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This paper develops macroscopic traffic flow models for a highway section with variable lanes and free-flow
velocities, that involve spatially varying flux functions. To address this complex physical property, we develop
a Riemann solver that derives the exact flux values at the interface of the Riemann problem. Based on this
solver, we formulate Godunov-type numerical schemes to solve the traffic flow models. Numerical examples
that simulate the traffic flow around a bottleneck that arises from a drop in traffic capacity on the highway
section are given to illustrate the efficiency of these schemes.
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I. INTRODUCTION

Since the development by Lighthill and Whithamf1g and
independently by Richardsf2g, of the traffic flow model,
which is now known as the LWR model, continuum traffic
flow models have been intensively studiedsseef3–23gd. All
of these models incorporate the “standard” conservative laws
of flux in the form of f(usx,td), for which it is not difficult to
develop numerical schemes. However, the number of lanes
on a highway frequently changes, which generally results in
spatially varying flux, but the traffic flow literature contains
few works on this area of research. Helbingf24–26g derived
a macroscopic model of mixed multilane freeway traffic us-
ing a gas-kinetic approach. Newellf27g developed a model
with continuously varying spatial parameters, in which the
capacity is a quadratic function of the location variable.

However, for a discontinuous variation in the number of
lanessand in the free-flow velocity for the more general case
in this paperd, the problem is very complicated, and is usu-
ally nonstrictly hyperbolic. In general, the problem of vari-
able lanessand free-flow velocitiesd can be characterized by
flux of the form f(usx,td ,asxd). In such cases, the schemes
that are designed for the approximation of fluxf(usx,td) are
not efficient because they cannot handle the discontinuity
that is caused by the change inasxd. Experience has found
that numerical instability may occur, especially whenasxd
has a sharp gradientf23,28–32g. Although the instability may
be avoided by using sufficiently refined mesh and higher-
order schemes, such as the Runge-Kutta discontinuous
GalerkinsRKDGd schemef33g, the solution may sometimes
not converge to one that is physically relevant. In fact, the
theories of weak solutions and the corresponding numerical
methods for this kind of problem are still under investigation
ssee Refs.f30–32,34–37g for useful discussions in general
and on other applicationsd.

This paper has two main objectives. The first is to extend
the LWR modelf1,2g and the higher-order model to cases of

variable lanes and free-flow velocities. The extension of the
former is straightforward, whereas the relaxation equation of
the latter is derived through comparing its acceleration with
that of the extended LWR model. The second objective is to
develop an exact Riemann solver that encapsulates the spa-
tially varying flux functions, based on which the Godunov-
type numerical schemes will be formulated to solve the traf-
fic flow models.

The reminder of the paper is organized as follows. Section
II presents the formulation of the traffic flow models. Section
III derives the Riemann solver for the problem. Section IV
formulates the Godunov-type numerical schemes. Section V
gives numerical examples for the models.

II. FORMULATION OF THE MODELS

As in the LWR theory, the traffic flow is considered as a
compressible fluid. Letasxd be a variable that represents the
number of lanes on a highway. The vehicle conservation
equation can be written as

sardt + sarudx = 0, x P R; s− `, + `d, t P Rt
+ ; f0,`d,

s1d

where rsx,td is the density in a traffic lane, which is ex-
pressed in number of vehicles per unit length of the highway
per lane, andusx,td is the average speed, which is identical
across adjacent lanes, atsx,td.

A. Extended LWR model

At location x, the total densitysnumber of vehicles per
unit lengthd is ar with a maximum ofarm, whererm is the
jam density ofr on a lane. The LWR model assumes a
strictly decreasing function ofu in ar, which is known as the
speed-density relationship. More precisely, it is a monotone
curve froms0, bd to sarm, 0d in the sard-u coordinate plane,
whereb is the free-flow speedsi.e., the maximum ofud lo-
cally at xfb=bsxdg. By scaling, the speedu is a strictly de-
creasing function ofr, i.e.,
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u = uesr,bd, s2d

that satisfiesues0,bd=b and uesrm,bd=0. Combining Eqs.
s1d and s2d, we have a closed equation, which is called the
extended LWRsELWRd model with variable lanes, and can
be written as

sardt + „aruesr,bd…x = 0. s3d

B. Extended higher-order model

In this section, we develop an extended higher-order
sEHOd model. The formulation is based on a mechanism that
is similar to the so called “look-forward” mechanism of a
driver ssee Payne and Whithamf3,4g and Zhangf17gd; the
comparison of the acceleration with that of the ELWR
model; and the introduction of a fluctuation term that simu-
lates the stop-and-go waves.

We first derive the traffic acceleration of the ELWR model
in a way that is similar to that of Pipesf38g. By the continu-
ity equations1d, we have

rt + urx = − rux −
ru

a
a8, or rt + urx +

ru

a
a8 = − rux. s4d

We replaceu in Eq. s4d with uesr ,bd, and thus

rt + uerx = − r
]ue

]r
rx − r

]ue

]b
b8 −

ruesrda8

a
.

