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High-resolution numerical approximation of traffic flow problems with variable lanes
and free-flow velocities

Peng Zhand;* Ru-Xun Liul and S. C. Won@
lDepartment of Mathematics, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
2Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
(Received 3 November 2003; revised manuscript received 6 July 2004; published 20 May 2005

This paper develops macroscopic traffic flow models for a highway section with variable lanes and free-flow
velocities, that involve spatially varying flux functions. To address this complex physical property, we develop
a Riemann solver that derives the exact flux values at the interface of the Riemann problem. Based on this
solver, we formulate Godunov-type numerical schemes to solve the traffic flow models. Numerical examples
that simulate the traffic flow around a bottleneck that arises from a drop in traffic capacity on the highway
section are given to illustrate the efficiency of these schemes.
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I. INTRODUCTION variable lanes and free-flow velocities. The extension of the

Since the development by Lighthill and Whithd#d and former is _straightforward, whereas th_e re_laxation quation_ of
independently by Richardg?], of the traffic flow model, the latter is derived through comparing its acceleration with
which is now known as the LWR model, continuum traffic that of the extended LWR model. The second objective is to
flow models have been intensively studiee[3-23). Al Qevelop an exact Riemann solver that enpapsulates the spa-
of these models incorporate the “standard” conservative lawi@!ly varying flux functions, based on which the Godunov-
of flux in the form off(u(x, 1)), for which it is not difficult to type numerical schemes will be formulated to solve the traf-
develop numerical schemes. However, the number of IaneféC flow mO(_jeIs. . . .
on a highway frequently changes, which generally results iq The reminder of the paper s orgamzed as follows. Sec_tlon
spatially varying flux, but the traffic flow literature contains | presents the formulation of the traffic flow models. Section

few works on this area of research. Helbji2#—26 derived Il derives the Riemann solver for the problem. Sectior) v
a macroscopic model of mixed multilane freeway traffic us_fqrmulates the Godunov-type numerical schemes. Section V
ing a gas-kinetic approach. New¢R7] developed a model gives numerical examples for the models.
with continuously varying spatial parameters, in which the
capacity is a quadratic function of the location variable.

However, for a discontinuous variation in the number of Il. FORMULATION OF THE MODELS

lanes(and in the free-flow velocity for the more general case  As in the LWR theory, the traffic flow is considered as a

in this papey, the problem is very complicated, and is usu- compressible fluid. Lea(x) be a variable that represents the

ally nonstrictly hyperbolic. In _g_eneral, the problem_ of vari- number of lanes on a highway. The vehicle conservation
able lanegand free-flow velocitiescan be characterized by equation can be written as

flux of the form f(u(x,t),a(x)). In such cases, the schemes
that are designed for the approximation of fli(x(x,t)) are  (ap);+ (apu)y=0, X e R= (-, +»), te R =[0,%),
not efficient because they cannot handle the discontinuity (1)
that is caused by the change afx). Experience has found ) o _ o
that numerical instability may occur, especially whafx) ~ Where p(x,t) is the density in a traffic lane, which is ex-
has a sharp gradief23,28—32. Although the instability may pressed in number_of vehicles per unit Iength' of t.he. h|ghway
be avoided by using sufficiently refined mesh and higherPer lane, andi(x,t) is the average speed, which is identical
order schemes, such as the Runge-Kutta discontinuo®cross adjacent lanes, @tt).
Galerkin(RKDG) schemd 33], the solution may sometimes
not converge to one that is physically relevant. In fact, the
theories of weak solutions and the corresponding numerical A. Extended LWR model
methods for this kind of problem are still under investigation At location x, the total densitynumber of vehicles per
(see Refs[30-32,34-37 for useful discussions in general unit length is ap with a maximum ofap,, wherep,, is the
and on other applications jam density ofp on a lane. The LWR model assumes a
This paper has two main objectives. The first is to extendstrictly decreasing function af in ap, which is known as the
the LWR mode[1,2] and the higher-order model to cases of speed-density relationship. More precisely, it is a monotone
curve from(0, b) to (ap, 0) in the (ap)-u coordinate plane,
whereb is the free-flow speed.e., the maximum ofi) lo-
*Corresponding author. E-mail addresses: Pengzhang@ustc.edially atx[b=b(x)]. By scaling, the speed is a strictly de-
Pzhang@mail.shu.edu.cn creasing function op, i.e.,

1539-3755/2005/75)/05670413)/$23.00 056704-1 ©2005 The American Physical Society



ZHANG, LIU, AND WONG

u= ue(P: b) ) (2)
that satisfiesu,(0,b)=b and u.(p,,b)=0. Combining Egs.

(1) and (2), we have a closed equation, which is called the

extended LWR(ELWR) model with variable lanes, and can
be written as

(ap)t + (apue(Pv b))x =0. (3

B. Extended higher-order model
In this section, we develop an extended higher-orde

PHYSICAL REVIEW E 71, 056704(2005

series expansions inon the left-hand sidéLHS), and inAx
on the right-hand sidéRHS), respectively, as

) +algpy + Puea,:| :

pu

du
LHS =aup + 7'|: apa + au<pt + Upy + ;a’

and

e

au au
RHS :auep+AX[ap( p pyt —b’
p

b

(EHO) model. The formulation is based on a mechanism thafPtain

is similar to the so called “look-forward” mechanism of a
driver (see Payne and Whithaf8,4] and Zhang[17]); the
comparison of the acceleration with that of the ELWR
model; and the introduction of a fluctuation term that simu-
lates the stop-and-go waves.

We first derive the traffic acceleration of the ELWR model
in a way that is similar to that of Pip¢88]. By the continu-
ity equation(1), we have

u u
pr+Upy =~ pUy = %a’, or py+Upy + %a’ =-pUy. (4

We replaceu in Eq. (4) with u(p,b), and thus

PR

prtUepy=—p——
ap

e
P a0

We take the total derivative of Eq2) with respect tot,
which yields

pUg(p)a’

Px— a

du aue< dx ) gdx . du, FIIR
—=—p+—py |+ ——b'=—(p;+ Up,) + —ub’,
dt~ op PP o et T g, P U Ty
where dx/dt=u=ug(p). Comparing these two expressions,
we obtain
du ( (?ue)2 ( aue) e~ pUAIUg
—=-p|— | pxt\u-p— | b -——a. (5
dt ~ Plap) P Pap ) ab a dp ®

