all of its out-of-phase periodic
auto-correction terms are equal to zero. One example
of this kind of sequence is a Chu sequence [14].

2) Construct another sequence

of length as in (10), shown at the bottom
of the page. Note that must be satisfied.
That is, if the number of transmit antennas is large,
we cannot use training sequences with short length.

3) The orthogonal training sequences are given by

(11)

For example, let us consider .
First, we construct a Chu sequence of length 32. Then, we
cyclically extend the Chu sequence by copying the first

bits and putting them at the back. Then,
and .

V. TIMING SYNCHRONIZATION BY ESTIMATION

In an optimum samples selection algorithm, symbol timing
is estimated by maximization of the oversampled approximated
log-likelihood function. As the number of samples becomes
very large (which requires a large oversampling ratio), the
estimate could become accurate. However, noting that the
approximated log likelihood function is “smooth” (see Fig. 3),
we expect that the maximization of the log-likelihood function
can be done by interpolation based on a few samples, thus
keeping the oversampling ratio at a small number.

More precisely, let us construct a periodic sequence
by periodically extending the approximated log-likelihood se-
quence in (8). Further, denote as the contin-
uous and periodic approximated log-likelihood function with its
samples given by . According to the sampling theorem,
as long as the sampling frequency is higher than twice the
highest frequency of , then can be represented
by its samples without loss of information. The rela-
tionship between and is then given by

(12)

Now, expand into a Fourier series

(13)

where

(14)

Substituting (12) into (14) yields

(15)

(10)



WU et al.: SYMBOL-TIMING ESTIMATION IN SPACE–TIME CODING SYSTEMS 607

where denotes the Fourier transform. It is clear that if is
even, we have the equation shown at the bottom of the page, and
if is odd, we have the other equation shown at the bottom of
the page.

From (13), it can be seen that once the coefficients are de-
termined, the timing delay can be estimated by maximizing

for . Note that only contains
samples of the approximated log-likelihood function at certain
delays, while is a continuous function of . There-
fore, maximizing provides a more accurate estimate
of the timing delay than maximizing . For efficient im-
plementation, the maximization can be performed by discrete
Fourier transform (DFT)-based interpolation. More specifically,

for can be approximated by a -point
sequence, denoted as for , by
zero padding the high frequency coefficients of and per-
forming a -point inverse discrete Fourier transform (IDFT).
For a sufficiently large value of becomes very close
to for , and the index with the maximum
amplitude can be viewed as an improved estimate of the timing
parameter .

To avoid the complexity in performing the -point IDFT,
an approximation is applied to (13). More precisely, extensive
simulations show that are much greater than for ;
therefore,

for (16)

where stands for the real part of . In order to maximize
the approximated log-likelihood function , we have

(17)

where denotes the phase of . Equivalently

(18)

The estimated delay is the time between the first sampling
phase and the nearest optimum sampling instant. The calcula-
tion within the -operation is actually the second output of
a -point DFT of the sequence (or the Fourier coefficient at
symbol rate ). Note that the increase in complexity of
the proposed algorithm in (18) with respect to that of optimum
samples selection algorithm is only a -point DFT (which can
be efficiently implemented using Goertzel’s algorithm) and an

-operation. From the simulation results to be presented at
Section VII, it is found that an oversampling factor of four
is sufficient to yield good estimates in practical applications.
Therefore, the four-point DFT in (18) can be computed easily

without any multiplications since .
This greatly reduces the arithmetic complexity of implementa-
tion.

VI. PERFORMANCE ANALYSIS

We derive the MSE expressions of the proposed estimator as
a function of in this section. First, express the true delay
as

(19)

Taking the difference between (18) and (19), the MSE is given
by

(20)

where

(21)

Applying the approximation for small , we
have

(22)

(23)

(24)

The second approximation is justified by the fact that the mean
of the denominator is much larger than the mean
of the numerator (which is illustrated in Fig. 4
for , and with ,

, and ), and the variance
of the numerator and denominator are much smaller than the
mean of the denominator (which is true for medium to high
SNRs). Some additional explanations regarding this approxima-
tion can be found in [18]. From (23) and (24), we have the fact

was used.
It is proved in Appendix I that

(25)

for

for
otherwise

for
otherwise
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Fig. 4. Magnitude ofE[(��� ) ] andE[(�+� ) ] as a function ofE =N for � = �0:5;�0:25;0; 0:25, and 0:5(N = 2;M = 4; � = 0:3;Q = 4; L =
32; L = 4). Note that all curves for different values of � overlap.