We take the total derivative of Eq.s2d with respect tot,
which yields

du

dt
=

]ue

]r
Srt +

dx

dt
rxD +

]ue

]b

dx

dt
b8 =

]ue

]r
srt + uerxd +

]ue

]b
ub8,

where dx/dt=u=uesrd. Comparing these two expressions,
we obtain

du

dt
= − rS ]ue

]r
D2

rx + Su − r
]ue

]r
D ]ue

]b
b8 −

ru

a

]ue

]r
a8. s5d

We then consider the “look-forward” effect. In Refs.
f3,4,17g, asxd andbsxd are constant, and this effect is consid-
ered according to the relationu(xst+td ,t+td)=ue(rsx
+Dx,td), in which the driver makes a decision after a time
lag t sor relaxation timed in response to the traffic condition
downstream at locationx+Dx. However, this dependency is
not suitable for our case, because the velocity may vary
greatly with locations due to a sharp change in the traffic
capacity that is described by the functionsasxd andbsxd. In
addition, it is well known that the velocity and density are
usually discontinuous because of wave breaking, whereas the
flux is always continuoussor varies less sharplyd in a hyper-
bolic system. Therefore, to consider the “look-forward” ef-
fect, we replace the velocity in the above with the flux ac-
cording to the relation

asxdusx,t + tdrsx,t + td = asx + Dxdue„rsx + Dx,td,bsx + Dxd…

3rsx + Dx,td,

where on the left-hand sidex=xst+td. We take the Taylor

series expansions int on the left-hand sidesLHSd, and inDx
on the right-hand sidesRHSd, respectively, as

LHS = aur + tFar
du

dt
+ auSrt + urx +

ru

a
a8DG ,

and

RHS =auer + DxFarS ]ue

]r
rx +

]ue

]b
b8D + auerx + ruea8G .

By the comparison of Eq.s4d and LHS=RHS, it is easy to
obtain

du

dt
=

ue − u

t
+

Dx

t
S ]ue

]r
rx +

]ue

]b
b8 +

ue

a
a8 +

ue

r
rxD + uux.

s6d

Zhangf17g chose the quantityDx that is consistent with
the acceleration expression that is derived from the LWR
model. Similarly, we chooseDx in such a way that the ac-
celeration expressionsdu/dt in Eqs.s5d ands6d are identical
when settingu=uesr ,bd. This can be realized by choosing

Dx = − tr
]ue

]r
, s7d

which is exactly the same as in Zhangf17g. We must handle
the last term of Eq.s6d appropriately, for whichu is approxi-
mated byue under the same consideration. This gives the
following description of the acceleration:

ut + uux =
ue − u

t
− rS ]ue

]r
D2

rx + Sue − r
]ue

]r
D ]ue

]b
b8

−
rue

a

]ue

]r
a8. s8d

Note thatdu/dt is identical tout+uux.
Due to its relationsconsistencyd with the ELWR model,

which is well-posed so that the Riemann solution is existent
and uniquessee Sec. IIId, this acceleration describes a traffic
state that is very close to equilibrium flow. Actually, its
smooth solution converges to that of the ELWR model,
namely,u→uesr ,bd sSec. IV Cd. This convergence also ap-
plies to the case of weak solutions if the conservation form
of Eq. s8d is consistent with the continuity equations1d sSec.
IV B d. These arguments are also confirmed numericallysSec.
Vd. For the special case in whichasxd andbsxd are constant
throughout the highway section, Eq.s8d reduces to that of
Zhangf17g, in which case the same relation with the LWR
model is indicated numericallyf18g. It can be understood
that the description of Eq.s8d is a dynamic version of the
ELWR model, and that it possesses favorable stable and con-
vergent properties.

However, some important traffic flow features are miss-
ing, such as phase transitions and stop-and-go wavesssee
Refs. f13,14,39g for detailsd. As an attempt to simulate a
traffic flow that is in a so called metastable state, we intro-
duce a fluctuation term, which is added to Eq.s8d to give the
following EHO model:
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ut + uux =
ue − u

t
+

ũe − ue

t̃
− rS ]ue

]r
D2

rx + Sue − r
]ue

]r
D ]ue

]b
b8

−
rue

a

]ue

]r
a8. s9d

ũe= ũesr ,bd is another velocity-density relation that is sup-
posed to share the same free-flow velocity asuesr ,bd. The
first two terms on the right-hand side can be merged,

ue − u

t
+

ũe − ue

t̃
=

Ue − u

t
, Ue =

t

t̃
ũe + S1 −

t

t̃
Due, t ø t̃.

s10d

Ue is supposed to be a convex combination ofue andũe, and
is also a velocity-density relation. Thus, the new merged
term can be viewed as a relaxation ofu to Ue.

In Eq. s9d, the factors for stability and fluctuation are
combined so that the traffic state in between will be de-
scribed, which is known as metastability. It is obvious that
the stability decreases if the weightt / t̃ increases. In the
sections that follow, the fundamental properties of the ELWR
and EHO models will be further revealed. Our main objec-
tive is to develop a high-resolution scheme for the approxi-
mation of such complicated systems, so that the relevant
propagation information may be correctly captured.

In the forthcoming section, the Riemann problem is
solved to obtain the exact numerical flux at the interface. The
discussion is limited to scalar equations3d, or the ELWR
model, because the defined conservation form of the EHO
model takes similar convective partssSec. IVd that can be
approximated in the same way.

III. RIEMANN PROBLEM AND NUMERICAL FLUX

For simplicity, we assumebsxd to be constant. For the
general case in whichb8sxdÞ0, the wave breaking of the
Riemann problem is obviously the same pattern, and the con-
clusion is easily extended at the end of this section. Under
this assumption, we use the denotationuesr ,bd=uesrd and
rewrite Eq.s3d as

sardt + „afsrd…x = 0, fsrd = ruesrd. s11d

Note that fsrd can be any strictly concave functionff9srd
,0g. We denoter* as the critical density, so thatfsr*d is the
maximum offsrd, i.e., f8sr*d=0. Thus, it is obvious thatfsrd
is strictly increasing onf0,r*g and strictly decreasing on
fr* ,rmg. With asxd being discontinuous, the Riemann prob-
lem of Eq.s11d can be specified as

asxd = Ha−, x P R− ; s− `,0d,

a+, x P R+ ; s0, +`d,
J

r0sxd ; rsx,0d = Hr−, x P R−,

r+, x P R+.
J s12d

For each domain ofD−;R−3Rt
+ and D+;R+3Rt

+,
whereRt

+=s0,`d, the problem of wave propagation is well

studiedf4,40g, becauseasxd is constant in either domain and
Eq. s11d reduces to

rt + fsrdx = 0, sx,td P D−sor D+d. s13d

Therefore, the main concern is how the two traffic states in
D− and D+ connect at their interface, i.e,x=0. We assume
that rs0−,td;r0

