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Fast Detection of Instability in Sigma–Delta
Modulators Based on Unstable

Embedded Limit Cycles
Ngai Wong, Member, IEEE, and Tung-Sang Ng, Fellow, IEEE

Abstract—As a sequel to a previous study (Wong and Ng) on
the nonlinear dynamical behavior of low-pass, high-order (order
> 2), single-bit �� modulators with distinct unit-circle noise
transfer function zeros, this paper proposes a novel scheme for
the fast detection of unstable operation in these modulators under
general time-varying input. The scheme is based on the variation
of unstable embedded limit-cycle fixed points (which form the
bounds beyond which the modulator becomes unstable) versus
modulator input amplitude. Deployment of the detection scheme
requires simple analog components with possible simplification.
The effectiveness of the scheme is demonstrated with numerical
examples.

Index Terms—Delta–sigma (��) modulator, detection, fixed
point, instability, limit cycle, recovery, sigma–delta (��) modu-
lator.

I. INTRODUCTION

THIS PAPER is a sequel to Wong and Ng [1]. Despite the
dc stability of a sigma–delta modulator, it is un-

safe to assume its stability under all types of ac (time-varying)
input. In general, a dc–stable modulator is stable for slow
time-varying input wherein the input signal approaches dc under
the high oversampling ratio (OSR). In fact, in these cases, the
modulator can often sustain input amplitudes higher than its
dc input bound [2]. However, when the nature of the input is
not known, stability can never be assured no matter what the
input amplitude is. For example, the dc-stable, widely adopted
second-order low-pass (LP) modulator can be driven to in-
stability under certain ac input of small amplitudes [3], though
the input signal is somehow contrived and unlikely to occur in
nature. In practice, it is therefore important to efficiently de-
tect instability of a modulator and subsequently restore its
normal operation.

There are generally two conditions that lead to unstable mod-
ulator operation, namely, signal overload and modulator power
up [4]. Both cases correspond to the state trajectories evolving
toward infinity due to a transition state outside the appropriate
positively invariant set (PIS) as depicted in [1]. Current research
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to tackle instability of a modulator comprises the more so-
phisticated, adhoc solution that tracks the internal integrator out-
puts and provides external control through some digital logics.
Examples include the switching control of Zourntos and Johns
[5] intended for continuous-time loop filtering, the integrator
local feedback method of Moussavi and Leung [6], the non-
linear filtering scheme of Thurston and Hawksford [7], and the
“local nonlinear feedback loop” of Ho and Kuo [8] (note that
this scheme actually works by limiting the input dynamic range
and does not necessarily guarantee stability because instability
can still be triggered by small input as mentioned). Drawbacks
of these schemes are their complexity and nontrivial implemen-
tation of the control logics. The digital compensation and/or
correction required in some of these schemes also hamper the
binary format of the single-bit modulator output, making
subsequent processing less elegant and more difficult.

Commonly used recovery schemes are to first check for in-
stability, and then either to issue a global reset or limit the inte-
grator outputs (e.g., [4] and [9]). Nonetheless, nonlinear limiting
or clipping of internal integrators is prone to output distortion.
This is because for low clipping levels, the integrators may be
clipped even during normal operation, while high clipping levels
will result in delayed remedy and therefore poor signal-to-noise
ratio (SNR) at the output. In view of this, the instability de-
tect-and-reset scheme is more favorable provided fast detection
of unstable operation is viable. Two practically adopted detec-
tion schemes include: 1) unstable bit pattern search in the
output bitstream and 2) comparison of integrator swings against
certain thresholds [4, ch. 4, 5]. The method of searching for in-
stability bit pattern, however, is flawed from the outset because
once the pattern can be found, the modulator is already in its
unstable mode. The second method faces the same problem as
in the clipping scheme because it is hard to assign the triggering
levels (thresholds) for stability recovery mechanism. The effec-
tiveness of these schemes thus mainly relies on the algorithm
for detecting instability. Currently, apart from simulation and
linearized analyzes, there are no analytical results regarding the
stable integrator swings of a general, high-order (order > 2)
modulator, and when the appropriate recovery action, such as a
global reset, should be taken. A theory and algorithm on the fast
detection of unstable operation would be practically useful.

