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Three-dimensional vibration analysis of a torus
with circular cross section
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The free vibration characteristics of a torus with a circular cross section are studied by using the
three-dimensional, small-strain, elasticity theory. A set of three-dimensional orthogonal coordinates
system, comprising the polar coordinated) at each circular cross section and the circumferential
coordinatep around the ring, is developed. Each of the displacement componghis,, andw,,

in ther, 6, ande directions, respectively, is taken as a product of the Chebyshev polynomials in the

r direction and the trigonometric functions in thend ¢ directions. Eigenfrequencies and vibration

mode shapes have been obtained via a three-dimensional displacement-based extremum energy
principle. Upper bound convergence of the first seven eigenfrequencies accurate to at least six
significant figures is obtained by using only a few terms of the admissible functions. The
eigenfrequency responses due to variation of the ratio of the radius of the ring centroidal axis to the
cross-sectional radius are investigated in detail. Very accurate eigenfrequencies and deformed mode
shapes of the three-dimensional vibration are presented. All major modes such as flexural
thickness-shear modes, in-plane stretching modes, and torsional modes are included in the analysis.
The results may serve as a benchmark reference for validating other computational techniques for
the problem. ©2002 Acoustical Society of AmericdDOI: 10.1121/1.1509429

PACS numbers: 43.46r, 43.40.Cw, 43.40.AFANN]

I. INTRODUCTION cording to a recent literature survEymost of the published
. . L papers are about rings with a rectangular cross section. For
A torus (circular ring beam w!th gerU|ar cross se.ct)o.n. rings with a circular cross section, only the one-dimensional
as baS|c_ structgral element can find its _apphgaﬂons n CIVII’models have been developed. It is well known that these
mechanlcal,_ awcraft, and marine engineering like gyro- athematical models have serious limitations in their scope
scopes, springs, stiffeners and tires, etc. In some cases, e 1 hjications, which are only suitable for slender or thin

torus has to bear dynamic loads, and therefore to unders'[ar%‘?ructural elements. As a result, the three-dimensional analy-

its dynamic behavior is very important for designers. Or]e'sis of structural elements has long been a goal of those who

d|mgn3|onal mathematical models abput [ngs hgve bee\'/']vork in the field. In the recent two decades, with the devel-
available for more than a century.Considering the ring as

a curved beam or rod, the vibration of a ring can be classifie pment of digital computers and computational techniques, it
. ' . 9 as now become possible to obtain accurate eigenfrequencies
as in-plane, out-of-plane, and circumferential modes. Base

on the classical theorgi.e., the hypothesis of a straight nor- nd vibration mode shapes for some structural elements. Ex-
. -€., € Nypot . 9 act, closed-form three-dimensional elasticity solutions can be
mal line), three uncoupled differential equations can be de

veloped for these three modes and solved easily if the exte-()btainmj only for a few cases, such as the axisymmetric vi-
clop . L d €astly "Sration of annular plate’¥ and the vibration of rectangular
sion of the centerline of the ring is negligible. In order to

. . : ; ) lates with four simply supported edgesUsing a series
improve the classical solutions, some investigatdthave P Py Supp ge g

studied the effect of extension, transverse shear, and rotare Xpansion method, accurate solutions for the free vibration
' ' of circular plates and cylinders have been derived by

nertia. Hutchinson**~8In recent years, the Ritz method has been

. The existing rgsearch work shows that .for rngs with aextensively applied to the three-dimensional vibration analy-
circular cross section, the error of the one-dimensional mod-

els increases with the decrease of the ratio of rin centroidaFis of some typical structural elements, such as beams with a
9 circular cross sectiof?, circular plate®?! and cylindrical

axis radius to cross-sectional radius. Similar conclusions can . . )
shells??23 rectangular and trapezoidal plafé$> prismatic

also be drawn for rings with a cross section of any shape. "&olumnszﬁ shell panel§,7’28 triangular plate§?'3° and rings

addition to the or?e—d|mens_|onal mOdeIS’ sometimes Irl](\,/("\snﬁvith isosceles trapezoidal and triangular cross secflbat;.
gators also applied two-dimensional pladteand shefl

models to analyze the mechanical behavior of a torus Acln these references, high accuracy, a small computational
y " "“cost, and easy coding preparation have been shown if suit-

able admissible functions are selected.