− and rs0+,td;r0
+ are the density values on

the left- and right-hand sides of the interface. First, this con-
nection can be made by the Rankine-Hugoniot jump condi-
tion

fafsrdg = farg
dx

dt
, s14d

which is applicable to any curve in thex-t plane. For the
interfacesa straight lined x=0, in which clearlydx/dt=0, we
have fafsrdg=a+fsr0

+d−a−fsr0
−d and farg=a+r0

+−a−r0
−. The

application of Eq.s14d results in

a−fsr0
−d = a+fsr0

+d. s15d

Clearly, Eq.s15d implies that the in-flow is equal to the out-
flow at the interface, which satisfies the mass conservation
principle. See Refs.f4,40g for details.

Secondly, the two states should be connected by the char-
acteristics, according to the theory that has been proposed by
the authorsf30g. For a physically relevant solution, the sign
of characteristic speeds cannot change across the interface,
i.e.,

f8sr0
−df8sr0

+d ù 0. s16d

Finally, the Lax entropy conditionsf4,40g are applied
separately in each of the domainsD− and D+, where the
“standard” conservation forms13d is applicable. That is, the
shock condition inD− is given by f8sr−d. f8sr0

−d, or r−

,r0
−, and the shock speed

dx

dt
ø 0. s17d

Similarly, a shock wave that arises fromf8sr0
+d. f8sr+d or

r0
+,r+ in D+ satisfies

dx

dt
ù 0. s18d

In Eqs.s17d ands18d, dx/dt is determined by the jump con-
dition s14d.

The constraintss15d, s17d, and s18d are naturally set,
which follow the classical weak solution theory of the equa-
tion in the form of Eq.s13d. However, with these constraints
alone, one can easily construct innumerable solutions for Eq.
s11d. Therefore, to ensure a unique and physically relevant
solution, an extra constraints16d must be applied. In the
following theorem, we will show that the additional con-
straint s16d is both necessary and sufficient, and that the
problem can be solved withr0

− or r0
+ fand thus the flux value

a−fsr0
−d or a+fsr0

+dg given at the interface. See Ref.f30g for a
more strictly mathematical treatment of the problem.

Theorem. Under conditionss15d, s17d, ands18d, condition
s16d is necessary and sufficient for the existence and unique-
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ness of the Riemann solution of Eqs.s11d and s12d.
Proof. If condition s16d is removed, then there are mul-

tiple solutions that satisfy conditionss15d, s17d, and s18d.
Hence, conditions16d is necessary. In the following, we
show that Eq.s16d is also sufficient.

Let P be the set of all possible combinations of the pa-
rameters of the Riemann problems12d, and p
=sa−,r−,a+,r+d be an element inP. The setP can be divided
into the following eight subsets:

S1 = hPuf8sr−d . 0,f8sr+d ù 0,a−fsr−d ø a+fsr*dj,

S̄1 = hPuf8sr−d . 0,f8sr+d ù 0,a−fsr−d . a+fsr*dj,

S2 = hPuf8sr−d ø 0,f8sr+d ù 0,a−fsr*d ø a+fsr*dj,

S̄2 = hPuf8sr−d ø 0,f8sr+d ù 0,a−fsr*d . a+fsr*dj,

S3 = hPuf8sr−d ø 0,f8sr+d , 0,a−fsr*d ø a+fsr+dj,

S̄3 = hPuf8sr−d ø 0,f8sr+d , 0,a−fsr*d . a+fsr+dj,

S4 = hPuf8sr−d . 0,f8sr+d , 0,a−fsr−d ø a+fsr+dj,

S̄4 = hPuf8sr−d . 0,f8sr+d , 0,a−fsr−d . a+fsr+dj.

Then, we set eitherr0
− or r0

+ at the interface as follows:sad
For pPS1øS4 we setr0

−=r−, sbd for pP S̄1ø S̄2, we setr0
+

=r* , scd for pPS3øS2 we setr0
−=r* , sdd for pP S̄3ø S̄4, we

setr0
+=r+.

The proofs for casessdd andscd are parallel to those ofsad
and sbd, respectively, and thus we only need to prove cases
sad andsbd. In these proofs, we need to verify thatsid r0

+ for
casesad for r0

− for casesbdg is uniquely determined by Eqs.
s15d and s16d, sii d any shock wave that arises inD− or D+

satisfies Eqs.s17d or s18d, and siii d Eq. s17d or s18d is vio-
lated for any other pairsr0

−,r0
+d that satisfies Eqs.s15d and

s16d, or that this pair produces the same solution, as is shown
in the two trivial cases that follow.

For casesad, by Eq. s16d we have f8sr0
+dù0, or r0

+

P f0,r*g. To see thatr0
+ is uniquely determined, we set

qsrd=a+fsrd−a−fsr−d, and verify thatqsrd has just one root.
This is obvious, becauseqs0d=−a−fsr−dø0, qsr*d=a+fsr*d
−a−fsr−dù0, and q8srd=a+f8srd.0 for rP s0,r*d. More-
over, a shock wave is possible only inD+ with r0

+,r+ sthe
Lax entropy conditiond, and the shock speed is given by

dx

dt
=

fsr+d − fsr0
+d

r+ − r0
+ .