We then consider the “look-forward” effect. In Refs.
[3,4,17, a(x) andb(x) are constant, and this effect is consid-
ered according to the relatioru(x(t+7),t+7))=us(p(x
+AXx,t)), in which the driver makes a decision after a time
lag 7 (or relaxation timgin response to the traffic condition
downstream at locatior+Ax. However, this dependency is
not suitable for our case, because the velocity may var
greatly with locations due to a sharp change in the traffi
capacity that is described by the functiceis) andb(x). In
addition, it is well known that the velocity and density are

%

C

d_u_ue—u+£< dUg dUg

Pt

By the comparison of Eq4) and LHS=RHS, it is easy to
u u

b’ +—a’ + = >+u :

ap db a p Px ux

(6)

Zhang[17] chose the quantitAx that is consistent with
the acceleration expression that is derived from the LWR
model. Similarly, we choos&x in such a way that the ac-
celeration expressiordu/dt in Egs.(5) and(6) are identical
when settingu=ug(p,b). This can be realized by choosing

T T

au
AX=-1p—,

o ()

which is exactly the same as in Zhafg/]. We must handle
the last term of Eq(6) appropriately, for whichu is approxi-
mated byu, under the same consideration. This gives the
following description of the acceleration:

Ug— U g |2 dUg \ JU
Ug+ Ul = eT _p(&_pe) px+<ue—pa—;)§—;b'
U, dU
_&3_96‘/_ (8)
a dp

Note thatdu/dt is identical tou;+uu,.

Due to its relation(consistency with the ELWR model,
which is well-posed so that the Riemann solution is existent
and uniquesee Sec. ll), this acceleration describes a traffic
state that is very close to equilibrium flow. Actually, its
smooth solution converges to that of the ELWR model,
namely,u— ug(p,b) (Sec. IV Q. This convergence also ap-
plies to the case of weak solutions if the conservation form
of Eq. (8) is consistent with the continuity equati¢b) (Sec.

I\VV B). These arguments are also confirmed numeric&c.

). For the special case in whic{x) andb(x) are constant
throughout the highway section, E(B) reduces to that of
Zhang[17], in which case the same relation with the LWR

usually discontinuous because of wave breaking, whereas tffgodel is indicated numericallf18]. It can be understood

flux is always continuougor varies less sharplyn a hyper-
bolic system. Therefore, to consider the “look-forward” ef-
fect, we replace the velocity in the above with the flux ac-
cording to the relation

a(x)u(x,t+ 7)p(x,t + 7) = a(x + Ax)us(p(x + Ax,t),b(x + Ax))
X p(x+ Ax,t),
where on the left-hand side=x(t+7). We take the Taylor

that the description of Eq8) is a dynamic version of the
ELWR model, and that it possesses favorable stable and con-
vergent properties.

However, some important traffic flow features are miss-
ing, such as phase transitions and stop-and-go wésess
Refs. [13,14,39 for detaily. As an attempt to simulate a
traffic flow that is in a so called metastable state, we intro-
duce a fluctuation term, which is added to E8).to give the
following EHO model:

056704-2
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U= U Te— U A\ 2 IUg | Mg studied[4,40], becaus&(x) is constant in either domain and
tuy=——+——-p|l — lUe—p— | /b
U + ULy . = p p Px e™ P ap ) b Eq. (11) reduces to
_ p_ue(y_uea, (9) Pt + f(p)x = Ov (th) € D_(Or D+) . (13)
adp Therefore, the main concern is how the two traffic states in

D™ andD* connect at their interface, i.&=0. We assume
that p(0™,t)=p, and p(0*,t)=p; are the density values on
the left- and right-hand sides of the interface. First, this con-
nection can be made by the Rankine-Hugoniot jump condi-
tion

Ts=Uc(p,b) is another velocity-density relation that is sup-
posed to share the same free-flow velocityugg,b). The
first two terms on the right-hand side can be merged,
Uo—U Tg—Us Ug—u T T ~
+t——= v Ue=zZUe+|1-2Z Uy, 7T
T

T T T T

dx
(10 [af(p)]=[ap] . (14)
U, is supposed to be a convex combinatiorugiindt,, and  which is applicable to any curve in thet plane. For the
is also a velocity-density relation. Thus, the new mergednterface(a straight ling x=0, in which clearlydx/dt=0, we
term can be viewed as a relaxationwofo U,. have [af(p)]=a*f(pg)—a f(py) and [ap]=a‘ps—a py. The

In Eqg. (9), the factors for stability and fluctuation are application of Eq(14) results in

combined so that the traffic state in between will be de- e o s
scribed, which is known as metastability. It is obvious that a f(po) = a"f(pg)- (15
the stability decreases if the weight'7 increases. In the clearly, Eq.(15) implies that the in-flow is equal to the out-
sections that follow, the fundamental properties of the ELWRf|owy at the interface, which satisfies the mass conservation
and EHO models will be further revealed. Our main objec-principle. See Refq4,40] for details.
tive is to develop a high-resolution scheme for the approxi- - secondly, the two states should be connected by the char-
mation of such complicated systems, so that the relevanicteristics, according to the theory that has been proposed by
propagation information may be correctly captured. the authorg30]. For a physically relevant solution, the sign

In the forthcoming section, the Riemann problem isof characteristic speeds cannot change across the interface,
solved to obtain the exact numerical flux at the interface. Theg g

discussion is limited to scalar equatid8), or the ELWR B .
model, because the defined conservation form of the EHO f'(po)f'(pg) = 0. (16)
model takes similar convective pargSec. I\V) that can be

approximated in the same way. Finally, the Lax entropy condition§4,40] are applied

separately in each of the domails and D*, where the

“standard” conservation forr(iL3) is applicable. That is, the

shock condition inD™ is given by f'(p™)>f'(py), or p~

< pg, and the shock speed
For simplicity, we assumé(x) to be constant. For the dx

general case in which’(x) # 0, the wave breaking of the at =

Riemann problem is obviously the same pattern, and the con-

clusion is easily extended at the end of this section. Undegimilarly, a shock wave that arises frofn(pg)>f’(p+) or

this assumption, we use the denotatisp,b)=us(p) and  pi<p* in D* satisfies

rewrite Eq.(3) as

IIl. RIEMANN PROBLEM AND NUMERICAL FLUX

0. a7

dx
(ap)+ (@f(p)=0, f(p) = puelp). (11) =0 (18)

Note thatf(p) can be any strictly concave functidi’(p) |y Eqs.(17) and(18), dx/dt is determined by the jump con-
<0]. We denote as the critical density, so thétp') is the  gition (14).