dAuthor to whom correspondence should be addressed. Electronic mail: m' the_present Work, the Ritz .methc.)d is applied to the

hreccyk@hkucc.hku.hk free vibration analysis of a torus with a circular cross section
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Xx=(R+r cosh)cosyp; y=(R+r cosh)sing;
. €y
z=r siné.
Let u, v, andw, respectively, be the displacementsriné,
and ¢ directions. The relations between three-dimensional
tensorial strains and displacement components in the or-
thogonal curved coordinate system are given by

Centroidal axis

au_ l1dv u

R :__+
“Ta v v

t m x_f _@ i %:‘\/ 1 ow cosé sing
i ! j €

? R+rcosf do R+rcoso R+rcosh

Cross-section

v v 1¢9u_

= 4 — —
Yro ar r r a6’ (2)

Plan
(b)
10w sing@ 1 v

= + w+ —
Yoo~ 960 T R+rcosf = R+rcosf dg’

FIG. 1. Atorus with a circular cross sectioi@) three-dimensional view()
coordinate system.

1 Ju  Jw cosé

based on the three-dimensional elasticity theory. Although '}/‘Przma—-i- T mw.
¢

the method itself does not guarantee us to provide exact so-
Iut|qns, h_|gh accuracy and_ quick convergence may b&rom Eq.(1), the determinant of the Jacobian matrix of the
achieved if one selects the displacement functions properlysgordinate system is given by

In this paper, a combination of the polar coordinatgdj at

each circular cross section and the circumferential coordinate  |J|=r(R+r cos6). 3

¢ around the ring, is developed to describe the strain an _ —
stress distributions in the torus. The corresponding displacéj:hereforg’ the_ stre;m enc_et:gytgnd the kinetic energy of the
ment components are taken tolyg v,, andw,, in ther, 6, Orus undergoing free vibration are

and ¢ directions, respectively. Each displacement component b

. H m m a

is expresse_d as a product of three separable coordl_nate func- V=(1/2)f f f [(A+2G) e+ 2\ e €5+ 2N €€,
tions: a series of Chebyshev polynomials in theoordinate o Jo Jo

and a series of trigonometric functions in thend ¢ coor-

dinates. It is obvious that each displacement function is com- +(N+2G) e+ 2N ege,+ (N +2G) €l

posed of orthogonal and complete series in the region be- ) ) ’ _

cause each component function is orthogonal and complete. +G(¥ipt Vot Vo) 13ldr dode;

Therefore, the eigenfrequencies presented in this work are (4)

very accurate and often accurate to at least six significant 27 (27 (fa
figures. They can therefore serve as a benchmark solution for T=(p/2) o Jo Jo (U+v+w)[J[drdode,
the one-dimensional ring theory and future computational

techniques for the problem. wherep is the constant mass per unit volume; v, andw
are the velocity components. The parameteendG are the
Il. THEORETICAL FORMULATION Lame constants for a homogeneous and isotropic material,

which are expressed in terms of Young’s modutuand the

Consider a torus with a circular cross section, as Show'll’oisson’s ratiov by

in Fig. 1. The cross-sectional radius of the ringaiand the
centroidal-axis radius of the ring B(R>a). A combination N=vE/[(1+v)(1-2v)]; G=E/[2(1+v)]. 5)

of the polar coordinater(#) at each cross section and the

circumferential coordinater around the ring is chosen to In free vibrations, the displacement components may be ex-
describe the strain and stress in the torus. The polar coordpressed as

nate with an origin at the centroidal axis of the ring is used to (ot {ot.

describe the st?ess and strain at the cross sect?on. The cir- u=u(r.0.)e*  v=V(r.0,9)e""
cumferential coordinate with an origin at the center of the w=W(r,0,0)e", ©®)
torus is used to describe those quantities along the direction

normal to the cross section. It is obvious that the three coowhere w is the circular eigenfrequency of the torus and
dinates ¢, 6,¢) in this set of curved coordinate system are=+/—1.

