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RUIN PROBABILITY UNDER
COMPOUND POISSON MODELS

WITH RANDOM DISCOUNT FACTOR
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Department of Statistics and Actuarial Science

The University of Hong Kong
Pokfulam Road, Hong Kong

E-mail: hlyang@hkusua.hku.hk

LIIIHHHOOONNNGGG ZHHHAAANNNGGG
Department of Finance

Tsinghua University
Beijing, People’s Republic of China

In this article,we consider a compound Poisson insurance risk model with a random
discount factor+ This model is also known as the compound filtered Poisson model+
By using some stochastic analysis techniques, a convergence result for the dis-
counted surplus process, an expression for the ruin probability, and the upper bounds
for the ruin probability are obtained+

1. INTRODUCTION

Recently, the interplay between actuarial science and finance has attracted much
attention+ One important question is, “What happens if we consider the investment
risk in the insurance risk model?” There are many recent articles in actuarial science
literature which tackle this problem+Sundt and Teugels@13# considered a compound
Poisson model with a constant interest rate+Renewal-type equations satisfied by the
ruin probability, asymptotic expression, and the upper bounds for the ruin probabil-
ity were obtained+Yang and Zhang@15# extended the work in Sundt and Teugels@13#
and considered the joint distribution of the surplus immediately before and after
ruin+ Yang @14# considered a discrete model with a constant interest rate+ By using
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martingale inequalities, both exponential and nonexponential bounds were ob-
tained+ Paulsen@10# and Norberg@9# used diffusion models with stochastic interest
incomes+Paulsen and Gjessing@11# provided some results for a model with stochas-
tic investment incomes+Asmussen@2# summarized some recent works on ruin prob-
ability with investment income+

Delbaen and Haezendonck@5# considered the risk theory problems in an eco-
nomic environment by discounting the value of the surplus from the current~or
future! time to the initial time+ The present article is in the spirit of Delbaen and
Haezendonck@5# , but whereas they used a deterministic discount factor,we will use
a random discount factor+ This is somewhat the same as when we consider the com-
pound Poisson model with a stochastic interest rate+ We call the model a filtered
compound Poisson model+

This article is organized as follows+ Section 2 provides the model and assump-
tions, Section 3 obtains a convergence result for the discounted surplus process,
Section 4 gives an expression for the ruin probability, Section 5 discusses the con-
stant interest force and exponential claim case,Section 6 obtains some upper bounds
for the ruin probability, and the last section deals with the case of negative security
loading+

2. THE MODEL

The classical risk model can be described as follows:

U~t ! 5 u 1 ct 2 (
i51

N~t !

Xi , (2.1)

whereU~t ! denotes the surplus at timet, u denotes the initial surplus, c denotes the
premium rate in a unit time,Xi denotes the amount of thei th claim, andN~t ! denotes
the number of claims occurring in the time interval~0, t # + It is assumed that$N~t !;
t . 0% is a homogeneous Poisson process with an intensity ofl+ It is also assumed
that the claim amounts are independent of the claim number process and are positive
and mutually independent and identically distributed~i+i+d+! with common distribu-
tion functionF, whereF satisfiesF~0! 5 0+Moreover, we assume thatF has a mean
p1 and

p2 5E
0

1`

x2 dF~x! , 1`+

We assume that

ct 5 ~11 u!lp1 t 5 ~11 u!ES(
i51

N~t !

XiD, (2.2)

whereu is called security loading+ We assume thatu . 0 in the first part~up to
Section 6! of this article, and we discuss the case whereu # 0 in Section 7+
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In the literature, there are many articles dealing with the ruin problems for the
classical risk model+ However, in the real world, investment income plays a very
important role+ In this article, we consider the insurance risk model where the in-
terest rate is random+ Let Ti denote thei th claim time and letWt denote the discount
factor+ The discounted value of total claim amounts occurring in the time interval
~0, t # can then be described as

S~t ! 5 (
i51

N~t !

Xi WTi
+

S5 $St % is called a filtered Poisson process+ Using the properties of the filtered
Poisson process~see Deng and Liang@6# or Snyder@12# !, we have

ES(
i51

N~t !

Xi WTi
6s~Ws : 0 # s , t !D5 lp1E

0

t

Wsds (2.3)

VarS(
i51

N~t !