maximum off(p), i.e.,'(p')=0. Thus, it is obvious thaftp) The constraints(15), (17), and (18) are naturally set,

is strictly increasing or{0,p’] and strictly decreasing on which follow the classical weak solution theory of the equa-
[p",pml- With a(x) being discontinuous, the Riemann prob- tion in the form of Eq.(13). However, with these constraints

lem of Eq.(11) can be specified as alone, one can easily construct innumerable solutions for Eq.
_ o (11). Therefore, to ensure a unique and physically relevant

a(x):{a+' xe R =(-=0), solution, an extra constrair(iLt6) must be applied. In the

a', xe R"=(0, +»), following theorem, we will show that the additional con-
straint (16) is both necessary and sufficient, and that the

p, xeR, problem can be solved witpy, or p; [and thus the flux value
po(X) =p(x,00=7", «c R (12 af(py) ora*f(py)] given at the interface. See RERQ] for a
P ' more strictly mathematical treatment of the problem.
For each domain ofD"=R XR/ and D*=R'XR], Theorem Under conditiong15), (17), and(18), condition
whereR;=(0,), the problem of wave propagation is well (16) is necessary and sufficient for the existence and unique-
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0 X 0 X
@ (b

FIG. 1. Solution structure of the Riemann proble(Bj.Fg p e S;, the propagation of=p~ passes through the interface then changes to

p=pg and forms a shock wave witi=p* in D*. (b) For p e S,, the propagation gf=p~ is obstructed due to the inadequate capacitin
and shockbottleneck and rarefaction waves are formed on the left and right sides of the interface, respectively.

ness of the Riemann solution of Eq41) and (12). g(p)=a*f(p)—af(p), and verify thatg(p) has just one root.
Proof. If condition (16) is removed, then there are mul- This is obvious, becausg0)=-af(p") <0, q(p")=a*f(p")
tiple solutions that satisfy conditiond5), (17), and (18).  -a*f(p")=0, andq’'(p)=a*f’(p)>0 for pe (0,p"). More-
Hence, condition(16) is necessary. In the following, we over, a shock wave is possible only Di with po<p® (the
show that Eq(16) is also sufficient. Lax entropy condition and the shock speed is given by

Let P be the set of all possible combinations of the pa-
rameters of the Riemann problem12), and p
=(a",p~,a*,p*) be an element if. The setP can be divided dx _ f(p*) = f(pp)
into the following eight subsets: dt pt-po

S ={P|f"(p") > 0,f'(p") = 0,af(p") =a'f(p)},

If peS, [see Fig. @], then f'(p*)=0, and thusf(p,)
S = (Pl "oh) = 0.8 F(o bep <f(p*). If peS, then pi<p <p*, and thus f(py)
S={PIF(p) > 0.1 (p7) = 0.aF(p7) > af(p)}, =(a”/a")f(p7)<f(p"). In either case, we hawx/dt=0, and
thus Eq.(18) is satisfied. Finally, it can be similarly verified
that either Eq.(17) or (18) will be violated for any other
choice of the paikpg, pg), €xcept in two trivial cases. These

S ={P|t'(p") <0,f'(p") =0,af(p) =a*f(p)},

S,={P|f'(p) <0,f'(p") =0,af(p)>a"f(p)}, area f(p7)=a*f(p’) for pe S, and a~f(p7)=a*f(p*) for p
€S, In these two cases, the alternatives dys,p,)
S$={P|f'(p) <0,f'(p") <0,a7f(p) <a'f(p")}, =(p.p") and(py.ps) =", p*), wherep™ is uniquely defined
by f(p7)=f(p7) and f’(p7) <0. However, both alternatives
§3 ={P|f'(p) <0,f'(p") <0,af(p’) > a*f(p")}, produce the same shock curveDn that coincides with the
interfacex=0. Therefore, the solution remains unchanged in
Si={PIf'(p) > 0,1 (p") < 0,a7F(p) =< a*f(p")}, buD".

For case(b), let q(p)=af(p)—a*f(p’). We haveq(p’)

— B o =af(p")-a'f(p’) >0, andq(p,) =—a*f(p’) <0, and thus,

S ={P|f'(p") > 0,f'(p") < 0,a7f(p") > a’f(p")}. is uniquely determined by Eq$15) and (16). In D*, the
Then, we set eithep; or p; at the interface as followga) bla}nk f'an is filled with a rgrefac;tiqn wave, and if any shock
For pe S,US, we setpg=p", (b) for p Eglugz’ we setp! exists inD~, then Eq.(17) is satisfied see Fig. 1b) for the
=", (0) for pe SUS, we setps=p", (d) for p e§3U§4 we c@se ofpe S ]. Finally, it can be shown that any other choice
set;f:p* o=k ' of (py,py) Must violate Eq(17) or (18). W

Tﬁe prbofs for casel) and(c) are parallel to those df) From the proof of the theorem, we can also obtain the flux
and (b), respectively, and thus we only need to prove casedt the interface, which is denoted Hy=a f(py)=a"f(py),
(a) and(b). In these proofs, we need to verify that p;; for ~ Wherepg or pg has been already specified for each case. For
case(a) [or p; for case(b)] is uniquely determined by Eqgs. the general case in whidh(x) is not constant, we write Eq.
(15) and (16), (ii) any shock wave that arises b~ or D* (1) in the form
satisfies Eqs(17) or (18), and (iii) Eqg. (17) or (18) is vio-
lated for any other paitpg,pg) that satisfies Eqg15) and
(16), or that this pair produces the same solution, as is shown
in the two trivial cases that follow.

For case(a), by Eq. (16) we have f'(py)=0, or p; and the data of the Riemann probldd®) are extended to
€[0,p"]. To see thatp; is uniquely determined, we set include

(ap);+ (af(p,b))x=0, f(p,b)=pudp,b), (19

056704-4
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bog=1°, X <R (20) 0= | apce (24)
X) = (ty=—— .
b+, xe R Pj aijJ- IjaXPX, X
Integrating Eq(22) with respect tax overl; gives the exact

Accordingly, we only need to alter these results to orm

=a f(py,b7)=a*f(py,b*). The rule for the extension is sim-
ply thatb™ andb* always accompang™ anda®, respectively, pi(t)
wherever they appear. ajAXj_Jd_ +a(x)f(p(x,1),b(x))
. . . t

The results are summarized in the following corollary.