(26)

where

(27)

(28)

(29)

(30)

(31)

and

(32)

is the correlation between noise samples introduced by the
matched filter.

Since the timing delay is assumed to be uniformly distributed,
the average MSE can be calculated by numerical integration of
(24).

VII. SIMULATION RESULTS AND DISCUSSIONS

The performances of the synchronizers based on the optimum
sample selection (7) and the proposed algorithm (18) are eval-
uated in this section. The MSE of the estimates are calculated
using both the analytic expressions derived in the last section
and Monte Carlo simulations, where each MSE value is ob-
tained by averaging over 10 estimates. The timing offset is
generated to be uniformly distributed in the interval .
The channel coefficients are generated as complex Gaussian
random variables with zero mean and a variance of 0.5 per di-
mension. The raised cosine pulse with excess bandwidth

is considered. The training sequences are generated fol-
lowing the procedures in Section IV with . In all the fig-
ures, the MSE of both the proposed algorithm and the optimum
sample selection algorithm are plotted against , with the
markers showing the simulation results while the solid lines rep-
resent the theoretical MSE derived in the last section.

A. Effect of Oversampling Ratio

In (12), it is assumed that the sampling frequency is at least
twice the highest frequency of . Since has the
same shape as for , where is
a raised cosine pulse, it is natural to predict that the sampling
frequency has to be greater than (i.e., ). This
prediction is corroborated by Fig. 5, where the MSE are shown
for , and in a two-transmit four-receive antenna
system with . Several conclusions can be drawn from
the figure.

1) Performances of the optimum sample selection algo-
rithm are lower bounded by and are poorer
than that of the proposed algorithm, for all values of
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Fig. 5. MSE performance for different oversampling ratios Q(N = 2;M = 4; L = 32; � = 0:3).

(except , in which case the performances of both
algorithms are the same).

2) It can be seen that for , the MSE of the proposed
algorithm is much higher than that corresponding to
other oversampling ratios. This confirms the above ar-
gument that has to be greater than four in order
to represent without much loss of informa-
tion. For and the performance improves
at high . This can be explained by the fact that

is a truncated version of , so
is no longer bandlimited. Therefore, would,
in general, suffer from aliasing from the neighboring
spectra. Increasing thus reduces the aliasing and im-
proves the performance.

3) The analytical MSEs (solid lines in the figure) match
very well with the simulation results for , and

. Note that for , the analytic MSE expression
does not hold and only the simulation results have been
plotted in Fig. 5.

4) Strictly speaking, should be at least equal to 16 in
order to represent using its samples
without loss of information. However, for , the
MSE of the proposed algorithm reaches the order of
10 at medium and high , which is a reason-
ably good performance in practical applications. Be-
cause of this reason, is used to generate the
simulation results for the rest of this paper.

B. Effect of Length of Training Sequences

Fig. 6 shows the MSE of a two-transmit four-receive antenna
system with different lengths of the training sequences. In
this figure, it can be seen that increasing the length of training

sequences improves the performance at low . But at high
, the MSEs are the same for all . Again, the perfor-

mance of the proposed algorithm is much better than that of op-
timum samples selection algorithm. It is also notable that the an-
alytic MSE expressions match the simulation results very well.

C. Effect of Number of Receive Antennas

Fig. 7 compares the MSE for different numbers of receive an-
tennas when two-transmit antennas and are used. We
can see that increasing the number of receive antennas reduces
the MSE at low , but it does not help at high .
The proposed algorithm exhibits much smaller MSE than the
optimum sample selection algorithm. When comparing the the-
oretical and simulation results of the proposed algorithm, it can
be seen that they match pretty well except for the
case. This is due to the fact that the approximation in
(22), in general, holds only for AWGN channels3 but not for
fading channels. In the presence of fading, the channel output
may assume a large range of values and the approximation does
not hold anymore. Of course, a better approximation, such as

may be used, but the anal-
ysis would become extremely complicated as higher order mo-
ments are involved. Fortunately, as the number of transmit or re-
ceive antennas increases, the equivalent averaged channel across
all transmit/receive antennas tends to behave like an AWGN
channel and the approximation becomes valid again. This can
be seen from the cases and , the theoretical
and the simulation results are closer when compared with the

case. For and , the theoretical and the
simulation results match exactly.