As an extension of the nonlinear dynamical analysis on
a certain class of single-bit modulators in [1] [namely,
LP high-order modulators with distinct unit-circle noise
transfer function (NTF) zeros], a scheme is devised for de-
tecting unstable operation in these modulators. The scheme is
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Fig. 1. Variation of fixed points against tilt factors for an example decomposed fifth-order �� modulator with optimized NTF zeros (u = 0:48; OSR =
64;maximum NTF gain = 1:5). The boundary transition flow is highlighted.

based on the variation of unstable embedded limit-cycle fixed
points (which signify the bounds beyond which the state trajec-
tory goes unstable) with the modulator input amplitude. Circuit
implementation of the detection scheme can be simplified and
only standard analog components are required. A novel feature
of the scheme is that it exercises dynamic bounding of the states
with respect to the input amplitude, i.e., the upper and lower
bounds of the states are functions of the input. This ensures
early detection of instability just upon its onset, which is critical
when we consider that instability may be triggered by input
amplitudes well below the dc bound. Consequently, the scheme
prevents the “leaking” of unwanted tones into the output bit-
stream and eliminates the need of digital compensation and/or
correction (e.g., [9]) to remove the tones at later stages.

This paper is organized as follows. Section II reviews the em-
bedded limit cycles obtained from the state–space decomposi-
tion of LP high-order single-bit modulators with distinct
unit-circle NTF zeros. Attention is paid to the unstable limit

cycles beyond which the state trajectories become unbounded.
Section III plots the variation of the theoretical state bounds
against the input amplitude, thus leading to a scheme that de-
tects instability upon its onset. The proposed scheme is then
compared to the conventional bit pattern search scheme. Sec-
tion IV discusses the simplification and circuit implementation
of the scheme, followed by conclusion in Section V.

II. REVIEW OF CONTINUOUS-TIME EMBEDDED LIMIT CYCLES

Using the notations from [1], an LP high-order single-bit
modulator having distinct NTF zeros on the unit circle can be
represented by

(1)
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Fig. 2. Discrete state-trajectory plot for the example fifth-order �� modulator in Fig. 1 (u = 0:61 and zero initial condition, i.e., x = 0). Instability occurs
after about 8700 samples.

where and are the state ma-
trices, is the modulator input, (either or ) is the quan-
tizer output, and is the sign function. It is shown that
this system can be decomposed into second-order subsystems,
plus an additional first-order subsystem for odd-order modu-
lators. The transformation and translation relating the original
state-vector (the integrator outputs) to that in the trans-
formed state space, , is quoted here

(2)

Referring to [1], is a vector that contains the half-plane
center information of all second-order subsystems, and the zero
below the delimiter is only present in an odd-order modulator.
Also, diagonalizes the transition matrix, transforms the
state variables into real quantities, and rotates and scales the
coordinate system of every subsystem such that the sum of their
vertical coordinate components determines which half-plane,

corresponding to the two quantizer outputs, the trajectories are
in.

In [1], Wang’s embedded boundary transition flow [10], [11]
is generalized to all types of transition flow with respect to the
degree of penetration into the opposite half-plane, quantified by
the positive and negative transition wedge tilt factors, and ,
respectively [1, Sec. 2]. Fig. 1 shows an example fifth-order
modulator in the transformed framework and illustrates the vari-
ation of the stable and unstable fixed points (also called foci and
saddles in the second-order subsystems [12]) against different
tilt factors. The worst case boundary transition flow limit cycles
(corresponding to ) are also highlighted. Fig. 2 shows
the actual discrete trajectories going beyond the unstable fixed
points and the associated limit cycles of the boundary transition
flow, eventually losing stability. This is so because the Poincaré
map analysis [1], [11] of these unstable fixed points results in
eigenvalues of magnitudes greater than unity. The limit cycle
thus formed will repel any state trajectory outside it while tra-
jectories inside will generally be driven back to the inner stable
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Fig. 3. Variation of unstable fixed points against the input u in the example fifth-order �� modulator.