Xi WTi
6s~Ws : 0 # s , t !D5 lE~Xi

2!E
0

t

Ws
2 ds, (2.4)

wheres~Ws: 0 # s , t ! denotes thes-field generated by$Ws: 0 # s , t % +
Assuming that the interest rate is random~equivalently, the discount factorWt is

random!, similar to~2+1!, the surplus process of an insurance company can then be
described by the following model:

Ut
~W! 5 u 1 ~11 u!lp1E

0

t

Ws ds2 (
i51

N~t !

Xi WTi
, (2.5)

whereUt
~W! denotes the discounted value of the surplus~discounted from timet

to time 0! and all the other notations remain the same as earlier+We call model~2+5!
the compound filtered Poisson model+

In this article, we make the following assumptions:

1+ $Wt % , $Xi % , and$N~t !% are mutually independent+
2+ W0 5 1, andWt . 0 for all t . 0, a+e+

The first assumption is a common one in actuarial science+Although, recently,
there have been some works on the dependent risk in the actuarial literature, we do
not consider this issue here+ The second assumption states that the interest rate can-
not be positive infinity+ Our model here is very general+ In practice, we usually
assume that the interest rate is nonnegative at any time+ This corresponds toWt . 0
andWt is nonincreasing for allt . 0+

3. CONVERGENCE OF Ut
(W )

In this section,we will prove a convergence result+This convergence result will then
be used in later sections to prove some useful results in the insurance risk theory+ In
this section,we assume that the discount factorWt satisfies the following assumption:
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ESE
0

1`

Ws dsD 5
1

g1

, 1`+ (3.1)

Under the above assumption, we have the following result+

Theorem 1: Under assumption (3.1), there exists an integrable random variable
U`

~W! such that

lim
tr1`

Ut
~W! 5

a+e+
U`

~W! (3.2)

and

E~U`
~W! ! 5

ulp1

g1

1 u, (3.3)

where a.e. means almost everywhere with respect to probability measure P. More-
over, the characteristic function of ÙW is given by

E~eixU`
W

! 5 EFexpHixSu 1 lp1uE
0

1`

Ws dsD2
1

2
x2lp2E

0

1`

Ws
2 ds

1 lE
0

1`E
0

xWt

~xWt 2 s!E @X2~12 e2isX!# ds dtJG+
Proof: Let

Mt 5 lp1 t 2 (
i51

N~t !

Xi + (3.4)

Then,Mt is a martingale with a mean of zero, andMt is independent of the discount
factorWt + Using this notation, the discounted surplus can be rewritten as

Ut
~W! 5 u 1 ulp1E

0

t

Ws ds1 Ht , (3.5)

whereHt 5 *0
t Ws dMs is also a martingale with a mean of zero+

First,we will prove the convergence of*0
t Ws ds+ SinceWs is nonnegative for all

s$ 0, the monotone convergence theorem implies

E
0

t

Ws dsF E
0

1`

Ws ds

because

EFE
0

1`

Ws dsG 5
1

g1

+
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The random variable*0
` Ws ds is P 2 a+s+ finite, which proves the convergence

of *0
t Ws ds+ Next, we will prove the convergence ofHt + Note that $Ht % is an

L2-bounded martingale; the result follows from a standard result+ Therefore, there
exists a finite random variableH` such that

lim
tr`

Ht 5
a+e+

H` and EH` 5 EH0 5 0+

From the above results, we see that there exists a finite random variableU`
~W!

such that

lim
tr1`

Ut
~W! 5

a+e+
U`

~W! and E~U`
~W! ! 5

ulp1

g1

1 u+

The characteristic function ofU`W is obtained by straightforward calculation+
n

Remark 1: It is well known that for the classical compound Poisson model, if u . 0,
the surplus process will move toward1` with a probability 1 as the timet r `+
This means that in the classical compound Poisson model, if we let the surplus
process continue even when the ruin occurs, the surplus process will eventually
become very large~tend to infinity with probability 1 as time tends to infinity!+ See
Dassios and Embrechts@4# , for further detailed discussions on this issue+Theorem 1
tells us that if we include the interest effect in the model, this is not the case+

4. AN EXPRESSION OF RUIN PROBABILITY

Ruin probability has been one of the most important research topics for almost a
century, ever since the pioneering work of Lundberg@7,8# + Elegant mathematics has
been developed on this topic+