3Note that this approximation has been applied in similar applications [16],
[17] in AWGN channels only.
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Fig. 6. MSE performance for different lengths of the training sequence (N = 2;M = 4;Q = 4; � = 0:3).

Fig. 7. MSE performance for different numbers of receive antennas M(N = 2; L = 32;Q = 4; � >= 0:3).

D. Effect of Number of Transmit Antennas

Finally, we assess the MSE when different numbers of
transmit antennas are used with . The results shown in
Fig. 8 illustrate that increasing the number of transmit antennas
does not change the MSE performance. The theoretical and the
simulation results for the proposed algorithm match very well.
Once again, the proposed algorithm performs much better.

VIII. CONCLUSION

A new symbol-timing delay estimator for ST coding systems
has been proposed. It improves the optimum sample selection
algorithm of Naguib et al. [4] such that accurate timing esti-
mates are obtained even if the oversampling ratio is small. The
increase in implementation complexity with respect to the op-
timum sample selection algorithm is very small. The require-
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Fig. 8. MSE performance for different numbers of transmit antennas N(L = 64; Q = 4; � = 0:3;M = 2).

ments and the design procedure for the training sequences are
discussed. Analytical expressions for MSE of the proposed es-
timator are derived. It is shown that the MSE analytical expres-
sions match very well with the simulation results in most of the
cases. Simulation results also show that for modest oversam-
pling ratios (such as ), the MSE of the proposed estimator
is significantly smaller than that of the optimum sample selec-
tion algorithm. Furthermore, the performance of the proposed
algorithm improves with the number of receive antennas being
employed or the length of training sequences.

APPENDIX I
CALCULATION OF AND

Since we can construct orthogonal sequences such that (9) is
satisfied, the ISI term in (6) vanishes. Further, with the fact that

, we have

(33)

where

(34)

(35)

(36)

Then, (21) can be rewritten as

(37)

Before we proceed to the calculation of and , we
first calculate the mean and the second moment of . Note
the following facts:

(38)

(39)

(40)

(41)

(42)

(43)

where if and zero otherwise. Since the matched
filter is a root raised cosine filter, we also have

(44)

(45)

for (46)

Let

(47)
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such that . The mean of is

(48)

where in the first equality, we applied (39) and in the second
equality, we applied (46). Therefore, is a
constant and independent of .

The second moment of is given by

(49)

Note that (39) makes the cross terms vanish. Considering the
first term in (49)

(50)

Using the fact that if are jointly Gaussian, then

(51)

and applying (38), (40), and (41), we have

(52)

Plugging this result back into (50), we obtain

(53)

Consider first . We note that the second term
in (53) is approximately zero since is a decaying
function of . When or is small,

has significant values.
But in these cases, since the
training sequences are designed such that they are orthogonal
when the relative delay is small. When is large,

. The same argument
applies to . For , the only
case that the second term in (53) is nonzero is when
and . Therefore, we have

(54)

Now consider the second term of (49) (ignoring the nonrandom
part at this moment). Expanding it out and applying (42) and
(43), we note that it is zero except for the case and ,
in which case we have

(55)

Plugging (54) and (55) back into (49), we obtain

(56)

Finally

(57)
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Now, return to the calculation of and . From
(37), we have

(58)

The cross terms vanish since and are uncorrelated and
is a constant and independent of . Note that is a cen-

tral chi-square random variable with degrees of freedom
and the variance in each dimension equals 0.5, so

. Using (57), it can be easily shown that

(59)

where

(60)

(61)

Plugging (59) back into (58), the expression for can be
obtained and is given by (25). A similar procedure can be ap-
plied to obtain the expression for .
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