If pPS1 fsee Fig. 1sadg, then f8sr+dù0, and thusfsr0
+d

, fsr+d. If pPS4, then r0
+ør* ,r+, and thus fsr0

+d
=sa−/a+dfsr−dø fsr+d. In either case, we havedx/dtù0, and
thus Eq.s18d is satisfied. Finally, it can be similarly verified
that either Eq.s17d or s18d will be violated for any other
choice of the pairsr0

−,r0
+d, except in two trivial cases. These

are a−fsr−d=a+fsr*d for pPS1 and a−fsr−d=a+fsr+d for p
PS4. In these two cases, the alternatives aresr0

−,r0
+d

=sr̃−,r*d andsr0
−,r0

+d=sr̃−,r+d, wherer̃− is uniquely defined
by fsr̃−d= fsr−d and f8sr̃−d,0. However, both alternatives
produce the same shock curve inD− that coincides with the
interfacex=0. Therefore, the solution remains unchanged in
D−øD+.

For casesbd, let qsrd=a−fsrd−a+fsr*d. We haveqsr*d
=a−fsr*d−a+fsr*d.0, andqsrmd=−a+fsr*d,0, and thusr0

−

is uniquely determined by Eqs.s15d and s16d. In D+, the
blank fan is filled with a rarefaction wave; and if any shock
exists inD−, then Eq.s17d is satisfiedfsee Fig. 1sbd for the

case ofpP S̄1g. Finally, it can be shown that any other choice
of sr0

−,r0
+d must violate Eq.s17d or s18d. j

From the proof of the theorem, we can also obtain the flux

at the interface, which is denoted byf̂ =a−fsr0
−d=a+fsr0

+d,
wherer0

− or r0
+ has been already specified for each case. For

the general case in whichbsxd is not constant, we write Eq.
s11d in the form

sardt + „afsr,bd…x = 0, fsr,bd = ruesr,bd, s19d

and the data of the Riemann problems12d are extended to
include

FIG. 1. Solution structure of the Riemann problem.sad For pPS1, the propagation ofr=r− passes through the interface then changes to

r=r0
+ and forms a shock wave withr=r+ in D+. sbd For pP S̄1, the propagation ofr=r− is obstructed due to the inadequate capacity inD+,

and shocksbottleneckd and rarefaction waves are formed on the left and right sides of the interface, respectively.
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bsxd = Hb−, x P R−,

b+, x P R+.
J s20d

Accordingly, we only need to alter these results tof̂
=a−fsr0

−,b−d=a+fsr0
+,b+d. The rule for the extension is sim-

ply thatb− andb+ always accompanya− anda+, respectively,
wherever they appear.

The results are summarized in the following corollary.
Corollary. From the exact Riemann solver for Eqs.s12d,

s19d, ands20d, the flux at the interfacex=0 can be specified
by

f̂sa−,b−,r−,a+,b+,r+d = minsf−, f+d, s21d

where

f− = Ha−fsr−,b−d, if r− , r* ,

a−fsr* ,b−d, otherwise,
J

f+ = Ha+fsr+,b+d, if r+ . r* ,

a+fsr* ,b+d, otherwise,
J

and f can be any strictly concave function ofr.

IV. GODUNOV-TYPE NUMERICAL SCHEMES

In the following discussion, the dimensionless variables
are applied by scaling. Given that the spatial domain
of the highway sections0,Ld in the analysis, andum

=maxxbsxd , r , b, u, x, t and t are replaced by
rrm, bum, uum, xL, tL /um, and tL /um, respectively. Corre-
spondingly, the spatial domains0,Ld is scaled tos0, 1d, and
the range of the densityr becomesf0, 1g. In the following,
the Godunov-type numerical schemes are designed that is
based on the Riemann solver using corollarys21d in Sec. III
ssee Ref.f40g for details of the algorithmic designd.

Let I j =sxj−1/2,xj+1/2d be the cells that are associated with
the discretization ofs0,1d, j =1, . . . ,K , x1/2=0, andxK+1/2
=1. In each cell, the node is located atxj =0.5sxj−1/2+xj+1/2d,
and the cell length isDxj =xj+1/2−xj−1/2. To provide the flux
values at the spatial boundaries, two additional cellsI0
=sx−1/2,x1/2d and IK+1=sxK+1/2,xK+3/2d are considered.

A. Scheme for an extended LWR model

For the dimensionless variables, the model equation re-
mains the same as it is in Eq.s3d or s19d. We specify the
model as the following initial value problemsIVPd:

sardt + „afsr,bd…x = 0, s22d

rsx,0d = r0sxd. s23d

In I j, let asxd be approximated byaj =asxjd , bsxd be ap-
proximated bybj =bsxjd, and rsx,td be approximated by
r jstd. Then, from the conservation of the total density
asxdrsx,td, we have

r jstd =
1

ajDxj
E

I j

asxdrsx,tddx. s24d

Integrating Eq.s22d with respect tox over I j gives the exact
form

ajDxj
r jstd
dt

+ asxdf„rsx,td,bsxd…uxj−1/2

xj+1/2 = 0. s25d

As the two states inI j and I j+1 constitute a local Riemann
problem, the flux at the cell interfaceasxdf(rsx,td ,bsxd)uxj+1/2
is approximated by

f̂ j+1/2 ; f̂„aj,bj,r jstd,aj+1,bj+1,r j+1std….

For a time divisionhtnjn=0
N of tP f0,Tg, the Euler forward

discretization of Eq.s25d yields

r j
n+1 = r j

n − r js f̂ j+1/2
n − f̂ j−1/2

n d, j = 1, . . .,K, s26d

where r j
n=r jstnd , r j =Dt / sajDxjd , f̂ j+1/2

n

= f̂saj ,bj ,r j
n,aj+1,bj+1,r j+1

n d, and Dt= tn+1− tn. The initial
value r j

0=r js0d is computed by Eqs.s23d and s24d, and the

function f̂ is governed by Eq.s21d becausef9srd,0. Note
that this numerical scheme is applicable for any strictly con-
cave functionfsr ,bd of r.