Corollary. From the exact Riemann solver for Eq$2),  As the two states i; and|;,; constitute a local Riemann
(19), and(20), the flux at the interfac&=0 can be specified problem, the flux at the cell interfatzﬁx)f(p(x,t),b(x))|xj+l/2
by is approximated by

Je=0. (29

/

f(a,b",p-,a",b*,p") = min(f", "), (21) ?j+1/2 = ?(aj:bjypj (1),84412,bj41, pj42(1) -
For a time division{t"\_, of t<[0,T], the Euler forward
discretization of Eq(25) yields

_ af(p,b), ifp < P*, n+1 n n n ;
—_ . f =p; —I; f _f'_ ) =11 .. -1K1 26)
{a‘f(p ,b7), otherwise, g A~z ) | (

where

where Py =pi(t"), rj=At/ (ajAx), ?J”ﬂ,z
+ a+f(,0+1 b+)1 |f p+ > p* ’ :f(aJ ! b ’pJn ’ aj+]_', bj+17pE1+l)’ and At:tn+1_tn' The Inltlal
= a'f(p’.b"), otherwise, value p; :Apj(O) is computed by Eq923) and (24), and the

function f is governed by Eq(21) because”(p) <0. Note
andf can be any strictly concave function pf that this numerical scheme is applicable for any strictly con-
cave functionf(p,b) of p.

IV. GODUNOV-TYPE NUMERICAL SCHEMES

In the following discussion, the dimensionless variables B. Scheme for an extended higher-order model
are applied by scaling. Given that the spatial domain For the EHO model, we adopt the linear speed-density
of the highway section(0,L) in the analysis, andu,  relationship
=maxb(x), p, b,u,x,t and 7 are replaced by
pPms bUy, Ul XL, tL/u,, and 7L/u,, respectively. Corre- U(p) =b(1-p), Osbs<=1, (27)
spondingly, the spatial domai®,L) is scaled td0, 1), and  fom which we obtain
the range of the density becomed0, 1]. In the following,
the Godunov-type numerical schemes are designed that is f(p) =bp(1 -p), (28)
based on the Riemann solver using corolle2$) in Sec. IlI
(see Ref[40] for details of the algorithmic design

Let Ij=(Xj-1/2,Xj+1/2) be the cells that are associated with
the discretization of0,1), j=1, ...,K, X15=0, andXx;1/2
=1. In each cell, the node is locatedxat 0.5(X;_1/2+ Xj+1/2),
and the cell length i\x;=X;,1,=Xj-1/2- To provide the flux
values at the spatial boundaries, two additional céfls
=(X_q/2:%172) @nd 1= (Xk41/2: Xk+3/2) are considered.

andp”=0.5. The consideration of the nonlinear speed-density
relationship in the EHO model requires special treatment of
the conservation form of the model, which will be investi-
gated in a future study. For the linear speed-density relation-
ship, we define the conservation form of E§), which to-
gether with Eq.(1) constitutes the following system of
equations:

(ap)i + (apu)x =0, (29)
A. Scheme for an extended LWR model 5
au u
For the dimensionless variables, the model equation re- (—) + {O.Sab{p2+ (—) - 1”
t X

mains the same as it i; _in E3) or (19. We specify the b
model as the following initial value probleftVP): ~o 5a2<1 g E) (1 e E) (g)f . a(U;T_ u) |
(ap): + (af(p,b))x=0, (22) (30
p(%,0) = po(X). (23) The system can be made identical to E2Q) in the distri-

bution sense by setting=ug(p) and choosindJ. in Eg. (10)

In I}, let a(x) be approximated by =a(x;), b(x) be ap-  such thafr=, which means that Eq$29) and (30) reduce
proximated byb;=b(x), and p(x,t) be approximated by to Eq.(22) exactly. In this definition, the features that are
pj(t). Then, from the conservation of the total densityinherited from the ELWR model in the formulation will take
a(x)p(x,t), we have effect, such as the consideration of stabilisge Sec. Il B
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Obviously, these retain the linear transformation of variablesolutions, which are based on the parallel characteristic

(or diagonalization

p=05v-w), ub=-05w+v), (31

propagation from the initial values. This is a difficult prob-
lem for the general case, and thus in the following discus-
sion, a common form of initial data is considered. Note that

which is undertaken mostly for the characteristic decompothe densityp of the ELWR model must be identical to that of

sition on the left-hand side. From E@1), Egs. (29) and
(30) become the equivalent system

(av), + (ag(v,b)), = - 0.5%(1 -v)(1 +W)<‘3>' _a(Ue-u) ,
a br

(32

(aw), + (ag(w,b)), = - 0.5%(1 -v)(1 +W)(‘2>’ aUg-u) ,
a br

(33

where the functiorg(v,b)=0.5(1-v?). We note that Egs.
(32) and(33) are actually the characteristic equations.

The model is also considered as an IVP with the initial

values that are determined by E@1), i.e., vo(X)=p(X,0)
—-u(x,0)/b(x) and wy=-p(x,0)—-u(x,0)/b(x). Because the
convective partsthe left-hand sideof Egs.(32) and(33) are
analogous to that of Eq22), they can be approximated in a
similar manner. Denote bR the right-hand side of Eq$32)
and (33). The numerical scheme of systdi32) and (33) is
then given by

n+l _

an an n
v =00 = (@2~ G0 + TAXRY,

n+l _ n ~n n
W =W = (@ 12— Og) + AR,

1 o 1
aAx ﬁ | a(X)vo(x)dx, w; = —aj Ax J| | a(x)wo(x)dx,

i=1,...K, (34)

where  §L1,=0(ay,bj, v @41, bjag,0fh)  and - Gl
=Q(a,-,bj,wj,aj+l,bj+1,w?+l). Becauseg’(v) <0, the func-
tion g is determined by Eq(21), wheref is replaced byg.
Moreover, we write thatc=b/a and approxmatec
=[c(Xj+1/2) —a(Xj-1/2) ]/ Ax;. However, ifc(x) is dlscontlnuous
at xj,1/2, then we further approximate

C(Xj+1/2) = @€ + (1 = @))Cjuy,

where ;= AXj,1/ (AXj+AX1q).
We note that schem&&6) and(34) can be made identical

by settingu=u, and7=«. This consequence was anticipated

due to the conservation form of E(B0). Even for the same
setting, the numerical result of E34) would be very dif-
ferent from that of Eq.(26) and would be only loosely
bounded(e.g.,p<0 or p>1) if the conservation were de-
fined otherwise.

C. Characteristics and computational Boundaries

To finalize scheme&6) and(34), additional nodal values
at x=x, and x=xy,, are needed. For initial value problems,
these nodal values are given by exéand usually smooth

the EHO model ifu=ug(p) and7= are set. Therefore, we
only need to discuss the latter case.