In this section, we will use the result of Theorem 1 to give an expression for the
ruin probability+ Let T ~u! 5 inf $t;Ut

~W! , 0% andc~u! denote the ruin probability
of model~2+5!+ Then,

c~u! 5 P$T ~u! , `6U ~W! ~0! 5 u%+ (4.1)

Let Ut 5 ~11 u!lp1t 2 (i51
N~t ! Xi ; then,

Ut
~W! 5 u 1E

0

t

Ws dUs+

Let

Vt
~W! 5 Wt

21E
t

1`

Ws dUs;
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then,

U`
~W! 5 Ut

~W! 1 Wt Vt
~W! + (4.2)

Notice thatUt has stationary and independent increments and that it is independent
of Wt + If we assume

2ln~Wt ! has stationary and independent increments, (*)

then we can obtain that

Vt
~W! 5E

0

1`

GWs d EUs 5
d

U`
~W! 2 u, (4.3)

where

GWs 5
Wt1s

Wt

5
d

Ws, EUs 5 Ut1s 2 Ut 5
d

Us+

Remark 2:Because we do not require thatWt be nonincreasing in this article, any
Levy processes will satisfy assumption~*!+

Lemma 1: The process$Ut
~W! %, condition ons~Ws: 0 # s, t !, has an independent

increment, and under assumption (*!,

@~Ut1s
~W! 2 Us

~W! !6s~Wv : 0 # v , s!# 5
d

~Ut
~W! 2 u!Ws, (4.4)

where5
d

means that both the left-hand side and the right-hand side of (4.4) have
the same distribution.

Proof: For t . s . 0,

Ut
~W! 2 Us

~W! 5 ~11 u!lp1E
s

t

Wv dv2 (
i5N~s!11

N~t !

Xi WTi

5 ~11 u!lp1E
s

t

Ws

Wv
Ws

dv2 (
i5N~s!11

N~t !

Xi Ws

WTi

Ws

5 WsFE
s

t Wv
Ws

dS~11 u!lp1v2 (
i5N~s!11

N~v!

XiDG +
Notice that $Wt % is independent of$N~t ! : t $ 0% and $Xi : i 5 1,2, + + + % , so
~1 1 u!lp1v 2 (i5N~s!11

N~v! Xi has independent increments and is independent
of Ws+ Therefore, this lemma holds+ n
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From the above results, we have the following theorem+

Theorem 2: Under assumption (*), let F̀ ~x! be the distribution function of
U`

~W! 2 u. Then,

c~u! 5
F`~2u!

E~F`~2WT ~u!
21 UT ~u!

~W! 6T ~u! , `!!
+ (4.5)

Proof:

F`~2u! 5 P~U`
~W! , 0! 5 P~U`

~W! , 0, T ~u! , `!

5 P$UT ~u!
~W! 1 WT ~u! VT ~u!

~W! , 0; T ~u! , `%

5 P$WT ~u!
21 UT ~u!

~W! 1 VT ~u!
~W! , 0, T ~u! , `%

5 P$VT ~u!
~W! , 2WT ~u!

21 UT ~u!
~W! , T ~u! , `%

5E
0

`

P$VT ~u!
~W! , 2WT ~u!

21 UT ~u!
~W! 6T ~u! 5 t %PT ~u!

dt

5E
0

`

P$U`
~W! 2 u , 2Wt

21Ut
~W! %PT ~u!

dt

5E
0

`

F`~2Wt
21Ut

~W! !PT ~u!
dt 5 E @F`~2WT ~u!

21 UT ~u!
~W! ! I$T ~u!,`% #

5 E @F`~2WT ~u!
21 UT ~u!

~W! !6T ~u! , `#P~T ~u! , `!

5 E @F`~2WT ~u!
21 UT ~u!

~W! !6T ~u! , `#c~u!+

Here, we have used the notationVt
~W! 5

d
U`

~W! 2 u+ From this, the result is proved+
n

We say that a distribution functionF~x! is a new worse than used~NWU!
distribution ifF~x! is a distribution function~d+f+! of a nonnegative random variable
and OF~x! 512 F~x! satisfies that OF~x! OF~ y! # OF~x1 y! for x$ 0 andy$ 0+We say
that a distribution functionF~x! is a new better than used~NBU! distribution ifF~x!
is a d+f+ of a nonnegative random variable and satisfies thatOF~x! OF~ y! $ OF~x1y! for
x $ 0 andy $ 0+

Proposition 1: Under assumptions (3.1) and (*), we have the following:

1+ If Xi ’s distribution function is NWU, then, in this case, we have that

c~u! #
F`~2u!