B. Scheme for an extended higher-order model

For the EHO model, we adopt the linear speed-density
relationship

uesrd = bs1 − rd, 0 ø b ø 1, s27d

from which we obtain

fsrd = brs1 − rd, s28d

andr* =0.5. The consideration of the nonlinear speed-density
relationship in the EHO model requires special treatment of
the conservation form of the model, which will be investi-
gated in a future study. For the linear speed-density relation-
ship, we define the conservation form of Eq.s9d, which to-
gether with Eq. s1d constitutes the following system of
equations:

sardt + sarudx = 0, s29d

Sau

b
D

t
+ H0.5abFr2 + Su

b
D2

− 1GJ
x

= 0.5a2S1 − r +
u

b
DS1 − r −

u

b
DSb

a
D8

+
asUe − ud

bt
.

s30d

The system can be made identical to Eq.s22d in the distri-
bution sense by settingu=uesrd and choosingUe in Eq. s10d
such thatt̃=`, which means that Eqs.s29d and s30d reduce
to Eq. s22d exactly. In this definition, the features that are
inherited from the ELWR model in the formulation will take
effect, such as the consideration of stabilityssee Sec. II Bd.
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Obviously, these retain the linear transformation of variables
sor diagonalizationd

r = 0.5sv − wd, u/b = − 0.5sw + vd, s31d

which is undertaken mostly for the characteristic decompo-
sition on the left-hand side. From Eq.s31d, Eqs. s29d and
s30d become the equivalent system

savdt + „agsv,bd…x = − 0.5a2s1 − vds1 + wdSb

a
D8

−
asUe − ud

bt
,

s32d

sawdt + „agsw,bd…x = − 0.5a2s1 − vds1 + wdSb

a
D8

−
asUe − ud

bt
,

s33d

where the functiongsv ,bd=0.5bs1−v2d. We note that Eqs.
s32d and s33d are actually the characteristic equations.

The model is also considered as an IVP with the initial
values that are determined by Eq.s31d, i.e., v0sxd=rsx,0d
−usx,0d /bsxd and w0=−rsx,0d−usx,0d /bsxd. Because the
convective partssthe left-hand sided of Eqs.s32d ands33d are
analogous to that of Eq.s22d, they can be approximated in a
similar manner. Denote byR the right-hand side of Eqs.s32d
and s33d. The numerical scheme of systems32d and s33d is
then given by

v j
n+1 = v j

n − r jsĝj+1/2
n − ĝj−1/2

n d + r jDxjRj
n,

wj
n+1 = wj

n − r jsg̃j+1/2
n − g̃j−1/2

n d + r jDxjRj
n,

v j
0 =

1

ajDxj
E

I j

asxdv0sxddx, wj
0 =

1

ajDxj
E

I j

asxdw0sxddx,

j = 1, . . .,K, s34d

where ĝj+1/2
n = ĝsaj ,bj ,v j

n,aj+1,bj+1,v j+1
n d and g̃j+1/2

n

= ĝsaj ,bj ,wj
n,aj+1,bj+1,wj+1

n d. Becauseg9svd,0, the func-
tion ĝ is determined by Eq.s21d, where f is replaced byg.
Moreover, we write that c=b/a and approximatecj8
=fcsxj+1/2d−asxj−1/2dg /Dxj. However, ifcsxd is discontinuous
at xj+1/2, then we further approximate

csxj+1/2d = a jcj + s1 − a jdcj+1,

wherea j =Dxj+1/ sDxj +Dxj+1d.
We note that schemess26d ands34d can be made identical

by settingu=ue and t̃=`. This consequence was anticipated
due to the conservation form of Eq.s30d. Even for the same
setting, the numerical result of Eq.s34d would be very dif-
ferent from that of Eq.s26d and would be only loosely
boundedse.g., r,0 or r.1d if the conservation were de-
fined otherwise.

C. Characteristics and computational Boundaries

To finalize schemess26d ands34d, additional nodal values
at x=x0 andx=xK+1 are needed. For initial value problems,
these nodal values are given by exactsand usually smoothd

solutions, which are based on the parallel characteristic
propagation from the initial values. This is a difficult prob-
lem for the general case, and thus in the following discus-
sion, a common form of initial data is considered. Note that
the densityr of the ELWR model must be identical to that of
the EHO model ifu=uesrd and t̃=` are set. Therefore, we
only need to discuss the latter case.

First, we study the propagation behavior under the as-
sumption thatasxd and bsxd are constant. This implies that
b=1 andgswd;gsw,bd=0.5s1−w2d, and that the character-
istic equationss32d and s33d become

vt + gsvdx = − t−1sUe − ud, s35d

wt + gswdx = − t−1sUe − ud, s36d

wheret−1sUe−ud=t−1s1+wd+ t̃−1sũe−ued, according to Eqs.
s10d ands27d. Correspondingly, we define the characteristics
and thus obtain for the 1 field

dx

dt
= g8svd, xs0d = j,

dv
dt

= − t−1sUe − ud, v„xs0d,0…

= v0sjd s37d

and for the 2field,

dx

dt
= g8swd, xs0d = h,

dw

dt
= − t−1sUe − ud, w„xs0d,0…

= w0shd. s38d

Here, note thatg8svd=−vø−w=g8swd. In general, Eq.s37d
or s38d cannot be solved explicitly. Suppose thatv0sjd s=v0d
and w0 shd s=w0d are constant. In this case, the solution is
smooth, as is shown in the following, so that the final ex-
pressions of Eqs.s37d and s38d can be unified. Thus, the
deduction of one from the other yieldsv−w=v0−w0 scon-
stantd, which further infersr=r0 f=0.5sv0−w0dg and u=r0

−v or −sr0+wd. By the proper substitutions in Eqs.s37d and
s38d, it follows that for solutions,

w = Ce−t/t − Uesr0d − r0, v = 2r0 + w, r = r0,

u = − Ce−t/t + Uesr0d, s39d

the field-1 characteristics are

x = j + fUesr0d − r0gt + Cte−t/t, s40d

and the field-2 characteristics are

x = h + fUesr0d + r0gt + Cte−t/t, s41d

whereC=Uesr0d−u0. In Eqs.s39d–s41d, indeed, the charac-
teristics of the same field are superposable by translation, so
that each propagation of the two families of characteristics is
parallel, and a smooth solution is formed.