orthogonal to each other. The transformation relations be- Considering the circumferential symmetry of the torus
tween the Cartesian coordinates and the present curved cabout the coordinate, the displacement functions can be
ordinates are given as follows: expressed as
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U(r,@,go)=U(r,0)cos{ngo);

, V% 29V 24U oV RS
_ i _+ jp— —
_ Yoo~ b\ Gy Vo t T ar T T2
V(r.,0,9)=V(r,0)cogne); () _ 5
B 2 U_ 1(aU|*]
W(r,8,0)=W(r,0)sin(ng), T a;) !

wheren is the circumferential wave number that should be

an integer, i.e.n=0,1,2,3,..¢ to ensure periodicity. It is 2 =T,
obvious than=0 denotes the axisymmetric modes. Rotating
the axes of symmetry, another set of free vibration modes

0
—\ 2
1 (aw) 2
—| +

T(R+T cosé)

can be obtained, which corresponds to an interchange of ) W _I&V_\/ 1
cosfip) and sinfip) in Eq. (7). However, in such a case, x| sin HWM —nv 20 A—— 5
=0 means U(r,0,0)=0, V(r,0,¢)=0 and W(r,6,¢) (R+1 coso)
=W(r, 6), which corresponds to the torsional modes.
Defining the following dimensionless coordinates: X (Sin? OW2—2n sin OVW+n2V?) |;
R=R/a; T=t/a, (8
W\ 2
and then substituting Eq$) and (7) into Eq. (4), gives yir:FZ (ﬁ__> S
S or (R+T cosh)
Vina= (Gal2) fo fo[(x+2)?r+2>\?%+2>\m W oW .
B B B x| cosoW— +nU— |+ ————
+(N+2)Ea+ 2Nege, + (N2 €0+ Voyt Vo, o I/ (R+Tcoso)
+72 Tr(R+Tcos@)drde; — — —
Vel ) © X (n2U?+2n cosdUW+ cos 0W2)] ,
27 (1 _ _ —
_ 3 2 2 2 2
oL 2 2w, if n=0,
XT(R+T1 cos#)drde, F1=f co§n<pd<p=[ _
. hich 0 o, if n=1,
in whic . (11)
., F_J'zw 2 |0 if n=0,
= _2v 2 ﬂ : 27 |, STNeCe=1 it n=1.
1-2v’ r or ]’
, - The Lagrangian energy functionHl is given as
ry|(ov
—_-1 2
==||—] +2U—+
i T {( 5;) 2U v H = Trmax™ Vimax- (12
r — — — The displacement function§I(T,6), V(T,6), and W(T,6)
—2_ 1 2\7 12 ;
o= — > [N"W7+2n cosgUW—2nsin VW are approximately expressed in terms of a finite series as
(R+r cosé)
|
+cog gU2—sin(26)UV +sir? 6V2]; U 6)=2 2, AjFi(TG(0);
i=1j=
__ I, U vV _aU B M B
“Co=F\Trae V) VF0)=2, 2 BinFi(1)Gn(6); (13)
o r N_—
€peg=———|n —W+UW) W(‘@)-E E CpaFp(MGqg(6),
T(R+T cosh) a0 =19=1
— — whereA;;, B, andC,, are undetermined coefficients and
+cosé Ua—V+U2) —sing Va_VJFW I, J, L, M, P, andQ are the truncated orders of their corre-
a0 a0 sponding series. It is obvious thatfi(r) (i=1,2,3,..%),
(10) Gi(0) (1=1,2,3,..%) and G(0) (m=1,2,3,..) are all
sets of mathematically complete series, then these three sets
0 are capable of describing any three-dimensional motion of
o r, U — v aU— o
€,6,=————| n—W+cosgU——singd—V|; the torus. Therefore, as sufficient terms are taken, the results
R+Tcosgl dr ar ar will approach the exact solutions as closely as desired.
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TABLE I. Convergence of eigenfrequencies of a torus with a circular cross section Rvhérb andn=1.