E~F`~Xi !!
+ (4.6)
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2+ If Xi ’s distribution function is NBU, then, in this case, we have

c~u! $
F`~2u!

E~F`~Xi !!
+ (4.7)

3+ If Xi ’s distribution function is exponential, then, in this case, we have

c~u! 5
F`~2u!

E~F`~Xi !!
+ (4.8)

Proof: We only give the proof for part 1 because part 2 can be proved by the same
method, and part 3 can be obtained from parts 1 and 2 because the exponential
distribution is both NWU and NBU+

P$U`
~W! 2 u , 2WT ~u!

21 UT ~u!
~W! 6T ~u! , `%

5 P$U`
~W! 2 u , 2WT ~u!2

21 UT ~u!2
~W! 1 Xi 6Xi . WT ~u!2

21 UT ~u!2
~W! %

5 P$Xi . U`
~W! 2 u 1 WT ~u!2

21 UT ~u!2
~W! 6Xi . WT ~u!2

21 UT ~u!2
~W! %,

whereT ~u!2 means the time just before ruin+
WhenU`

~W! 2 u . 0, we can get from the distribution ofXi is NBU, that the
above probability is less thanP$Xi . U`

~w! 2 u%—that is, the valueE~F`~Xi !!+
WhenU`

~w! 2 u , 0, the above probability is 1 and the valueP$Xi . U`
~w! 2 u% also

equals one+
After all, when the distribution ofXi is NBU, we have

P$U`
~W! 2 u , 2WT ~u!

21 UT ~u!
~W! 6T ~u! , `% # E~F`~Xi !!,

so we can get part 1+ n

Remark 3:

1+ WhenF`~0! . 0, we have

F`~2u! # c~u! #
F`~2u!

F`~0!
+ (4.9)

2+ From the expression

F`~2u! 5 P$U`
~W! 2 u # 2u% 5 P$U`

~W!
# 0%,

we can say thatF`~2u! is just the probability of ruin for good~i+e+, the
probability of the surplus tends to negative infinity!+

3+ It is interesting that the ruin probability can be determined by the limit dis-
tribution of the discounted surplus process+ Theorem 2 indicates the rela-
tionship between the ruin probability and the limit distribution of the
discounted surplus process+
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5. CONSTANT DISCOUNT RATE AND EXPONENTIAL CLAIM SIZE

We consider a special case in which the discount rate is a constantd and the claim
size is an exponentially distributed random variable+ This case was treated in Sundt
and Teugels@13# + We will obtain this result as a special case of our results in the
previous sections+ In this section, we will assume thatWt 5 e2dt andXi is exponen-
tially distributed with a mean ofp1+We will first give Lemma 2+

Lemma 2: The discounted value of all of the claim amounts occurring in the time
interval ~0, t # , S~t ! 5 (i51

N~t ! Xi e
2dTi , converges to a randomvariable S~1`!. Fur-

thermore, S~1`! has a gamma distribution with parameters~l0d, p1
21!.

Proof: According to the properties of the filtered Poisson process, we can derive
the characteristic function ofS~t ! by ~see Snyder@12# !

E~eitS~t ! ! 5 expFlE
0

t

E~eitXi exp~2ds! 2 1! dsG5 expSlE
0

t ite2ds

p1
21 2 ite2ds dsD+

Let t r 1`; then,

lE
0

1` ite2ds

p1
21 2 ite2ds ds5

l

d
E

0

t i dy

p1
21 2 iy

5
l

d
@ ln~ p1

21! 2 ln~ p1
21 2 it!# 5

l

d
lnS p1

21

p1
21 2 itD+

The characteristic function ofS~1`! is then

E~eitS~`! ! 5 S p1
21

p1
21 2 itDl0d

+

This is the characteristic function of a gamma-distributed random variable with
parameters~l0d, p1