Applying these results, the left boundary values are ac-
quired by assuming thatv0sjds=vld andw0 shds=wld are con-
stant forx,X1. This is indicated in Fig. 2, where the bound-
ary x=x0 swith t,T1d fall into the smooth solution domain
D1=hsx,td ux,X1std , tù0j. The application of Eq.s39d to
this smooth solution region yields
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w0
n = Cle

−nDt/t − Uesrld − rl, v0
n = Cle

−nDt/t − Uesrld + rl,

Cl = Uesrld − ul . s42d

If the propagation speed of the field-1 characteristics is nega-
tive, then X1std is the field-1 characteristic curve fromx
=X1

−. In this case,T1 is the intersection ofx=X1std and the
line x=x0, and thus is determined by Eq.s40d such that
r0, C, j and sx,td are replaced withrl , Cl , X1 and sx0,T1d,
respectively. Otherwise,X1std=X1 andT1=`.

It is similar to obtain the right boundary values inx
=xN+1 swith t,T2d, under the assumption thatasxd ,
vsx,0ds=vrd, andwsx,0ds=wrd are constant forx.X2. These
boundary values read

wN+1
n = Cre

−nDt/t − Uesrrd − rr,

vN+1
n = Cle

−nDt/t − Uesrrd + rr, Cr = Uesrrd − ur ,

s43d

and T2 is determined by Eq.s41d such thatr0, C, h, and
sx,td are replaced, respectively, withrl , Cl , X2, and
sxN+1,T2d. Note that the propagation of the 2 characteristics
is always positive.

The boundary conditions of Eqs.s42d and s43d are valid
only for t,T=minsT1,T2d. We emphasize that their validity
can be identified by

r0
n = 0.5sv0

n −

w0
nd = vl − wl ; rl, rK+1

n = 0.5swK+1
n − vK+1

n d = vr − wr

; rr , s44d

which means that the densityr remains constant in the two
boundaries.

When settingu=uesrd sand t̃=`d in Eqs. s42d and s43d,
the boundary values of the ELWR model are obtained.
Clearly, Eq.s44d also gives these values.

As a summary, some fundamental features of the EHO
model are emphasized below. First, Eq.s39d indicates that
the velocityu relaxes to the equilibrium stateUesrd. For this
smooth solution, moreover, the propagations are nearly
straight lines for larget fEqs. s40d and s41dg. However, a
disturbance that includes changes inr , u, asxd, and bsxd

usually gives rise to wave breakingsdiscontinuityd and there-
fore more complicated propagation behavior. It is well
known that the propagation speedsand thus the behaviord of
discontinuity depends on the conservation forms of the
model equations, which is why the conservative form of Eq.
s9d must be given regardless of the physical conservation of
a quantity. This reasonably defines the safer propagations
because Eqs.s29d and s30d together are consistent with the
ELWR model for their conservative parts.

Second, for the case in whicht̃=` sUe=ue or Ue−u=1
+wd, Eqs.s40d and s41d can be solved separately, even with
the initial data thatv0sjd and w0shd are not constant. The
solution for Eq.s41d for the 2 field reads

x = h + t − tf1 + w0shdgs1 − e−t/td,

w = f1 + w0shdge−t/t − 1,

which indicates that the propagation is asymptotical to a
straight line andu to uesrd sw→−1d. For wave breaking that
is governed by the conservation formss29d and s30d, the
whole solution must be asymptotical to that of the ELWR
model.

V. NUMERICAL EXAMPLES

In this section, the numerical schemes are tested and the
asymptotical property of the EHO model to the ELWR
model is confirmed byt̃=`. These demonstrate that the nu-
merical solutions are truly convergent to the analytical solu-
tions sif they are well posedd, so that the schemes can be
further applied to describe more complicated occurrences,
and probably to predict new traffic flow phenomena. With
traffic signal example, the control is well represented by the
free-flow velocityb, and waves are described and explained
reasonably in a new way. We specify the parametersrm
=0.15 vehicles/m andum=maxxbsxd=20 m/s. The dimen-
sionless variables are used in all figures, and a dimensional
variable is always followed by its unit so that they can easily
be distinguished.

For simplicity, we setbsxd=1 in the first three examples
that represent the traffic flow around a bottleneck, as given
by the Riemann problems12d. Here, the interfacex=0
changes tox=x0, with sa−,a+d=s3,1d; the simulation time
and length are chosen to beT=240 s andL=4000 m with
the division byDt=0.2 andDxj =10 m. For comparison, the
EHO model of t̃=` is also solved with the same set of
parameters, together with the relaxation timet=10 s the ini-
tial speedsu−;usx,0dsx,x0d, andu+;usx,0dsx.x0d.

We show the results in Figs. 3, 4, and 5, and compare
them with the analytical results in Sec. III. In all of these
examples, the shock and rarefaction waves that are described
by the ELWR model are well captured. For the EHO model,
the solution structures become very similar to those of the
ELWR model ast increases, which is consistent with the
analysis in the previous sections.

In contrast, the EHO model is very different ift̃ is finite.
As UesrdÞuesrd, its conservative partsfthe second and third
terms in Eqs.s32d ands33dg conflict with the relaxation, and

FIG. 2. Obtaining the boundary values for the numerical
schemes through the propagation of characteristics.
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thus u is not convergent toUesrd. Being nonzero, the fluc-
tuation component of the relaxation term dominates. In this
case, the traffic waves are very similar to those in detonation.
This feature of the high-order models was discussed in
Kerner and Konhauserf13,14g, and it was found that a small
perturbation to the constant distribution of the velocity and
density may give rise to the formation of an traffic platoon
that propagates in oscillation or as a prolonged jam or queue.
In other words, the solution that is given by Eq.s39d in a
homogeneous traffic section is sensitivesunstable or meta-
stabled to the perturbation, and would be magnified if its
length were sufficiently large.