Terms 04 Q, Q3 Oy Qg Qg Q5
Symmetric modes about the centroidal-axis plane
4x4 1.18576 2.33475 2.753 63 3.049 33 3.508 54 3.73238 3.83733
5x5 1.18574 2.33406 2.753 26 3.048 28 3.50398 3.729 11 3.83164
6X6 1.18574 2.33404 2.72321 3.048 15 3.503 39 3.728 47 3.83107
X7 1.18574 2.33404 2.75321 3.048 14 3.503 38 3.728 44 3.831 05
8x8 1.18574 2.33404 2.75321 3.048 14 3.503 37 3.728 44 3.83105
9x9 1.18574 2.33404 2.75321 3.048 14 3.503 37 3.728 44 3.83105
Antisymmetric modes about the centroidal-axis plane

4x4 1.155 46 2.14368 2.492 66 3.108 78 3.47395 3.778 32 4.629 33
5x5 1.15507 2.143 37 2.492 04 3.108 55 3.47028 3.77259 4.549 37
6X6 1.15504 2.14337 2.49203 3.108 41 3.469 83 3.77167 4.54557
X7 1.15503 2.14337 2.49203 3.108 41 3.469 83 3.77165 4.545 42
8x8 1.15503 2.143 37 2.49203 3.108 41 3.469 83 3.771 64 4.545 42
9x9 1.15503 2.14337 2.492 03 3.108 41 3.469 83 3.771 64 4.545 42

Substituting Eqs(10) and (13) into Eq. (9) and mini-
mizing the Lagrangian functiondl with respect to the un-

determined coefficientd;; , B;,, andCq, i.e.,

d
7 (Vmax Tmad =0 (i=1,2,3,..1;j=1,2,3,..9);

(1=1,2,3,..1.;m=1,2,3,..M);
(14

E (Vimax— Tma =0

o (Vi Tngd =0 (p=1,23,.Piq=123,..Q),
Pa

a set of eigenvalue equations is derived, which can be written

in matrix form as

[Kul  [Kul  [Kywl
(K] [Kowl
symmetric [Kwwl
[Mud] {A}] [{0}
—Qz [Mvv] {B} = {O} ,

[Myoll ) L{CH] L{O}
(15

in which Q=wa\/p/G, [K;;] and[M;] (i,j=u,v,w) are,
respectively, the stiffness submatrices and the diagonal mass
submatrices{A}, {B}, and{C} are the column vectors of the
unknown coefficients, respectively, correspondingAip (i
=1.23,.1; j=123,.J9), B, ((=12.L; m
=1,2,3,.M) and C,q (p=1.2,3,..P; 0=1,23,.Q). A
nontrivial solution is obtained by setting the determinant of
the coefficient matrix of Eq(15) to zero. The roots of the
determinant are the square of the dimensionless eigenfre-
guencies(eigenvalues The mode shapegigenfunctions

are determined by backsubstitution of the eigenvalues, one
by one, in the usual manner.

It is noted that in using the Ritz method, the stress
boundary conditions of the structure need not be satisfied in
advance, but the geometric boundary conditions should be
satisfied exactly. For a torus, there is actually no restraint on
the surface displacements. In the present work, the Cheby-
shev polynomial series defined in the inter{@) 1] and the
trigonometric series defined in the interJ&l, 2] are used

as the admissible functions of displacements inrttand 6
directions, respectively. It is obvious that a torus with a cir-
cular cross section is symmetric about the centroidal-axis
plane (i.e., the plane containing the centroidal axis of the
ring). Therefore, the vibration modes of the torus can be

TABLE II. The convergence of eigenfrequencies of a torus with a circular cross sectionRvh@rb andn=5.