21!+ Therefore, the lemma holds+ n

As explained in Remark 4, part 2 that follows, the following theorem gives the
same result as that in Sundt and Teugels@13# +

Theorem 3: Under the assumptions in this section, the ruin probabilityc~u! of
model (2.5) has the following expression:

c~u! 5

12 FG~ld21, p1
21!Su 1

~11 u!l

dp1
21 D

12 EHFG~ld21, p1
21!S ~11 u!l

dp1
21 2 XiDJ , (5.1)

where FG~ld21, p1
21!~{! denotes the distribution function of theG random variable

with the parameters~ld21, p1
21!.
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Proof: Under the assumptions in this section, model~2+5! becomes

Ut
~W! 5 u 1

11 u

d
lp1~12 exp~2dt !! 2 (

i51

N~t !

Xi e
2dTi+

From Lemma 2, we know that

(
i51

N~t !

Xi e
2dTi

a+e+
&&

tr` S~1`!,

where S~1`! is gamma-distributed with the parameters~l0d, p1
21!, ~i+e+, u 1

@~1 1 u!0d# p1l 2 Ut
~W! converges to aG random variable with the parameters

~l0d, p1
21!!+ Then, using Theorem 2, the result is proved+ n

Remark 4:

1+ Notice that

12 EHFGSl

d
,

1

p1
DS11 u

d
lp1 2 XiDJ

5 12E
0

@~11u!0d#lp1 1

p1

e2y0p1

3 E
0

@~11u!0d#lp12y S 1

p1
Dl0d

GSl

d
D e2~x0p1!x ~l0d!21 dx dy

5E
@~11u!0d#lp1

` S 1

p1
Dl0d

GSl

d
D e2~x0p1!x ~l0d!21 dx1 e2@~11u!0d#l

3
d

l
S ~11 u!lp1

d
Dl0d S 1

p1
Dl0d

GSl

d
D

Therefore, the result in Theorem 3 is the same as that in Sundt and Teugels@13# +

2+ The result in Theorem 3 was obtained in Sundt and Teugels@13# by solving
the associated renewal equation+We have obtained the result here by using
the limit distribution of the surplus process+ Therefore, we have, in fact,
provided more information than in Sundt and Teugels@13#; that is, we have
also proved that the limit distribution of the discounted surplus process is a
gamma distribution+
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6. UPPER BOUNDS FOR RUIN PROBABILITY

In this section,we will derive the upper bounds for ruin probability+The main results
are given in the following two theorems+The techniques used in the proof are similar
to those in Yang@14# +

Theorem 4: Suppose that G~{! is a nonnegative measurable function, Ut
~W! is

the discounted surplus of the insurance company at time t, and G~Ut
~W! ! is a super-

martingale with respect tos-field Ft . s~Us
~W! 60 # s , t !. Then,

c~u! #
G~u!

E~G~UT ~u!
~W! !6T ~u! , `!

+ (6.1)

If lim tr` E~G~Ut
~W! !6T ~u! . t ! 5 0 and G~Ut

~W! ! is anFt martingale, then

c~u! 5
G~u!

E~G~UT ~u!
~W! !6T ~u! , `!

, (6.2)

where T~u! is the same as earlier.

Proof: T ~u! is anFt stopping time+ For ∀t . 0, T ~u! ∧ t is a boundFt stopping time+
Using Doob’s bounded stopping time theorem, we have

G~u! 5 E~G~U0
~W! !! $ E~G~UT ~u!∧t

~W! !!

5 E~G~UT ~u!
~W! !6T ~u! , t !{P$T ~u! , t % 1 E~G~UT ~u!

~W! !6T ~u! $ t !{P$T ~u! $ t %+

Let t r 1`; by the positive ofG~{!, we have

G~u! $ E~G~UT ~u!
~W! !6T ~u! , `!c~u!+

Therefore, ~6+1! holds+
Moreover, if lim tr1` E~G~UT ~u!

~W! !6T ~u! . t ! 5 0 andG~Ut
~W! ! is anFt martin-

gale, then~6+2! also holds+ n

Theorem 5: If, for all t $ 0, 0 , Wt , 1 a+e+, assume that there exists R. 0 such
that

E~eRXi 2 1! 5 R~11 u!E~Xi ! 5 R~11 u!p1+

Then,

c~u! #
exp~2Ru!