First, we study the propagation behavior under the as-
sumption thata(x) andb(x) are constant. This implies that
b=1 andg(w)=g(w,b)=0.51-w?), and that the character-
istic equationg32) and(33) become

vt gv)y=- T_l(Ue_ u), (35

7 HUg-u), (36)

where 74 (Ug—u)=7Y(1+w)+7 1(T.—u,), according to Egs.
(10) and(27). Correspondingly, we define the characteristics
and thus obtain for the 1 field

W + g(W)x ==

d_X - — d_U —_ -1 _
dt - g (U)l X(O) - 51 dt - (Ue u), U(X(o)!o)
=vg(8) (37)
and for the Zfield,
ax_ _ooaw_
gt 9 (w), x(0)=n@ at (Ue—u), w(x(0),0)
=Wo(7). (39

Here, note thay’ (v)=-v<-w=g’(w). In general, Eq(37)

or (38) cannot be solved explicitly. Suppose tlgté) (=vg)
and wy (7) (=wg) are constant. In this case, the solution is
smooth, as is shown in the following, so that the final ex-
pressions of Egs(37) and (38) can be unified. Thus, the
deduction of one from the other yields-w=vy—-w, (con-
stany, which further infersp=py[=0.5vo—Wp)] and u=p,

—-v or —(pp+w). By the proper substitutions in Eq&7) and
(39), it follows that for solutions,

w=Ce " ~Udpg) =po, v=2po+W, p=po,
u=-Ce "+ Ugdpy), (39
the field-1 characteristics are
x= £+ [Uelpo) ~ polt + Cre™, (40
and the field-2 characteristics are
x=n+[Ug(po) + polt + Cre™", (41)

whereC=Ug(pg) —Up. In Egs.(39—(41), indeed, the charac-
teristics of the same field are superposable by translation, so
that each propagation of the two families of characteristics is
parallel, and a smooth solution is formed.

Applying these results, the left boundary values are ac-
quired by assuming thaty(¢)(=v,) andwg (7)(=w,;) are con-
stant forx<<X;. This is indicated in Fig. 2, where the bound-
ary x=Xg (with t<T,) fall into the smooth solution domain
D1={(x,t)|x<Xy(t), t=0}. The application of Eq(39) to
this smooth solution region yields
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usually gives rise to wave breakirfdiscontinuity and there-
T fore more complicated propagation behavior. It is well
1 field 2 field ? known that the propagation spe@hd thus the behavipof
discontinuity depends on the conservation forms of the
model equations, which is why the conservative form of Eq.
D, D, (9) must be given regardless of the physical conservation of
a quantity. This reasonably defines the safer propagations
because Eq929) and (30) together are consistent with the
ELWR model for their conservative parts.
Second, for the case in whi¢he~ (U,=U, or U,—u=1
+w), Egs.(40) and(41) can be solved separately, even with
X the initial data thatwy(¢€) and wy(7) are not constant. The
X=X, =X, X=X X=Xt solution for Eq.(41) for the 2 field reads

FIG. 2. Obtaining the boundary values for the numerical x=n+t-d1+wy(n](1-e"),
schemes through the propagation of characteristics.
w=[1+wy(n)]e -1,

Wo=Cie™ = Ug(p) — pi,  v5=Cie™ = Uq(p) +p, which indicates that the propagation is asymptotical to a

C = Udp) - u,. (42) straight line andi to ug(p) (w— —1). For wave breaking that
. _ S is governed by the conservation forn@@9) and (30), the
If the propagation speed of the field-1 characteristics is negayhole solution must be asymptotical to that of the ELWR
tive, then X,(t) is the field-1 characteristic curve from  model.

=X;. In this case T, is the intersection ok=Xy(t) and the
line x=x,, and thus is determined by E40) such that
po, C, &€ and (x,t) are replaced wittp,, C;, X; and (Xq, T4), V. NUMERICAL EXAMPLES
respectively. OtherwiseX;(t)=X; and T, =cc.

It is similar to obtain the right boundary values in
=Xne1 (with t<T,), under the assumption tha&(x),
v(x,0)(=v,), andw(x,0)(=w,) are constant for> X,. These
boundary values read

In this section, the numerical schemes are tested and the
asymptotical property of the EHO model to the ELWR
model is confirmed bir=c«. These demonstrate that the nu-
merical solutions are truly convergent to the analytical solu-
tions (if they are well posed so that the schemes can be
further applied to describe more complicated occurrences,
and probably to predict new traffic flow phenomena. With

Va1 = CE™ = Ugp) +pr,  Cr=Uglpr) =~ Uy, traffic signal example, the control is well represented by the
(43) free-flow velocityb, and waves are described and explained
reasonably in a new way. We specify the paramejgs
and T, is determined by Eq(41) such thatpg, C, 7, and  =0.15 vehicles/m andi,=maxb(x)=20 m/s. The dimen-
(x,t) are replaced, respectlvelly, wittpy, C;, X5, ar[d _ sionless variables are used in all figures, and a dimensional
(Xn+1, T2). Note that the propagation of the 2 characteristicsyariable is always followed by its unit so that they can easily

W&ﬂ = Cre_nAUT— Ue(Pr) = Pr

is always positive. be distinguished.

The boundary conditions of Eq&42) and (43) are valid For simplicity, we seb(x)=1 in the first three examples
only for t<T=min(T;, T,). We emphasize that their validity that represent the traffic flow around a bottleneck, as given
can be identified by by the Riemann problen{12). Here, the interfacex=0

1= 0,500 - changes tax=xy, with (a~,a")=(3,1); the simulation time

and length are chosen to &=240 s andL=4000 m with

WY) =0 =W, = py, prar = 0.5WR, 1 = UR4p) =0, — W, the division byAt=0.2 andAx;=10 m. For comparison, the
=5 (44) EHO model of 7=« is also solved with the same set of

" parameters, together with the relaxation timel0 s the ini-

which means that the densityremains constant in the two tial speeds™=u(x, 0)(x<Xg), andu*=u(x, 0)(x>Xg).
boundaries. We show the results in Figs. 3, 4, and 5, and compare

When settingu=uq(p) (and7=«) in Egs.(42) and (43), them with the analytical results in Sec. Ill. In all of these
the boundary values of the ELWR model are obtainedexamples, the shock and rarefaction waves that are described
Clearly, Eq.(44) also gives these values. by the ELWR model are well captured. For the EHO model,

