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In this article we consider a compound Poisson insurance risk model with arandom
discount factarThis model is also known as the compound filtered Poisson model
By using some stochastic analysis techniquesonvergence result for the dis-
counted surplus process expression for the ruin probabilignd the upper bounds

for the ruin probability are obtained

1. INTRODUCTION

Recently the interplay between actuarial science and finance has attracted much
attention One important question,iSWhat happens if we consider the investment
risk in the insurance risk model?” There are many recent articles in actuarial science
literature which tackle this problerBundt and Teuge[4.3] considered a compound
Poisson model with a constant interest ré&tenewal-type equations satisfied by the
ruin probability asymptotic expressigand the upper bounds for the ruin probabil-

ity were obtainedYang and Zhangl5] extended the work in Sundt and Teudédi8]

and considered the joint distribution of the surplus immediately before and after
ruin. Yang[14] considered a discrete model with a constant interest Bat&ising
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martingale inequalitiesboth exponential and nonexponential bounds were ob-
tained Paulseri10] and Norberd9] used diffusion models with stochastic interest
incomesPaulsen and Gjessifg1] provided some results for a model with stochas-
tic investment income#é&smussel2] summarized some recent works on ruin prob-
ability with investment income

Delbaen and Haezendonfk| considered the risk theory problems in an eco-
nomic environment by discounting the value of the surplus from the cufoent
future) time to the initial time The present article is in the spirit of Delbaen and
Haezendoncks], but whereas they used a deterministic discount faatemwill use
a random discount factorhis is somewhat the same as when we consider the com-
pound Poisson model with a stochastic interest. fate call the model a filtered
compound Poisson model

This article is organized as followSection 2 provides the model and assump-
tions Section 3 obtains a convergence result for the discounted surplus process
Section 4 gives an expression for the ruin probahigction 5 discusses the con-
stantinterest force and exponential claim ¢&stion 6 obtains some upper bounds
for the ruin probabilityand the last section deals with the case of negative security
loading

2. THE MODEL

The classical risk model can be described as foltows

N(t)

U(t)y=u+ct— > X, (2.1)

i=1

whereU (t) denotes the surplus at timieu denotes the initial surplys denotes the
premium rate in a unit timeX; denotes the amount of thth claim andN(t) denotes

the number of claims occurring in the time interv@]t]. It is assumed th&iN(t);

t > 0} is a homogeneous Poisson process with an intensity lbfis also assumed

that the claim amounts are independent of the claim number process and are positive
and mutually independent and identically distribugeidd.) with common distribu-

tion functionF, whereF satisfied=(0) = 0. Moreover we assume thd& has a mean

p;, and

+oo
P2 =f x2 dF(x) < +oo.
0

We assume that
N(t)
ct=(1+ 0)/\p1t=(l+6)E(2Xi>, (2.2)
i=1

whered is called security loadingVe assume thad > 0 in the first part(up to
Section § of this article and we discuss the case whére 0 in Section 7
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In the literaturethere are many articles dealing with the ruin problems for the
classical risk modelHowever in the real world investment income plays a very
important role In this article we consider the insurance risk model where the in-
terest rate is randorhet T, denote theth claim time and leW, denote the discount
factor The discounted value of total claim amounts occurring in the time interval
(0,t] can then be described as

N(t)

S(t) = ;Xiwﬁ‘

S={S} is called a filtered Poisson procedssing the properties of the filtered
Poisson processee Deng and Lian@] or Snydef{12]), we have

N(t) t
E(E XiWri|0'(WS:Oss<t)>=/\plf W.ds (2.3)
0

i=1
N(t) t

Var< S X Wi |o(W,:0=s< t)) - AE(xiZ)f W2ds (2.4)
i=1 0]

whereo (W;: 0 = s < t) denotes ther-field generated byW;: 0 = s < t}.