Terms Q4 Q5 QO3 Oy Qg Qg Q4
Symmetric modes about the centroidal-axis plane

5X5 2.461 38 3.18981 3.709 52 4,298 67 4.409 67 4.871 47 5.24281

6X6 2.461 26 3.18971 3.708 74 4.298 22 4.407 66 4.865 66 5.236 25

X7 2.461 24 3.18971 3.709 63 4,298 19 4.407 47 4.864 89 5.235 40

8% 8 2.461 24 3.18970 3.709 61 4.298 18 4.407 44 4.864 76 5.23524

9Xx9 2.461 24 3.18970 3.70961 4.298 18 4.407 44 4.864 74 5.23521

10%x 10 2.46124 3.18970 3.709 61 4.298 18 4.407 44 4.864 74 5.23521
Antisymmetric modes about the centroidal-axis plane

5%x5 2.16312 3.156 36 3.77263 4.307 75 4.688 60 5.106 18 5.472 98

6X6 2.163 08 3.156 21 3.77199 4.306 44 4.685 39 5.103 40 5.436 34

X7 2.16307 3.156 19 3.77191 4.306 38 4.684 98 5.10310 5.435 22

8x8 2.163 07 3.156 19 3.77190 4.306 37 4.684 92 5.103 07 5.43514

9x9 2.16307 3.156 19 3.77190 " 4.30637 4.684 91 5.103 07 5.43513

10x 10 2.163 07 3.156 19 3.77190 4.306 37 4.684 91 5.103 07 5.43513
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TABLE IIl. The convergence of eigenfrequencies of axisymmetric vibration for a torus with circular cross sectiofRwHes.

Terms Q4 Q, Q3 Oy Qg Qg Q,
Symmetric modes about the centroidal-axis plane

5X5 1.176 85 2.614 42 2.87930 3.799 87 4.116 45 4.504 47 4.898 72

6X6 1.176 82 2.614 28 2.87906 3.797 26 411571 4.502 95 4.884 95

X7 1.176 82 2.614 26 2.879 04 3.797 06 4.11565 4.502 83 4.88342

8x8 1.176 82 2.614 26 2.87904 3.797 03 4,115 64 4.502 82 4.88318

9x9 1.176 82 2.614 26 2.87904 3.797 03 4.115 64 4.502 82 4.883 15

10x10 1.176 82 2.614 26 2.87904 3.797 03 4.115 64 4.502 82 4.88315
Antisymmetric modes about the centroidal-axis plane

5x5 0.802 725 252071 2.988 77 3.807 28 447776 4.906 16 5.181 13

6X6 0.802 670 2.52058 2.988 49 3.803 39 4.475 62 4.88392 5.17183

X7 0.802 665 2.52056 2.988 47 3.80307 4.475 45 4.88104 5.17153

8x8 0.802 664 2.52056 2.988 47 3.80303 4,475 44 4.880 65 5.17151

9% 9 0.802 664 2.52056 2.988 47 3.80303 4.475 44 4.880 60 5.17151

10X 10 0.802 664 2.52056 2.988 47 3.80303 4.475 44 4.880 60 5.17151

classified into two distinct categories: symmetric modes andolution of any accuracy can be obtained theoretically by
antisymmetric modes about the centroidal-axis plane. If theising sufficient terms of admissible functions. However,
angle 0 is measured with respect to an axis within thethere is a limit to the number of terms actually used in com-
centroidal-axis plane, then for the symmetric modes one hasutation. Therefore, it is important to understand the conver-

Fs(r)=cog(s—1)arcco$2r—1)];
Gy(#)=cod(s—1)6]; (16)
G«(0)=sin(sf), s=1,2,3,...,

and for the antisymmetric modes, one has
Fir)=cog(s—1)arcco$2r—1)]; Gg(0)=sin(sh);

17

Gy(0)=cod(s—1)6], s=1,2,3,...

It can be seen thaE(r), G¢(6), and 55(0) in both Egs.

(16) and (17) are all orthogonal and complete series in the

defined intervals.

Each of these two categories can be separately dete
mined and thus it results in a smaller set of eigenvalue equa;

tions while maintaining the same level of accuracy.