As a summary, some fundamental features of the EHQ@he solution structures become very similar to those of the
model are emphasized below. First, E§9) indicates that ELWR model ast increases, which is consistent with the
the velocityu relaxes to the equilibrium staté.(p). For this  analysis in the previous sections.
smooth solution, moreover, the propagations are nearly In contrast, the EHO model is very differentifis finite.
straight lines for large [Egs. (40) and (41)]. However, a  As Ug(p) # Ug(p), its conservative par{she second and third
disturbance that includes changes gdnu, a(x), and b(x) terms in Eqs(32) and(33)] conflict with the relaxation, and
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041} p 0ok
| t=0s B solid: ELWR
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FIG. 3. Traffic flow corresponding tp € S; in the Riemann problem, witky=0.5,(p~,p*)=(0.08,0.4. The propagation op~=0.08
passes through the bottleneck and results in a shock downstream. The solutions of the ELWR and EHO models are compared by setting
(u=,u*)=(0.8,0.4.

thusu is not convergent tdJ.(p). Being nonzero, the fluc- cident, but this is not included. Here, we note that the main
tuation component of the relaxation term dominates. In thignotivation is again to demonstrate the robustness of the nu-
case, the traffic waves are very similar to those in detonatiormerical schemes. For example, it is challenging to apply
This feature of the high-order models was discussed ib(x,t) such that it jumps from the maximum 1 to the mini-
Kerner and Konhaus¢f3,14], and it was found that a small mum 0, but in the present analysis, the numerical results are
perturbation to the constant distribution of the velocity andphysically bounded.

density may give rise to the formation of an traffic platoon A few examples are simulated by the EHO model below,
that propagates in oscillation or as a prolonged jam or queuday choosing 13]

In other words, the solution that is given by E®9) in a .

homogeneous traffic section is sensitigmstable or meta- Uu(p,b) = bﬂl + eX[(p—_O.ZS)} -3.72% 10—6}_
stablge to the perturbation, and would be magnified if its e 0.06

length were sufficiently large. (45)

In this model, the perturbation is physically related to
changes in the traffic capacity. The free-flow spedd fur-  Recall the previous discussion and refer to E§sand(10).
ther extended to be a temporal variable to represent changéisshould be noted that a smallérmeans more conflict be-
in the capacity in some special locations. This representatiotween the convective and relaxation effects, and thus a
is straightforward in the ELWR model, and is implied in the greater likelihood of fluctuation. More precigand physi-
EHO model by comparing acceleratiofs) and (9). The cally relevant simulation can be made by a comparison with
same extension for the number of laesould be conducted the observed data, following similar ideas and adjusting the
with similar reasoning, for example, in locations near an acparameters.

09F T e e
i 08F -

08f ; t._|OS
¥ 0.7F = ———

07F solid: ELWR 3 t=120s P
! 06F - 1=240s
[ = | o =

a06F dashed: EHO 05F i

i 04f

05} N -
I 2 3F solid: ELWR
N ™~ / N TR t=240s 03 F

04 t=120s 5 = . 0.2 2
[ ~ S “F dashed: EHO
r /I=OS S " TR -

0.3 = == = 01F
L L L 1 L L L 1 L L L 1 L L L 1 L L L 1 L L L 1 L L L 1 L L L 1 L L L 1 L 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(a) X (b) X

FIG. 4. Traffic flow corresponding tp egl in the Riemann problem, witRy=0.3, (p™,p*)=(0.3,0.3. The propagation op™=0.3 is
obstructed by the bottleneck, which results in a shock on the left-hand side and a rarefaction on the right-hand side. The solutions of the
ELWR and EHO models are compared by setting-u*=0.9.
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ook [ H [rossessss_————— |
I | “ 0.5 i
i | [ t=0s |
| | -
- : t=240s I 0.4 m : \ ————————
o8 : i L | |
L : solid: ELWR - L :
| | B |
a I 03} ! -
- | t=120s dashed: EHO I ~)\t_2405 |~ 20 solid: ELWR
- | | i | - t=120s
07k | F | | ]
L | 02k : :\ dashed: EHO
| ! I | ‘
3 | = | 1\
06 : 1 }I » 1 ::r; 1 0.1__ \/77|7 L 1 1
0 02 04 06 08 1 0 0.2 0.4 06 0.8 1
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FIG. 5. Traffic flow corresponding tpeg in the Riemann problem, witky=0.7, (p~,p*)=(0.6,0.8. The propagation gf*=0.6 passes
through the bottleneck and results in a shock upstream. The solutions of the ELWR and EHO models are compared by ggtting
=(0.525,0.4.

Consider a traffic flow initially withpy(x) being constant In Fig. 7, the perturbation is made periodically negr
and ug(X)=ug(po(x)). It will converge to a constant flow ac- =0.2, such thab=1 reduces td®=0.5 for 60 s in each period
cording to Eq.(39). However, we perturb near location  Of 200 s. A series of clusters are observed in Fig),7and
=x, by changing the values df(x,t). The computational the fundamental diagrafirig. 7(b)] shows the mechanism of
length is chosen to be sufficiently large, i.e5120000 m, the formation in a similar fashion.

so that the boundary valu¢42) and (43) are applicable to a In Fig. 8, po(x) is relatively large, and=1 reduces td
long simulation. The computational region is divided by =0-5 n€ax,=0.4 for 3 s ineach period of 20 s. The length of
Ax=100 m andAt=1 s. the first jam[Fig. 8@a)] is increasing because the in-flow is
In Fig. 6, these data suggest that the flow should be for-mhucr:1 I_arr?er thﬁgtge Ogt'ﬂ%WiThe;e th;) flows co_rrelsp(?nd o
bidden neax,=0.5 for a sufficiently long time for a jam to "€ heights ap=0.2 andp~0.1 in Fig. § ), respectively. In
form. After trr)me perturbation is released, the jauiuste) addition, oscillations that propagate downstream are ob-
: . ' ) served, which correspond to the high flow states between
propagates upstream and Figashows the density att =0.1 andp=0.5 in Fig. &b).
=1800's. The fundamental diagram or density-flow state g heriodic boundary condition has been widely used in
(p,a), (q=pu) is shown in Fig. &), which is also compared g afic flow problems[13,14. The road sectioi0,L] is a
with the curveq=pUe(p). Corresponding to states 1 to 3in cjrcylar track, and thus the number of vehicles is fixed in the
Fig. 6(a), the states that are represented in Fi)) 6how the  jnterval. Note that a propagation over one of the two bound-
deceleration path when vehicles enter the jam and the accedries is connected by the other boundary. In application, the
eration path when they leave the jam. The shape of the clugtownstream-propagating oscillations in Figa8would be
ter remains almost unchanged because the in-flow and ougventually absorbed in the first jam, and the length of the jam
flow (both represented by state are approximately the would then be narrowed because the forthcoming flow is

same. smaller than the out flow. Becaupg(x) is small, some of the
F 015
09F 2 I
08F
07F I
i 01
06F | [
F deceleration path
0.0'5 3 m o
04F i :
osf 0.05
E 3
02F 1 ”
0.1 f acceleration path
OF & ¢ s & g 5 @ o5 ¢ i o3 7 ow . oy
0.4 05 0.6 0.7 0.8 0 0.2 0.4 0.6 0.8 1