limit cycles. In practice, the discrete nature of a modulator
prevents its trajectories from falling exactly onto any embedded,
continuous-time limit cycles. Adopting interpretation from [1],
the discrete trajectories are constantly being attracted by dif-
ferent stable limit cycles but may still go unbounded, i.e., by-
passing the unstable fixed points, due to extreme switching from
one stable limit cycle to another. The figure also justifies the un-
stable boundary transition flow limit cycle as the worst case limit
cycle because it is the most contracted one compared to others.
Subsystem characteristics of other modulator orders show sim-
ilar features, with the absence of the first-order subsystem in the
case of even-order modulators.

III. INSTABILITY DETECTION

This section presents an instability detection scheme that the-
oretically detects unstable operation immediately upon its onset.
Note that the unstable fixed points are functions of the input .
A set of loci can therefore be obtained when the unstable fixed
points, in particular those of the unstable boundary transition
flow, are plotted against . Fig. 3 shows the case for the example

fifth-order modulator in Figs. 1 and 2. Since the change of
state trajectory dynamics between opposite half-planes are de-
termined by the vertical coordinate components of all subsys-
tems [1, Sec. 3], stability can be inferred if the vertical compo-
nents of all subsystems fall within the upper and lower bounds
formed by the unstable fixed points of the boundary transition
flow, e.g., , and of in our example,
and for a general th-order modulator. In other
words, instability can be detected when any one of these vertical
coordinate components falls outside the bounds for a particular
input . A global reset or other recovery actions can then be is-
sued to restore normal operation.

Fig. 4 shows the power spectra of the bitstream output in
our fifth-order modulator example under a just-overloading sine
wave of amplitude 0.62 situated at one quarter of the baseband.
Fig. 4(a) is the spectrum without any recovery action and appar-
ently the output is corrupted by erroneous tones. Fig. 4(b) and
(c), respectively, shows the spectra for the proposed detection
scheme and the traditional repetitive bit pattern search scheme,
both coupled with a global integrator reset whenever instability
is detected. It is seen that in this example, the proposed scheme
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Fig. 4. FFT spectra of the bitstream output of the fifth-order �� modulator with a sine input (amplitude = 0:62; frequency = (1=4)baseband). (a) No recovery
schemes. (b) Proposed detect-and-reset scheme. (c) Pattern search detect-and-reset scheme triggered by 31 consecutive bits of the same sign.

outperforms the traditional one by more than 22 dB ( -bit
resolution) in SNR. Due to the nature of the fast Fourier trans-
form (FFT), the spectra in Fig. 4 measure the stationary, overall
SNR. To investigate the dynamic SNR behavior versus time,
a 2048-point Hanning window is slid across 2 samples and
the results are given in Fig. 5. It can be seen that the proposed
scheme (also the simplified scheme that will be discussed) trig-
gers one reset while the pattern search scheme triggers three.
Other experiments also show that the proposed scheme is gener-
ally more effective in reducing unnecessary triggers, especially
when the overloading level is just reached.

IV. IMPLEMENTATION AND SIMPLIFICATION

The realization of the detection scheme follows directly
from (2) and is best illustrated through examples. The matrix

contains only sparse elements. Also, only the
even-number state variables (plus the last one for an odd-order

modulator) are involved since the check is performed only
for the vertical coordinate components of every subsystem. For
instance, in the case of the fifth-order modulator in Fig. 1 with
optimized NTF zeros, maximum NTF gain 1.5, and OSR ,
we obtain (3) shown at the bottom of the next page. Under the
same set of constraints, a fourth- and a third-order modulator
give (4a) and (4b) shown at the bottom of the next page. Now,
say, to ensure in (3) falls within the bounds given by the
unstable fixed-point loci, it is required that