IIl. CONVERGENCE STUDY

gence rate and the accuracy of the method. In the following

convergence study, a thick torus with radius rafe R/a
=1.5 was used and in all the calculations, the Poisson’s ratio
r=0.3 was fixed. In most cases, optimal convergence could
be obtained by using different number of terms in the com-
ponent series of displacement functions. However, for sim-
plicity, an equal number of terms in the Chebyshev polyno-
mial series and the trigonometric series were used for every
displacement function, i.el=J=L=M=P=Q, in the
present analysis. Tables | and Il show the convergence of the
first seven eigenfrequency parametérs- wa\p/G for the
circumferential wave numben=1 andn=5, respectively.
Both the symmetric and antisymmetric modes were studied.
Extensive convergence studies were also carried out for the
ixisymmetric vibration and the torsional vibration of the ring

with the results shown in Table Ill and Table IV, respec-

tively.
All the above computations were performed in double

It is well known that eigenvalues provided by the Ritz precision (16 significant figurels and piecewise Gaussian
method converge as upper bounds to the exact values. Thygiadrature was used numerically to obtain the matrices in

TABLE IV. The convergence of eigenfrequencies of torsional vibration for a torus with circular cross sectioRwHes.

Terms O, Q, Q4 O, Qg Qg Q4
Symmetric modes about the centroidal-axis plane

5x5 2.260 99 3.29290 4.014 80 4.42315 5.498 76 5.586 19 6.83390

6X6 2.26099 3.292 68 4.01394 4.421 59 5.481 19 5.564 43 6.614 10

X7 2.26099 3.292 68 4.013 94 4.421 50 5.480 36 5.563 71 6.596 69

8x8 2.26099 3.292 68 4.01393 4.421 49 5.480 32 5.563 66 6.595 97

9x9 2.26099 3.292 68 4.01393 4.421 49 5.480 32 5.563 65 6.595 92

10x 10 2.260 99 3.292 68 4.01393 4.421 49 5.480 32 5.563 65 6.595 92
Antisymmetric modes about the centroidal-axis plane

5x5 1.91373 3.266 34 4.41064 5.41169 5.525 28 6.617 86 6.837 02

6X6 1.91373 3.266 16 4.409 75 5.397 88 5.523 02 6.597 85 6.829 73

X7 1.91373 3.266 16 4.409 69 5.397 56 5.522 41 6.596 06 6.818 01

8x8 1.91373 3.266 16 4.409 69 5.397 52 5.522 40 6.595 91 6.817 95

9x9 1.91373 3.266 16 4.409 69 5.397 52 5.522 39 6.595 90 6.817 89

10x 10 1.91373 3.266 16 4.409 69 5.397 52 5.522 39 6.595 90 6.817 89
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100 1 10 100
R/a

FIG. 2. The first six eigenfrequency paramet@rsf torsional vibration of ~ FIG. 4. The third to eighth eigenfrequency paramet@rsf a torus for
a torus: ¢, first symmetric mode[J, second symmetric mode), third circumferential wave number=1: ¢, second symmetric modé&j, third
symmetric mode;X, first antisymmetric mode:, second antisymmetric symmetric mode;A, fourth symmetric mode;X, second antisymmetric
mode;O, third antisymmetric mode. mode;+, third antisymmetric mode), fourth antisymmetric mode.

Eq. (15). It is seen that the first seven eigenfrequencies havparameters) for the circumferential wave numbar=1 that
converged monotonically to six significant figures by usingconsist of the second to fourth symmetric modes and the
only a few terms. As both the Chebyshev polynomial seriesecond to fourth antisymmetric modes. From Figs. 2—4, it is
and the trigonometric series are complete, one can concludeen that with the increase of the radius r&ia, the eigen-
that these eigenfrequencies are “exact values” to six digitsfrequency parametef@ of symmetric modes eventually co-
Values given in boldface type and underlined are the conincide with those of antisymmetric modes. For a given cross-
verged values for the smallest number of terms used. Consectional radiusa, the eigenfrequencies monotonically
paring Tables | and I, one can find that the convergence ratdecrease with the increase of centroidal-axis raéiug the

is almost the same for=1 andn=5. The first seven eigen- torus and approach certain constant values. In general, for
frequencies accurate to six significant figures have been oliR/a>10, we may consider the eigenfrequency paramelers
tained by using only nine terms of the admissible functionsto be constant.