(a) X (b) P
FIG. 6. Traffic flow state at=1800 s, as a consequence of a disturbance to the constant initiglyd@ta0.1 anduy(x) =u(po(x)), by
settingb(x,t)=0 for 0.499%<x< 0.5 and 1 s<t<501 s, and(x,t)=1 for others, and withr=1 s,7=1.04. () Distribution of densityp; (b)
fundamental diagram compared wiix pU¢(p).
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o
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1

deceleration path

0.2 0.4 06 08 1

(b) p

/ acceleration path
—

02

(a)

FIG. 7. Traffic flow state at=3600 s, as a consequence of a disturbance to the constant initighgdgta0.1 andug(x) =uu(p(X)) by
settingb=0.5 for 0.199<x< 0.2, 1 s<t-20(t/200]<61 s, ancb=1 for others, and withr=1 s andr=1.04r. (a) Distribution of density
p; (b) fundamental diagram compared wi pU4(p).

jams in Fig. Ta) are expected to die out. These results arewhen the propagation of the first jam meets the first hump of
confirmed by computation, which is not shown. congested traffic. This first jam continues to propagate and
Applying the periodic boundary conditions, we show anpasses through the periodic boundary. It then absorbs all the
interesting example in Fig. 9, for which=20 000 m,Ax humps so that the solution eventually evolves into three jams
=100 m,At=0.5's, and the perturbatidi=0 lasts for only ~ With free flows in betweeriFig. 9e)]. These three jams
10 s neax,=0.5. In addition to the formation of a upstream- Propagate with approximately unchanged shapes and the
propagating jam that is similar to those in Fig&)7and 8a), ~ Same speed, and are known as traveling waves.
there are oscillations that propagate downstr¢gig. 9(a)]. This example is typical of metastability in traffic, and a
Betweenx=0.60 and 0.65, for example, they are hystereticreasonable explanation might be that the |.n|t|§I traffic state is
with a high frequency at=500 s, and these congested den-S© dense that unstable bI_o_W-ups anq OS.C'"at'OnS come up in
sities have a higher flojand a’higher velocity than sug- & perturbation as a sacrifice to maintain free traffic in the

_ surrounding area. These blow-ups and oscillations will even-
gSrS\}g?q PXLJJ_(L;)G({;) ]Ftizatg(cé;rrgizo?:‘:'hf r:%i;taf:g\‘j‘v ?X?Léhetually evolve into another stable state that is characterized by
- e . .

/ it ; upstream-propagating jams. In our numerical test, this con-
congested region, the oscillations keep almost stationary, angy;sion is generally true if the periodic condition is applied
att=700 s[Fig. 9c)] they merge into a new jam with states (see Refs[13,14,39 for similar accounts

that come much closer to the curgepUg(p) [comparing We can take advantage of the extended models and
Figs. 9b) and 9d)]. Therefore, the second jam is similar to schemes to simulate signal traffic. Specifically, the signal is
the first jam in that it is observed to propagate upstream ircontrolled by settindy=0 for red andb=1 for green. In this
Fig. 9e). The third jam is formed at approximatek=0.75  way, the physical meaning is much clearer, and the evolution
by a similar mechanism, and begins to propagate upstreamay be taken to be any lengthy period. Moreover, a periodic

02r

b) ' P

FIG. 8. Traffic flow state at=5400 s, as a consequence of a disturbance to the constant initiglydgta0.22 andug(x) =ug(po(x)) by
settingh=0.5 for 0.399<x< 0.4 and 1 s<t-2(t/20]<4 s, andb=1 for others, and withr=10 s,7=1.06r. (a) Distribution of densityp;
(b) fundamental diagram compared wiflF pU(p).
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FIG. 9. Traffic flow state as a consequence of a disturbance to the constant initiglydata0.25 andug(x) =Tg(po(X)) by settingb
=0 for 0.494<x<0.5 and 1 s<t<11 s, andb=1 for others, and withr=3 s,7=1.05r. (a) and (b) t=500 s;(c) and (d) t=700 s;(e)
evolution forte[0s,4800 &

boundary condition is applied by which we imply that the velocities, which are extended from the LWR and higher
evolutions in the neighboring sections are the same. Onerder models. To approximate the numerical flux
example for this is shown in Fig. 10, which is simulated by f(u(x,t), a(x)), or specifically a(x)f(p(x,t), b(x)) in our
the EHO model, where the red signal is taken to be 30 s iase, the Riemann problem is discussed. Based on the wave
every 60 s and near=0.8 forL=2000 m. The result shows breaking, we have developed efficient Godunov-type nu-
a flow that consists of free, congested, and jamming traffic ifyerical schemes for the models. The traffic flow across a
fixed locations. bottleneck (lane drop has been simulated and compared
VI. CONCLUSIONS with the exact Riemann solution. The results demonstrate the

) effectiveness of the numerical schemes, based on which we
We have presented two types of models that describe the,  frther study inhomogeneous freeway traffic.
traffic flow on a highway with variable lanes and free-flow
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property is not mentioned, but will be treated by a rigorous
account in a future study.