Assuming that the interest rate is rand@uquivalentlythe discount factow; is
random), similar to(2.1), the surplus process of an insurance company can then be
described by the following model

N(t)

t
U™ =u+@+ G)Aplf Wods— > X W, (2.5)
0] i=1

whereU,"" denotes the discounted value of the surdldiscounted from timet
to time 0 and all the other notations remain the same as eafliecall model2.5)
the compound filtered Poisson model

In this article we make the following assumptians

1. {W}, {Xi}, and{N(t)} are mutually independent
2. Wp=1,andW, >0 forallt > 0, ae.

The first assumption is a common one in actuarial sciefltbough recently
there have been some works on the dependent risk in the actuarial litevadde
not consider this issue herehe second assumption states that the interest rate can-
not be positive infinity Our model here is very generah practice we usually
assume that the interest rate is nonnegative at any Tilie corresponds té; > 0
andW, is nonincreasing for all > 0.

3. CONVERGENCE OF U™

In this sectionpwe will prove a convergence resufihis convergence result will then
be used in later sections to prove some useful results in the insurance risk theory
this sectionwe assume that the discount factdrsatisfies the following assumption
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+oo l
E(f Wsds> == < +oo. (3.1)
0 Y1

Under the above assumptiome have the following result

TueoreM 1: Under assumption (3.1), there exists an integrable random variable
U™ such that

lim y My (3.2)
and
oA
EUW) = 2Py, (3.3)
Y1

where a.e. means almost everywhere with respect to probability measure P. More-
over, the characteristic function of Jis given by

| ) oo 1 “+ oo
E(e*V) = E[exp{ix (u + /\plﬁf Wsds> - EXZ)\pzf W2ds
o 0

+oo  XW
+ /\f f (XW — s)E[X2(1 — e %)]ds dtH

Proor: Let

N(t)

M, = Ap;t — E X. (3.4)
i=1

Then M, is a martingale with a mean of zer@ndM, is independent of the discount
factorW,. Using this notationthe discounted surplus can be rewritten as

t
U™ =u+ Hx\plf W.ds+ H,, (3.5)
[0]

whereH; = fé W, dM; is also a martingale with a mean of zero
First, we will prove the convergence ¢f W, ds SinceW,is nonnegative for all
s = 0, the monotone convergence theorem implies

t +o0
J W,ds T f W, ds
o] 0

+oo 1
E f W.ds| = —.
0 Y1

because
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The random variabld,” W,dsis P — as. finite, which proves the convergence
of [, W.ds Next, we will prove the convergence df;. Note that{H,} is an
L,-bounded martingajehe result follows from a standard resulherefore there
exists a finite random variabld,, such that

lim H, = H,, and EH, = EH,=0.

t—o0

From the above results/e see that there exists a finite random variath/&”
such that

oA
lim U™ 2 U™ and EUYY) = 2 4y
t—+oo Y1

The characteristic function &Y is obtained by straightforward calculation
[ |

Remark 1:Itis well known that for the classical compound Poisson mgéiel> 0,
the surplus process will move towarebo with a probability 1 as the time— oo.
This means that in the classical compound Poisson mdfdeke let the surplus
process continue even when the ruin occting surplus process will eventually
become very largéend to infinity with probability 1 as time tends to infinitySee
Dassios and EmbrecH#], for further detailed discussions on this isstieeorem 1
tells us that if we include the interest effect in the modeis is not the case

4. AN EXPRESSION OF RUIN PROBABILITY

Ruin probability has been one of the most important research topics for almost a
century ever since the pioneering work of Lundb¢ig8]. Elegant mathematics has
been developed on this topic

In this sectionwe will use the result of Theorem 1 to give an expression for the
ruin probability Let T = inf{t; U™ < 0} andy (u) denote the ruin probability
of model(2.5). Then

Y(u) = P{TY < co|UW)(0) = u}. (4.1)

LetU, = (1+ 0)Apst — SNV X;: then
t
U™ =u+ f W, dUL.
0
Let

“+ o0
VW = wt f W, dUs;
t
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then
U™ = u™ +wv™W. (4.2)

Notice thatU, has stationary and independent increments and that it is independent
of W,. If we assume

—In(W,) has stationary and independent incremgnts (%)

then we can obtain that
“+oo _ -~ d
v = f Ld0, < U —u, (4.3)
0

where

W \A4_+Sgws’ ljs:UHs_Utg

W
Remark 2: Because we do not require that be nonincreasing in this artiglany
Levy processes will satisfy assumptior.