in each coordinate. The first and second eigenfrequencies of axisymmetric
vibration, which correspond to the fundamental antisymmet-
IV. EIGENFREQUENCIES AND MODE SHAPES ric mode and symmetric mode, respectively, are described by

o _ a new eigenfrequency paramefer (R/a)Q)=wR\/p/G. It

The results for a torus with circular cross section ar€g cjear that both the torsional vibration and the axisymmetric
presented in Figs. 2—6, where the paramé&a is plotted  \jipration are independent of the coordinateTorsional vi-
along a logarithmic axis. The ratio of the centroidal-axis ra-p ation is related to the coordinatesand r while axisym-
dius to the cross-sectional radius varies from 1.1 t0 100metric vibration is only related to the coordinageln Fig. 5,
Figure 2 shows the first six eigenfrequency paramesers iy gigenfrequency parameters are shown for the fundamen-
=wa\p/G for torsional vibration, comprising three sym- ta symmetric and antisymmetric modes for circumferential
metric modes and three antisymmetric modes. The third tq e numben= 1, the second symmetric and antisymmetric
eighth eigenfrequency parametdisof axisymmetric vibra-  modes for circumferential wave numbes 2, as well as the

tion are given in Fig. 3, and they include the second to fourthyndamental symmetric and antisymmetric modes of axisym-
symmetric modes and the second to fourth antisymmetric

modes. Figure 4 gives the third to eighth eigenfrequency

H 5 i i & G g
nYt
100
-t ! R/a
1 10 100
R/a FIG. 5. Eigenfrequency parametdrsof a torus for circumferential wave

numbern<2 and for the axisymmetric vibratior®, first symmetric mode
FIG. 3. The third to eighth eigenfrequency paramef@rsf axisymmetric ~ for n=1; [, first antisymmetric mode fon=1; A, second symmetric
vibration of a torus:¢, second symmetric modg&j, third symmetric mode;  mode forn=2; X, second antisymmetric mode for=2; +, first symmet-
A, fourth symmetric modex, second antisymmetric mode;, third anti- ric mode for axisymmetric vibration), first antisymmetric mode for axi-
symmetric mode), fourth antisymmetric mode. symmetric vibration.
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ety sical one-dimensional ring theoty,the eigenfrequencies for
in-plane vibration of a circular ring are given by