In this model, the perturbation is physically related to
changes in the traffic capacity. The free-flow speedb is fur-
ther extended to be a temporal variable to represent changes
in the capacity in some special locations. This representation
is straightforward in the ELWR model, and is implied in the
EHO model by comparing accelerationss5d and s9d. The
same extension for the number of lanesa could be conducted
with similar reasoning, for example, in locations near an ac-

cident, but this is not included. Here, we note that the main
motivation is again to demonstrate the robustness of the nu-
merical schemes. For example, it is challenging to apply
bsx,td such that it jumps from the maximum 1 to the mini-
mum 0, but in the present analysis, the numerical results are
physically bounded.

A few examples are simulated by the EHO model below,
by choosingf13g

ūesr,bd = bHF1 + expSr − 0.25

0.06
DG−1

− 3.723 10−6J .

s45d

Recall the previous discussion and refer to Eqs.s9d ands10d.
It should be noted that a smallert̃ means more conflict be-
tween the convective and relaxation effects, and thus a
greater likelihood of fluctuation. More precisesand physi-
cally relevantd simulation can be made by a comparison with
the observed data, following similar ideas and adjusting the
parameters.

FIG. 3. Traffic flow corresponding topPS1 in the Riemann problem, withx0=0.5,sr−,r+d=s0.08,0.4d. The propagation ofr−=0.08
passes through the bottleneck and results in a shock downstream. The solutions of the ELWR and EHO models are compared by setting
su−,u+d=s0.8,0.4d.

FIG. 4. Traffic flow corresponding topP S̄1 in the Riemann problem, withx0=0.3, sr−,r+d=s0.3,0.3d. The propagation ofr−=0.3 is
obstructed by the bottleneck, which results in a shock on the left-hand side and a rarefaction on the right-hand side. The solutions of the
ELWR and EHO models are compared by settingu−=u+=0.9.
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Consider a traffic flow initially withr0sxd being constant
andu0sxd=ue(r0sxd). It will converge to a constant flow ac-
cording to Eq.s39d. However, we perturb near locationx
=xp by changing the values ofbsx,td. The computational
length is chosen to be sufficiently large, i.e.,L=120 000 m,
so that the boundary valuess42d ands43d are applicable to a
long simulation. The computational region is divided by
Dx=100 m andDt=1 s.

In Fig. 6, these data suggest that the flow should be for-
bidden nearxp=0.5 for a sufficiently long time for a jam to
form. After the perturbation is released, the jamsclusterd
propagates upstream and Fig. 6sad shows the density att
=1800 s. The fundamental diagram or density-flow state
sr ,qd , sq=rud is shown in Fig. 6sbd, which is also compared
with the curveq=rUesrd. Corresponding to states 1 to 3 in
Fig. 6sad, the states that are represented in Fig. 6sbd show the
deceleration path when vehicles enter the jam and the accel-
eration path when they leave the jam. The shape of the clus-
ter remains almost unchanged because the in-flow and out-
flow sboth represented by state 1d are approximately the
same.

In Fig. 7, the perturbation is made periodically nearxp
=0.2, such thatb=1 reduces tob=0.5 for 60 s in each period
of 200 s. A series of clusters are observed in Fig. 7sad, and
the fundamental diagramfFig. 7sbdg shows the mechanism of
the formation in a similar fashion.

In Fig. 8, r0sxd is relatively large, andb=1 reduces tob
=0.5 nearxp=0.4 for 3 s ineach period of 20 s. The length of
the first jamfFig. 8sadg is increasing because the in-flow is
much larger than the out-flow. These two flows correspond to
the heights atr=0.2 andr<0.1 in Fig. 8sbd, respectively. In
addition, oscillations that propagate downstream are ob-
served, which correspond to the high flow states betweenr
=0.1 andr=0.5 in Fig. 8sbd.

The periodic boundary condition has been widely used in
traffic flow problemsf13,14g. The road sectionf0,Lg is a
circular track, and thus the number of vehicles is fixed in the
interval. Note that a propagation over one of the two bound-
aries is connected by the other boundary. In application, the
downstream-propagating oscillations in Fig. 8sad would be
eventually absorbed in the first jam, and the length of the jam
would then be narrowed because the forthcoming flow is
smaller than the out flow. Becauser0sxd is small, some of the

FIG. 5. Traffic flow corresponding topP S̄3 in the Riemann problem, withx0=0.7, sr−,r+d=s0.6,0.6d. The propagation ofr+=0.6 passes
through the bottleneck and results in a shock upstream. The solutions of the ELWR and EHO models are compared by settingsu−,u+d
=s0.525,0.4d.

FIG. 6. Traffic flow state att=1800 s, as a consequence of a disturbance to the constant initial datar0sxd=0.1 andu0sxd=ue(r0sxd), by
settingbsx,td=0 for 0.499,x,0.5 and 1 s, tø501 s, andbsx,td=1 for others, and witht=1 s, t̃=1.04t. sad Distribution of densityr; sbd
fundamental diagram compared withq=rUesrd.
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jams in Fig. 7sad are expected to die out. These results are
confirmed by computation, which is not shown.