LemMa 1: The proces$u,*"’}, condition ono (Ws: 0 = s < t), has an independent
increment, and under assumptios),(

[(UYY — U)o (W,: 0= v < 5)] 2 (UM — u)W, (4.4)

where < means that both the left-hand side and the right-hand side of (4.4) have
the same distribution.

Proor: Fort>s> 0,

N(t)

t
Ut<W>_US<W>=(1+0))\p1fWudU_ > W

i=N(s)+1
t W N(t) \NI'
=(1+6)A fWS—Udv— Xi W, —*
( ) pl s Ws i= l\%)+1 W
tW N(v)
=WSJ—"d (1+6)Apyv — )
[ s Ws ( pl i= N(s)+1
Notice that{W} is independent of N(t):t = 0} and {X;:i = 1,2,...}, so

1+ 6)Apv — DI N(S)+1 X; has independent increments and is independent
of W;. Therefore this lemma holds u
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From the above resultsie have the following theorem

THEOREM 2: Under assumption=), let F.(x) be the distribution function of
U™ — u. Then,

Foo(—U)
E(F,(—Wya UMW TV < o0))”

p(u) = (4.5)

Proor:
Fo(-u) = PULY <0 =PUL" <0, T" < o)
= P{Us) + Wrw V3 < 0; TW < oo}
= P{Wra UL + v <0, TV < oo}

= P{V,\ < Wy UL, TW < oo}

= f PV < —WeS U T = 1P dit
0

= f P{UO(OW) —u< _Vvtflut(W)}PT(U) dt
0

= f Foo (W UMY PTY dt = E[Foo (—Wr @ UT ) L7 w0y ]
0

= E[Fo,(-Wy o U | TW < 0] P(T™ < o0)

= E[F., (=W UL T < ooy (u).

Here we have used the notatiof™ £ UM — u. From this the result is proved

We say that a distribution functioR(x) is a new worse than usgdNWU)
distribution if F(x) is a distribution functiorid.f.) of a nonnegative random variable
andF (x) =1 — F(x) satisfies thaF (x)F(y) = F(x +y) for x= 0 andy = 0. We say
that a distribution functiof (x) is a new better than us¢NBU ) distribution if F (x)
is a df. of a nonnegative random variable and satisfies@{ab F (y) = F(x + y) for
x=0andy=0.

ProrosiTiON 1: Under assumptions (3.1) and)( we have the following:
1. If X;'s distribution function is NWU, then, in this case, we have that

Foo(—u)

E(F(%)" (4.6)

y(u) =
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2. If X;'s distribution function is NBU, then, in this case, we have

_ _Fw
VW= B )

3. If X;’s distribution function is exponential, then, in this case, we have

4.7)

Fo.(—U)

E(F(%)" (4-8)

P(u) =

Proor: We only give the proof for part 1 because part 2 can be proved by the same
method and part 3 can be obtained from parts 1 and 2 because the exponential
distribution is both NWU and NBU

PUM —u< Wy UMW T < oo}

= P{ULY —u < —Wed Ur + XX > Wea- Ugt) }
= P{X > UM —u+Wra- U [ X > Wra- U g,
whereT W~ means the time just before ruin
WhenU™ — u > 0, we can get from the distribution of, is NBU, that the
above probability is less thaR{X; > UY — u}—that is the valueE(F..(X;)).
WhenU_ " — u < 0, the above probability is 1 and the valB¢X; > U™ — u} also
equals one
After all, when the distribution oX; is NBU, we have

PIUM —u< —Wra UMW TW < oo} < E(FL(X))),
so we can get part.1 u
Remark 3:

1. WhenF_(0) > 0, we have

Foo(—U)

m. (4.9)

Fo(—u) =¢(u) =

2. From the expression
F.(-w =P{U” —u=—u =P{U" =0},

we can say thaF_(—u) is just the probability of ruin for goodi.e., the
probability of the surplus tends to negative infinity