A2 =065%%(s>—1)%(s?+1), s=2,34,., (18

and the eigenfrequencies for out-of-plane vibration are given
by

A2 =0.6%%(s>—1)%(®+1+v), $=2,34,..
100 (19

FIG. 6. Th . . A comparison of the present results with those obtained from
. 6. The fundamental eigenfrequency parametersf a torus for cir- . T . L. .
cumferential wave numbar=2: ¢, first symmetric mode fon=2; 0,  the classical theory is given in Table V for a thin circular ring
first antisymmetric mode fon=2; A, first symmetric mode fon=3; x,  Wwith the radius ratidR/a=50. It is shown that for thin cir-
first antisymmetric mode fon=3; +, first symmetric mode fon=4; O,  cular rings, the classical theory can predict the lower-order
first antisymmetric mode fon=4. eigenfrequencies with good accuracy. However, like all kinds
of approximate theories, it cannot provide a full vibration
metric vibration. From the figure, one can find that the fun-spectrum of the circular ring and the error increases with the
damental eigenfrequency parameter of symmetric modes fatecrease of the radius ratie/a. Moreover, the classical
circumferential wave number=1 and the second eigenfre- theory does not include shear deformation or rotary inertia
guency parameter of symmetric modes for circumferentiakffects. Taking a torus with the radius rafa=1.5 as an
wave numben=2 monotonically increase with the increase example, the fundamental eigenfrequency parameter of in-
of the radius ratidR/a. Among the rest, the eigenfrequency plane vibration obtained by using the classical one-
parameter of the first antisymmetric modes for axisymmetriadimensional ring theory & ;=2.163 33. However, the cor-
vibration monotonically decreases with the increase of the@esponding eigenfrequency parameter obtained by using the
radius ratioR/a. However, the others are not monotonic. In present three-dimensional elasticity theoryAig=1.59117.
general, forR/a>10, we may also consider the eigenfre- The error of the classical one-dimensional ring theory is up
quency parametelsto be constant. In Fig. 6, the dimension- to about 36%! Considering the relatiors= (R/a)2Q) and
less parameteA =(R/a)?(Q) is used to describe the funda- I'=(R/a)(}, and noting thaR/a>1, one can find out from
mental eigenfrequencies of a torus for circumferential wave-igs. 2—6 by comparind) that for a torus, whether thin or
numbern=2. In the figure, the fundamental eigenfrequencythick, the lowest eigenfrequencies of both symmetric modes
parameters of symmetric and antisymmetric modesrfor and antisymmetric modes are always those rfer2. Al-
=2, 3, 4 are plotted against the radius rafifa. It is seen though the lower eigenfrequencies of a torus with large ra-
that all the eigenfrequency parameters monotonically indius ratioR/a are confined to some particular modes, as seen
crease, and approach certain constant values with the ifirom Fig. 6, for a torus with small radius ratiYa, the lower
crease of the radius rati¥a. Moreover, with the increase of eigenfrequencies for a larger variety of modes tend to cluster
the radius ratioR/a, the eigenfrequencies of symmetric together, as is evident from Figs. 2—6.
modes become close to those of antisymmetric modes. Corresponding to each eigenfrequency, the three-
In the above analysis, three different dimensionlesslimensional deformed mode shapes of the torus can be easily
eigenfrequency parametef®, I', and A are introduced, obtained from Eqgs(13) and (15). As an example, the first
which facilitate not only the trends of the variation of eigen-three antisymmetric mode shapes and symmetric mode
frequencies but also a comparison with other solutions. Irshapes of torsional vibration for a torus with radius ratio
the approximate one-dimensional theory, the in-plane vibraR/a=1.5 are given in Figs. 7 and 8 in contour form, respec-
tion and out-of-plane vibration of a ring are separately invesdively. It is known that for torsional vibration, the modes of
tigated. In Fig. 6, the symmetric modes correspond to thehe torus are the same at each cross section and only the
in-plane vibration solutions of the one-dimensional theorydeflectionW(r,#) in the circumferential directiorp exists.
while the antisymmetric modes correspond to the out-of-Therefore, only the mode shapes in a cross section need to be
plane vibration solutions. For example, according to the clasgiven.

TABLE V. A comparison of the eigenfrequency parametéror a thin circular ring,R/a=50.

Methods Ay A, Aj Ay As Ag
In-plane vibration
Present 2.162 23 6.110 11 11.7002 18.8898 27.6539 37.9700
Classical 2.16333 6.118 82 11.7323 18.7938 27.8340 38.3099
Out-of-plane vibration
Present 2.099 17 6.016 84 11.5907 18.7688 27.5231 37.8296
Classical 210121 6.029 06 11.6301 18.8651 27.7218 38.1955
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torsional vibration, and vibration related to the circumferen-
tial wave numben. By using the symmetry of the structure,
the vibration modes of every category are divided into sym-
metric and antisymmetric ones. This greatly reduces the
computational cost while maintaining the same level of ac-
curacy.

The convergence of eigenfrequencies has been exam-
ined. It is shown that the first seven eigenfrequencies accu-
rate to at least six significant figures for each vibration type
can be obtained by using only nine terms of the admissible
functions. Through the parametric studies, the variation of
eigenfrequencies versus the radius ratio of the torus is found.
Important lower eigenfrequencies corresponding to general
cross-sectional motions, which can only be determined by
the three-dimensional elasticity theory, have been obtained.
The present method is capable of determining eigenfrequen-
cies and mode shapes very accurately. The results may serve
as valuable benchmark solutions for validating the one-
dimensional ring theories and new computational techniques
for the problem.

FIG. 7. The first three antisymmetric modes of torsional vibration when
R/a=1.5: (a) the first modejb) the second mod€r) the third modejd)
coordinate system for the cross section.
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