E~exp~2RUT ~u!
~W! !6T ~u! , `!

# e2Ru+ (6.3)

Proof: For all x [ ~0,1# , y . 0,

(
n51

` ~xy!n

n!
# (

n51

` x~ y!n

n!
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holds; that is,

exy 2 1 # x~ey 2 1!+

Let h~r ! 5 E~erXi 2 1!+ Because for allt . 0, 0 , Wt , 1 a+e, we then have

h~RWs! # Wsh~R!+

Let

Nt 5 expHR (
i51

N~t !

Xi WTi
2 R~11 u!p1lE

0

t

Ws ds2 RuJ
and

Ft
' 5 s~Ns : s# t ! ∨ s~Wt : t . 0!+

Using a similar argument as that in Deng and Liang@6, pp+ 329–332# ~also see
Snyder@12# ! and after some calculations, we obtain

EFexpHR (
i5N~s!11

N~t !

Xi WTiJ*s~Wt : t $ 0!G5 expSlE
s

t

h~RWt ! dtD,
so

E~Nt 6Fs
'! 5 NsEFexpSR (

i5N~s!11

N~t !

Xi WTi
2 R~11 u!p1lE

s

t

Wt dtD*Fs
'G

5 Ns expSlE
s

t

h~RWt ! dt 2 R~11 u!p1lE
s

t

Wt dtD
# Ns expSlE

s

t

Wt h~R! dt 2 R~11 u!p1lE
s

t

Wt dtD
5 Ns+ (6.4)

Therefore, Nt is anFt
' supermartingale+ From Theorem 4, we have

c~u! #
exp~2Ru!

E~exp~2RUT ~u!
~W! !6T ~u! , `!

,

whereR . 0 andUT ~u!
~W! , 0+ Note thatE @exp~2RUT ~u!

~W! !6T ~u! , `# . 1+ Therefore,
the result of the theorem holds+ n

7. UPPER BOUNDS FOR RUIN PROBABILITY
IN THE CASE OF NEGATIVE LOADING

It is well known that, in the classical model, if the loading is negative, the ruin
becomes certain+ We will show below that this is not the case in the model with
stochastic interest rate+We first introduce the following sets:
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D 5 $r . 0 :E @exp$rX1%# , 1`%, (7.1)

Dt 5 Hr . 0 : E
0

t

@E$exp~rWsX1!% 2 1# ds, 1`J for 0 , t # 1`+ (7.2)

From the definition,we can easily see thatD is an interval of the form~0, Tr ! or ~0, Tr # +
It is not difficult to see that for 0, t , `, we haveDt 5 D if D 5 ~0, Tr # , and if
D 5 ~0, Tr ! with Tr , `, thenDt 5 ~0, Tr ! or ~0, Tr # + Furthermore, if 0 , t andu , `,
thenDt 5 Du+

It is not difficult to prove that the assumptionE @*0
1` Ws ds# 5 10g1 implies

thatD`5 Dt +
The following theorem provides us with an upper bound for ruin probability

in the case of negative safety loading+

Theorem 6: Assume that the safety loadingu # 0 and0 , t , `. Then, we have
the following results:

P~T # t ! # inf
r$0

expHlE
0

t

E @exp$rWsX1% 2 1 2 ~11 u!rWsX1# ds2 ruJ , (7.3)

P~T , `! # inf
r$0

expHlE
0

`

E @exp$rWsX1% 2 1 2 ~11 u!rWsX1# ds2 ruJ + (7.4)

Proof: For r [ Dt , let h~r ! 5 E @exp~rX1!# 2 1 and define

Mt 5 expHr (
i51

N~t !

WTi
Xi 2 lE

0

t

h~rWs! dsJ
5 expHr (

i51

N~t !

WTi
Xi 1 lt 2 lE

0

t

E @exp$rWsX1%# dsJ + (7.5)

With the same arguments as in the proof of Theorem 5, it is not difficult to check
thatMt is a martingale with respect toFt , where

Ft 5 s$Ms : s# t % ~ s$Wt : t $ 0%+

Applying Doob’s bounded stopping time theorem to the martingale
$Mt : t [ R1% for the stopping timeT ∧ t, 0 , t , `, we have

1 5 E @M0# 5 E @MT∧t # $ E @MT I$T#t % #

5 EFexpHr (
i51

N~T !