3. Itis interesting that the ruin probability can be determined by the limit dis-
tribution of the discounted surplus proce$eorem 2 indicates the rela-
tionship between the ruin probability and the limit distribution of the
discounted surplus process
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5. CONSTANT DISCOUNT RATE AND EXPONENTIAL CLAIM SIZE

We consider a special case in which the discount rate is a coréstantt the claim
size is an exponentially distributed random varialbleis case was treated in Sundt
and Teugel$13]. We will obtain this result as a special case of our results in the
previous sectionsn this sectionwe will assume tha®y; = e ' andX; is exponen-
tially distributed with a mean gb,. We will first give Lemma 2

LeEmMA 2: The discounted value of all of the claim amounts occurring in the time
interval (0, t], S(t) = SN X; e?T, corverges to a randomariable S +o0). Fur-
thermore, $+c0) has a gamma distribution with parameters/s, p; ).

Proor: According to the properties of the filtered Poisson progcesscan derive
the characteristic function @&(t) by (see Snydef12])

_ t _ t iTe %S
E(e'"SV) = exp /\f E(e™\ % — 1) ds| = EXP(/\f R — ds).
o o P —ITe

Lett — +oo; then

/\fﬂo ire?s § )\JT i dy
_T* T s A
o pit—ire™® 8Jo pit—ly

A A -
5 n(pD) = In(p* —in)] = = '«%)-

The characteristic function &(+c0) is then

_ /8
E(eifs<°°>):< P~ )A.

prt—ir

This is the characteristic function of a gamma-distributed random variable with
parameter$A /S8, p;1). Thereforethe lemma holds u

As explained in Remark,$art 2 that followsthe following theorem gives the
same result as that in Sundt and Teug&s.

THeEoREM 3. Under the assumptions in this section, the ruin probabifiy) of
model (2.5) has the following expression:

(1+6)A
1-Frpsippn| Ut Topt

(1+0)A ’
1-E{Fros 1y oot Xi

where F.(,5-1p:1)(-) denotes the distribution function of tierandom variable
with the parameter§Aé~% p;1).

p(u) = (6.1
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Proor: Under the assumptions in this sectiomodel(2.5) becomes

N(t)

1+6
U™ =u+ 5 Ap1(1— exp(—ét)) — > X;e T,
i=1

From Lemma 2we know that

N(t)

_ ae
2[ Xie o ﬁ—)oo S(+OO),
i=

where S(+0) is gamma-distributed with the parametdrs/s, p;2), (i.e., u +
[(A+ 0)/5]p1A — Ut(W) converges to & random variable with the parameters
(A/8,p1Y)). Then using Theorem 2he result is proved u

Remark 4:

1. Notice that

[(A+0)/61ap; 1
= _f — e VP
0 P1

1 A/S
[(1+6)/81Apy—y ( p1>

X f e*(x/pl)x()l/tﬂfl dx dy
0 F(A

[ <E>

[@+o/op . ( A

e*(X/Dl)x(/l/ls)*l dx + e*[(1+0)/5]/\

1 \A/e

s(aompe o)
1) <)\>

1_‘ —

1)

A
Thereforethe result in Theorem 3 is the same as that in Sundt and Teldls

2. The result in Theorem 3 was obtained in Sundt and Teld&lsby solving
the associated renewal equatidve have obtained the result here by using
the limit distribution of the surplus procestherefore we have in fact,
provided more information than in Sundt and Teud&R]; that is we have
also proved that the limit distribution of the discounted surplus process is a
gamma distribution
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6. UPPER BOUNDS FOR RUIN PROBABILITY

In this sectionwe will derive the upper bounds for ruin probabilifihe main results
are givenin the following two theoremBhe techniques used in the proof are similar
to those in Yand14].

THEOREM 4: Suppose that G) is a nonnegative measurable function U is

the discounted surplus of the insurance company at time t, aif'®3) is a super-

martingale with respect to-field 7 D o (UM |0 = s <t). Then,
G(u)

E(GUI) TV < o)

p(u) = (6.1)

If lim_,., E(GUM)|T® >t) = 0and GU,"") is an % martingale, then
G(u)
E(GUM)|TW < o0)’

p(u) = (6.2)

where TV is the same as earlier.