In the formulation that includes the definition of conser-
vation forms(with linear functionu,=1-p), we note that the
EHO model is so closely related to the ELWR model that
their convective parts are consistent. This guarantees that the
EHO model shares a similar numerical flux function, which
is given by Eq.(21). By extensionAx in Eq. (6) might be
alternatively chosen, or another formulation could be used.
However, for sharp changes in the lane numaeand the
free-flow velocityb, the difficulty in obtaining a numerical

FIG. 10. Traffic flow states for<900 s, as a consequence of a gq|ytion must be overcome, unless the exactan approxi-
disturbance to the constant initial dafa(x)=0.2 and Us(X)  mate high-resolutionRiemann solver for the system is de-
=Ug(po(x)) by setting b=0 for 0.795<x<0.8 and 1st \gioned. In general, obtaining such a Riemann solver would
~60/60]<31s, andb=1 for others, and withr=10S7 o 5 challenge for these systems, and future research could
=1.08r, L=2000m,Ax=10m, At=0.2 5. concentrate on a more complicated formulation of EHO
models. We should also note that the problem of negative

hereU. is ol ‘G f ted and | ing traffi velocity sometimes occurs with the EHO model in our nu-
WRETEL, IS CIOSEr tau,, 1re€, congested, and jamming tralic o e g analysis, due to the isotropic viscosity that is inher-

flows are all captured. They appear as a consequence of pefi; i, higher-order modelsl1]. Therefore, the extension of

tL_eratlpns to Fhe constant flow with a relatively _h|gher den'the method to anisotropic higher-order models should also be
sity. It is physically meaningful that the perturbation is madeinvestigated

by the change in the free-flow velocity in special locations
that represent the drop in traffic capacity and the recovery.
For the application of the periodic boundary condition, the
evolution typically shows the metastablity for a denser initial We wish to thank Dr. Xiao-Chuan Wang and the anony-
distribution in that it includes unstable oscillatiotison-  mous referees for their helpful and constructive comments
gested traffi, but eventually becomes regular jams. Fromand suggestions on the earlier draft of this paper. This work
the fundamental diagram, it can be seen that the propagatiomas supported by grants from the National Natural Science
of these upstream-propagating jams is governed by the LWRoundation of ChindGrant Nos. 10472064,10371118he
model, because all of the states in the cluster fall closely wittChina Postdoctoral Science FoundatiofGrant No.

the curveq=pUg(p), and thus the relaxation term is nearly 2003034254 and the Hong Kong Research Grants Council
zero. This explains why the propagation can be stable. Thi§Grant No. HKU7031/02E

In another numerical simulation with the EHO model

ACKNOWLEDGMENTS

[1] M. J. Lighthill and G. B. Whitham, Proc. R. Soc. London, Ser. [13] B. S. Kerner and P. Konhauser, Phys. Rev.4B R2335
A 229 317(1955. (1993.
[2] P. I. Richards, Oper. Redl, 42 (1956. [14] B. S. Kerner and P. Konhauser, Phys. ReV6& 54 (1994).
[3] H. J. PayneMathematical Methods in Public Systeneslited [15] D. Helbing, Phys. Rev. B51, 3164(1995.
by G.A.Bekey(Simulation Council, La Jolla, CA, 1971Vol. [16] D. Helbing, in Traffic and Granular Flow edited by D. E.

1, p. 51. Wolf, M. Schreckenberg, and A. Bacheforld Scientific,
[4] G. B. Whitham Linear and Nonlinear Wavedohn Wiley and Singapore, 1996 pp. 87-104.

Sons, New York, 1974 [17] H. M. Zhang, Transp. Res., Part B: Method®2B, 485
[5] R. D. Kuhne, inProceedings of the 9th International Sympo- (1998.

sium on Transportation and Traffic Theorgdited by J. Vol-  [18] H. M. Zhang, Transp. Res., Part B: Method8b 337 (200J.
muller and R. HamerslaQ/NU Science Press, Utrecht, 1984 [19] A. Aw and M. Rascle, SIAM J. Appl. Math60, 916 (2000.

pp. 21-42. [20] S. C. Wong and G. C. K. Wong, Transp. Res., Part B: Meth-
[6] P. Ross, Transp. Res., Part B: Method2?, 421 (1988. odol. 36, 683(2002.
[7] P. G. Michalopoulos, P. Yi, and A. S. Lyrintzis, Transp. Res.,[21] G. C. K. Wong and S. C. Wong, Transp. Res., Par8@ 827
Part B: Methodol.27, 315(1993. (2002.
[8] G. F. Newell, Transp. Res., Part B: Methodalz, 281(1993. [22] M. P. Zhang, C.-W. Shu, G. C. K. Wong, and S. C. Wong, J.
[9] G. F. Newell, Transp. Res., Part B: Methodalz, 289(1993. Comput. Phys.191, 639(2003.
[10] G. F. Newell, Transp. Res., Part B: Method@lz, 305(1993. [23] Zhang Peng and Liu Ru-Xun, Chin. J. Comput. Phy8, 229
[11] C. F. Daganzo, Transp. Res., Part B: Method@b, 277 (2009).
(1995. [24] D. Helbing, Phys. Rev. B55, 5498(1997.
[12] C. F. Daganzo, Transp. Res., Part B: Method@b, 261  [25] D. Helbing, Phys. Rev. E59, 6328(1999.
(1995. [26] D. Helbing, Verkehrsdynamik [Traffic Dynamics[Springer,

056704-12



HIGH-RESOLUTION NUMERICAL APPROXIMATION OF... PHYSICAL REVIEW E 71, 056704(2009

Berlin, 1997. Equations edited by A.Quarteroni, Springer Lecture Notes in
[27] G. F. Newell, inProceedings of the 14th International Sympo- Mathematics, Vol. 1697Springer, New York, 1998 pp. 151—
sium on Transportation and Traffic Thepmdited by A. Ceder 185.
(Pergamon, New York, 1999pp. 125-146. [34] T. Gimse and N. H. Risebro, SIAM J. Math. Ana23, 635
[28] Zhang Peng and Liu Ru-Xun, Chin. J. Comput. Phy8, 142 (1992.
(2002. [35] L. Lin, J. B. Temple and J. Wang, SIANSoc. Ind. Appl.
[29] Zhang Peng and Liu Ru-Xun, Chin. J. Comput. Phg8, 130 Math. J. Numer. Anal.32, 824(1995.
(2003. [36] A. Tveito and R. Winther, SIAM J. Sci. ComputUSA) 16,
[30] P. Zhang and R. X. Liu, J. Comput. Appl. Math56, 1 (2003. 320(1995.
[31] P. Zhang and R. X. Liu, J. Comput. Appl. Mati76 105 [37] R. A. Klausen and N. H. Risebro, J. Diff. Eqnd57, 41
(20095. (1999.
[32] P. Zhang and R. X. Liu, Numer. Methods Partial Differ. Equ. [38] L. A. Pipes, Transp. Res3, 229 (1969.
21(1), 80 (2005. [39] D. Helbing, Rev. Mod. Phys73, 1067 (2001).
[33] B. Cockburn, C. Johnson, C. -W.Shu, and E. Tadmoridh [40] E. F. Toro,Riemann Solvers and Numerical Methods for Fluid
vanced Numerical Approximation of Nonlinear Hyperbolic Dynamics: A Practical IntroductiofiSpringer, Berlin, 1999

056704-13