WTi
Xi 1 lT 2 lE

0

T

E @exp$rWsX1%# dsG I$T#t %G
$ EFexpHru 2 lE

0

T

E @exp$rWsX1% 2 1 2 ~11 u!rWsX1# dsJ I$T#t %G
$ expHru 2 sup

0#s#t
lE

0

s

E @exp$rWvX1% 2 1 2 ~11 u!rWvX1# dvJP~T # t !,
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whereI$A% denotes the indicator function of setA, and we have used the fact that, at
the ruin timeT, (i51

N~t ! WTi
Xi . u 1 ~11 u!lp1 *0

T Ws ds+
Hence, if r $ 0,

P~T # t ! # sup
0#s#t

expHlE
0

s

E @exp$rWvX1% 2 1 2 ~11 u!rWvX1# dv2 ruJ +
Therefore,

P~T # t ! # inf
r$0

sup
0#s#t

expHlE
0

s

E @exp$rWvX1% 2 1 2 ~11 u!rWvX1# dv2 ruJ +
(7.6)

From the inequalityex 2 1 $ x, u # 0, and thatWs andX1 are positive random
variables, we have that

E @exp$rWsX1% 2 1 2 ~11 u!rWsX1# $ 0+ (7.7)

Hence, ~7+6! can be rewritten as

P~T # t ! # inf
r$0

expHlE
0

t

E @exp$rWsX1% 2 1 2 ~11 u!rWsX1# ds2 ruJ +
(7.8)

From this, the theorem follows+ n

Notice that the upper bounds in theorem 6 only make sense if the right-hand
sides of~7+6! and~7+7! are smaller than one+We will address this problem now+

For 0, t #`, let

gt ~r ! 5 lE
0

t

E @exp$rWsX1% 2 1 2 ~11 u!rWsX1# ds2 ru, (7.9)

Ft ~r ! 5 exp$gt ~r !%+ (7.10)

Proposition 2: Suppose that0 , t #` and the safety loadingu # 0. Ft~r ! is then
a convex mapping on R1 and is finite on Dt .

Proof: Similar to Lemma 4+5 of Delbaen and Haezendonck@5# , we can prove the
following:

If

d2

dr
Ft ~r ! Þ

d1

dr
Ft ~r !,
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then

d2

dr
Ft ~r ! ,

d1

dr
Ft ~r !+

If

d2

dr
Ft ~r ! 5

d1

dr
Ft ~r !,

then

d2

dr 2 Ft ~r ! . 0+

From this, it follows that Ft~r ! is a convex mapping onR1+ It is obvious that
Ft~r ! is finite onDt +

The above analysis indicates that infr$0 Ft~r ! , 1 if the right derivative of
Ft~r ! at r 5 0 is strictly negative+ However,

d1

dr
Ft ~0! 5 SlE

0

t

E @WsX1 @exp~rWsX1! 2 ~11 u!## ds2 uDexp$gt ~r !%6r50

5 2luE
0

t

E~WsX1! ds2 u 5 2lup1E
0

t

E~Ws! ds2 u,

where the last equality holds becauseX1 andWs are independent+ This leads to the
following proposition+

Proposition 3: If 0 , t , ` and

0 $ u . 2
u

lp1E
0

t

E~Ws! ds

, (7.11)

there exists a real number rt . 0 such that

P~T , t ! # Ft ~rt ! 5 inf
r$0

Ft ~r ! , 1+ (7.12)

Furthermore, if

0 $ u . 2
u

lp1E
0

`

E~Ws! ds

, (7.13)

there exists a real number r` . 0, such that

P~T , `! # F`~r` ! 5 inf
r$0

F`~r ! , 1+ (7.14)

RUIN PROBABILITY 69



We conclude this section by giving two special cases+ First, we consider the
classical compound Poisson model~Ws 5 1!+ In this case, if the risk loadingu is
negative, the ultimate ruin probability will be one+ The upper bound for the ruin
probability at a finite time, say before timet, is nontrivial if

t , 2
u

lp1u
and u # 0+

The second case is the situation with a constant interest force+ In this case,
Ws 5 e2ds+ A detailed discussion on this case can be found in Boogaert and
Crijins @3# +
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