Proor: TV isan stopping timeFor Ot > 0, T Ot is a bound, stopping time
Using Doob’s bounded stopping time theoreme have

G(u) = E(G(Us™)) = E(G(Urti4))
= E(GULW)|TW < t).P{T® <t} + E(GUL)|TW = t).P{T® =t}
Lett — +o0; by the positive ofG(-), we have
G(u) = E(G(Uf)|T™ < oo)y(u).

Thereforeg (6.1) holds
Moreover if lim ., E(G(UT(Y&))IT(“) >t)=0 andG(Ut(W)) is an martin-
gale then(6.2) also holds |

Tueorem 5: If, forallt = 0,0 < W, < 1 a.e, assume that there existsSR0 such
that

E(e®—1) =R(1+0)E(X)=R1+06)p,.
Then,

exp(—Ru)
E(exp(—RU) | TV < oo)
Proor: Forallx € (0,1],y > 0,

P(u) = <eRu (6.3)

i oy _ i x(y)"

n=1 n!
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holds that is
e —-1=x(e¥—-1).
Leth(r) = E(e™ —1). Because for alt > 0, 0 < W, < 1 ae, we then have
h(RW,) = W,h(R).

Let

N(t) t
N, = exp{R > X W — R(L+ a)pl/\f W, ds— Ru}
i=1 0

and
F =0c(Ng:s=t)Do(W.: 7> 0).

Using a similar argument as that in Deng and Lid6gpp. 329-333 (also se
Snyder{12]) and after some calculationse obtain

N(t) t
E{exp{R > XiV\A—iHU'(WT:T = 0)] = exp(Af h(RW)dT),

i=N(s)+1

)

SO

N(t) t
ENJF) = NSE{exp<R > XWr —R(1+ a)plAf vadr>

i=N(s)+1

= Nsexp</\J h(RW) dr — R(1+ G)plx\J W, dr)

t t
= Nsexp</\f W, h(R) dr — R(1 + H)pl)\f W, d7>
= N.. (6.4)
Therefore N, is an &’ supermartingale=rom Theorem dwe have

exp(—Ru)
E(exp(—RUW)| T < o0)’

y(u) =

whereR > 0 andU;¥) < 0. Note thatE [exp(—RU)|T® < oo] > 1. Therefore
the result of the theorem holds u

7. UPPER BOUNDS FOR RUIN PROBABILITY
IN THE CASE OF NEGATIVE LOADING

It is well known thaf in the classical modegif the loading is negativethe ruin
becomes certainVe will show below that this is not the case in the model with
stochastic interest rat@/e first introduce the following sets
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D = {r > 0: E[exp{rX,}] < +ool, (7.1)
t

D, = {r >0: f [E{exp(rW,X,)} —1]ds< +oo} for0<t=+4oc. (7.2)
0

From the definitiopwe can easily see thBtis an interval of the forng0, ) or (0, F].
It is not difficult to see that for 6< t < oo, we haveD,; = D if D = (0,r], and if
D = (0,F) with F < oo, thenD, = (0, ) or (0, F]. Furthermoreif 0 <t andu < oo,
thenD, = D,,.

It is not difficult to prove that the assumptida[ [, W, ds] = 1/y, implies
thatD,, = D;.

The following theorem provides us with an upper bound for ruin probability
in the case of negative safety loading

THEOREM 6: Assume that the safety loadifigs 0 and0 < t < co. Then, we have
the following results:

t
P(T=t)= ing exp{)\f Elexp{rW,X;} —1— (1 + 0)rW,X,]ds— ru}, (7.3)
r= 0

[ee)

P(T < o) = inf exp{/\f
r=0 0

Proor: Forr € Dy, leth(r) = E[exp(rX;)] — 1 and define

Elexp{rW;X;} =1 — (1 + 0)rW;X,]ds— ru}. (7.4)

N(t) t
M, = exp{r XWX — )\f h(rws) ds}
i=1 0

N(t) t
= exp{r i\/\lr Xi + At — /\J E[exp{rW,X;}] ds}. (7.5)