(5)

where and denote the
upper and lower bounds of the th subsystem, i.e., the bounds
in Fig. 3(a) for the first second-order subsystem in (5).
Direct implementation of this detection scheme is, however,
hard to realize due to the nonlinear and curved nature of the
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Fig. 5. Dynamic SNR performance for different detect-and-reset schemes (same input as in Fig. 4). The wide troughs are due to smearing effect of the FFT
window, actual recovery of SNR takes just a few time steps, calculated by width of trough minus width of FFT window.

bounds’ loci. This calls for approximation and simplification to
the bounds. As is already shown in Fig. 3(a) and (b), this can
be done by fitting straight lines tangent to the unstable fixed
point loci. Subsequently, expressing and

in their straight line equations, (5) reduces to

(6)

and similarly for the bounds in other subsystems. Moreover,
only second-order subsystems need to be considered because
simulation shows that unstable trajectories always cross the
bounds in second-order subsystems prior to crossing those in
the first-order subsystem. In fact, for the example in Fig. 4(b),
the simplified, straight-line approximated detect-and-reset
scheme suffers only less than half a bit of resolution loss
compared to the original scheme.

In terms of hardware, the stability test in (6) can be incorpo-
rated into the modulator structure with additional gains, adders,
comparators, and an OR gate. This is pictured in Fig. 6 for the
fifth-order modulator in (3) in the popular cascade-of-resonators
architecture. It should be noted that the original gain spread,
namely, the ratio of the largest to the lowest gain (unbracketed
numbers), is too large to be practical. By adjusting the gain stages
after the switched capacitors, a scaled circuit (represented by
bracketed gains) that attempts to equalize the root-mean-square
values of all the capacitor outputs to about 0.4 is designed.
The scaled circuit produces equivalent outputs as the unscaled
prototype but the gain spread is now largely reduced for prac-
tical realization (in fact, gain spread can be further lowered by
allowing larger capacitor swings). In Fig. 6, the two summing
nodes before the comparators are usually implemented using
operational amplifiers. This represents a tradeoff between fast
instability detection and additional analog components (and thus
power and area). The plots in Fig. 7 show the stationary SNR for

(3)

(4a)

(4b)
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Fig. 6. Instability detection circuit (straight-line approximation) in the example fifth-order �� modulator. Bracketed gains denote scaled values for practical
implementation.

Fig. 7. SNR versus input amplitude of a sine wave located at one quarter of the baseband. (a) Third-order example. (b) Fourth-order example. (c) Fifth-order
example.

the simplified scheme against that of the pattern search scheme
in third-, fourth-, and fifth-order modulators for some over-
loading sine input, wherein a global reset is issued upon detection
of instability. These results show consistent SNR improvement in

the simplified scheme (on average 7 dB) over the pattern search
scheme. A residual SNR of around 30 dB can be maintained even
during unstable operation. Also, at the expense of some SNR
loss, the detection circuit can be further simplified by detecting
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the state boundedness of only one second-order subsystem.
Examining Fig. 3, the discrepancy in the straight-line approxi-
mation is bigger at larger input magnitudes. While this is not a
concern during normal operation when is within its nominal
range, a big momentary jump in during power-up may result
in a slower detection of instability. This can be circumvented by
a forced reset just after start-up, or by combining the proposed
scheme with digital pattern search to achieve robust detection.

In summary, by addressing the dependence of stability on
both modulator input and integrator levels, the proposed (sim-
plified) scheme reacts faster than conventional approaches that
rely on modulator output and/or integrator levels.

V. CONCLUSION

This paper has presented an effective scheme for the fast
detection of instability in an LP high-order single-bit mod-
ulator with distinct NTF zeros on the unit circle. The scheme
is based on a strong theoretical ground wherein the idea of
unstable fixed point loci of embedded limit cycles is utilized.
Specifically, state-space trajectory bounds related to instability
onset have been derived as a function of the modulator input
amplitude. Faster instability detection comes at the expense of
additional analog components in the hardware implementation,
but simplification has been shown to be possible. Examples
have demonstrated that the proposed scheme generally per-
forms better than the conventional method of repetitive bit
pattern search, and maintains a relatively high overall SNR
even during unstable operation.
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