Applying the periodic boundary conditions, we show an
interesting example in Fig. 9, for whichL=20 000 m,Dx
=100 m,Dt=0.5 s, and the perturbationb=0 lasts for only
10 s nearxp=0.5. In addition to the formation of a upstream-
propagating jam that is similar to those in Figs. 7sad and 8sad,
there are oscillations that propagate downstreamfFig. 9sadg.
Betweenx=0.60 and 0.65, for example, they are hysteretic
with a high frequency att=500 s, and these congested den-
sities have a higher flowfand a higher velocity than sug-
gested byu=Uesrdg that corresponds to the states over the
curve q=rUesrd in Fig. 9sbd. Due to the higher flow in the
congested region, the oscillations keep almost stationary, and
at t=700 sfFig. 9scdg they merge into a new jam with states
that come much closer to the curveq=rUesrd fcomparing
Figs. 9sbd and 9sddg. Therefore, the second jam is similar to
the first jam in that it is observed to propagate upstream in
Fig. 9sed. The third jam is formed at approximatelyx=0.75
by a similar mechanism, and begins to propagate upstream

when the propagation of the first jam meets the first hump of
congested traffic. This first jam continues to propagate and
passes through the periodic boundary. It then absorbs all the
humps so that the solution eventually evolves into three jams
with free flows in betweenfFig. 9sedg. These three jams
propagate with approximately unchanged shapes and the
same speed, and are known as traveling waves.

This example is typical of metastability in traffic, and a
reasonable explanation might be that the initial traffic state is
so dense that unstable blow-ups and oscillations come up in
a perturbation as a sacrifice to maintain free traffic in the
surrounding area. These blow-ups and oscillations will even-
tually evolve into another stable state that is characterized by
upstream-propagating jams. In our numerical test, this con-
clusion is generally true if the periodic condition is applied
ssee Refs.f13,14,39g for similar accountsd.

We can take advantage of the extended models and
schemes to simulate signal traffic. Specifically, the signal is
controlled by settingb=0 for red andb=1 for green. In this
way, the physical meaning is much clearer, and the evolution
may be taken to be any lengthy period. Moreover, a periodic

FIG. 7. Traffic flow state att=3600 s, as a consequence of a disturbance to the constant initial datar0sxd=0.1 andu0sxd=ue(r0sxd) by
settingb=0.5 for 0.199,x,0.2, 1 s, t−200ft /200gø61 s, andb=1 for others, and witht=1 s andt̃=1.04t. sad Distribution of density
r; sbd fundamental diagram compared withq=rUesrd.

FIG. 8. Traffic flow state att=5400 s, as a consequence of a disturbance to the constant initial datar0sxd=0.22 andu0sxd=ue(r0sxd) by
settingb=0.5 for 0.399,x,0.4 and 1 s, t−20ft /20gø4 s, andb=1 for others, and witht=10 s,t̃=1.06t. sad Distribution of densityr;
sbd fundamental diagram compared withq=rUesrd.
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boundary condition is applied by which we imply that the
evolutions in the neighboring sections are the same. One
example for this is shown in Fig. 10, which is simulated by
the EHO model, where the red signal is taken to be 30 s in
every 60 s and nearx=0.8 for L=2000 m. The result shows
a flow that consists of free, congested, and jamming traffic in
fixed locations.

VI. CONCLUSIONS

We have presented two types of models that describe the
traffic flow on a highway with variable lanes and free-flow

velocities, which are extended from the LWR and higher
order models. To approximate the numerical flux
f(usx,td , asxd), or specifically asxdf(rsx,td , bsxd) in our
case, the Riemann problem is discussed. Based on the wave
breaking, we have developed efficient Godunov-type nu-
merical schemes for the models. The traffic flow across a
bottleneck slane dropd has been simulated and compared
with the exact Riemann solution. The results demonstrate the
effectiveness of the numerical schemes, based on which we
can further study inhomogeneous freeway traffic.

FIG. 9. Traffic flow state as a consequence of a disturbance to the constant initial datar0sxd=0.25 andu0sxd= ũe(r0sxd) by settingb
=0 for 0.494,x,0.5 and 1 s, t,11 s, andb=1 for others, and witht=3 s, t̃=1.05t. sad and sbd t=500 s; scd and sdd t=700 s; sed
evolution for tP f0 s,4800 sg.
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In another numerical simulation with the EHO model
whereUe is closer toũe, free, congested, and jamming traffic
flows are all captured. They appear as a consequence of per-
turbations to the constant flow with a relatively higher den-
sity. It is physically meaningful that the perturbation is made
by the change in the free-flow velocity in special locations
that represent the drop in traffic capacity and the recovery.
For the application of the periodic boundary condition, the
evolution typically shows the metastablity for a denser initial
distribution in that it includes unstable oscillationsscon-
gested trafficd, but eventually becomes regular jams. From
the fundamental diagram, it can be seen that the propagation
of these upstream-propagating jams is governed by the LWR
model, because all of the states in the cluster fall closely with
the curveq=rUesrd, and thus the relaxation term is nearly
zero. This explains why the propagation can be stable. This

property is not mentioned, but will be treated by a rigorous
account in a future study.

In the formulation that includes the definition of conser-
vation formsswith linear functionue=1−rd, we note that the
EHO model is so closely related to the ELWR model that
their convective parts are consistent. This guarantees that the
EHO model shares a similar numerical flux function, which
is given by Eq.s21d. By extension,Dx in Eq. s6d might be
alternatively chosen, or another formulation could be used.
However, for sharp changes in the lane numbera and the
free-flow velocityb, the difficulty in obtaining a numerical
solution must be overcome, unless the exactsor an approxi-
mate high-resolutiond Riemann solver for the system is de-
veloped. In general, obtaining such a Riemann solver would
be a challenge for these systems, and future research could
concentrate on a more complicated formulation of EHO
models. We should also note that the problem of negative
velocity sometimes occurs with the EHO model in our nu-
merical analysis, due to the isotropic viscosity that is inher-
ent in higher-order modelsf11g. Therefore, the extension of
the method to anisotropic higher-order models should also be
investigated.
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