With the same arguments as in the proof of Theorem iS not difficult to check
thatM, is a martingale with respect tg, where

F=0{Mg:s=t}Vo{W.:7r =0}

Applying Doob’s bounded stopping time theorem to the martingale
{M;:t € R, } for the stopping tim& [Ot, 0 < t < oo, we have

1=E[Mo] =E[My]=E[Mrl7=y]
N(T) T
= E[exp{r > Wi X + AT — /\f E[exp{rW, X,}] ds} I{TS[}]
=1 0

.
= E{exp{ru — )\f Elexp{rW,X;} —1— (1 + 0)rW X, ] ds} I{Tst}]
0

= exp{ru — sup Af Elexp{rW, X} —1—(1+ 0)rW, X,] dv} P(T=t),
0

O=s=t
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wherel; 5 denotes the indicator function of s&ktand we have used the fact that
the ruin timeT, SMY We X, > u+ (14 0)Ap, [y W.ds
Henceif r =0,

O=s=t

P(T=t)= sup exp{)\J Elexp{rW, X,;} —1—(1+ 0)rW, X, | dv — ru}.
0
Therefore

S
P(T=t)=inf sup exp{/\f Elexp{rW, X;} =1 —(1+ 6)rW, X, ] dv — ru}.
6]

r=0 p=s=t

(7.6)

From the inequalitye* — 1 = x, 6 = 0, and thatW; and X, are positive random
variables we have that

Elexp{rW,X;} —1— (1 + 0)rW,X,] = 0. (7.7)

Hence (7.6) can be rewritten as
t
P(T=t)= im;exp{/\f Elexp{rW,X;} —1— (1 + 0)rW,X,]ds— ru}.
r= 0

(7.8)
From this the theorem follows n

Notice that the upper bounds in theorem 6 only make sense if the right-hand
sides of(7.6) and(7.7) are smaller than on&Ve will address this problem now
For0<t= oo, let

gi(r) = /\fo Elexp{rW;X;} —1— (1 + 0)rW,;X,]ds— ru, (7.9

O (r) = exp{g(r)} (7.10)

PRrROPOSITION 2: Suppose thad < t = oo and the safety loading = 0. ®,(r) is then
a convex mapping on Rand is finite on R.

Proor: Similar to Lemma 4% of Delbaen and Haezendonld, we can prove the
following:

If

- +

d—fb()?&d—cb()
ar 7 g Pl
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then
d;®()<£¢()
ar =g Pl
If
I‘IJ()_£<I>()
ar P = g B
then
d2
F‘bt(l’)>0.

From this it follows that ®,(r) is a convex mapping oR.. It is obvious that
®,(r) is finite onD;.

The above analysis indicates that,inf®,(r) < 1 if the right derivative of
®.(r) atr = 0 is strictly negativeHowever

d+

a D, (O)

</\f E[stl[eXp(rstl) - (1 + 0)]] ds— U) exp{gt(r)Hr:O

t t
—/\af E(W,X;)ds—u= —/\Gplf E(W,) ds—u,
0] [0]

where the last equality holds becauseandW; are independenthis leads to the
following proposition

ProrosiTION 3: If 0 <t < 00 and

u
0=0>———7"", (7.12)
Aplf E(W,) ds
0]
there exists a real numbey ¥ 0 such that
P(T<t)=d(r) = im;cpt(r) <1 (7.12)
Furthermore, if
u
0=0>——""—", (7.13)
)\plf E(W,) ds
0

there exists a real numberr> 0, such that

P(T < o0) = ,,(1.,) = inf &..(1) < 1 (7.14)
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We conclude this section by giving two special cagésst, we consider the
classical compound Poisson mod®l, = 1). In this caseif the risk loadingé is
negative the ultimate ruin probability will be oneThe upper bound for the ruin
probability at a finite timesay before time, is nontrivial if

and 6 =0.
P1

The second case is the situation with a constant interest.fordhis case
W, = e %, A detailed discussion on this case can be found in Boogaert and
Crijins [3].
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