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We consider a superexchange Hamiltonian, H � 2
P

�i,j��2Si ? Sj 2
1
2 � �2Ti ? Tj 2

1
2 �, which de-

scribes systems with orbital degeneracy and strong electron-phonon coupling in the limit of large on-site
repulsion. In an SU�4� Schwinger boson representation, a reduced spin-orbital interaction is derived
exactly, and a mean field theory has been developed. In one dimension, a spin-orbital liquid state with
a finite gap is obtained. On a two-dimensional square lattice a novel type of spin-orbital ferromagneti-
cally ordered state appears, while spin and orbital are antiferromagnetic. An important relation has been
found, relating the spin and orbital correlation functions to the combined spin-orbital ones.
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There has been much interest in the properties of Mott
insulators with orbital degeneracy [1–4], where the elec-
tron configuration has an orbital degeneracy in addition to
the spin degeneracy. Because of the interplay between the
spin and orbital degrees of freedom, a rich variety of spin
and orbital ordering effects have been displayed [5–9], and
a new combined spin-orbital degrees of freedom may in-
troduce some new physics to the transitional metal oxides
[10–15]. Recently, in order to describe the low-energy
physics of an insulating crystal with one electron per site
with double orbital degeneracy in the limit of the large
on-site Hubbard repulsion, a superexchange Hamiltonian
was proposed [16,17]:

H � 2
X
�i,j�

µ
2Si ? Sj 2

1
2

∂ µ
2Ti ? Tj 2

1
2

∂
, (1)

where two isotropic Heisenberg antiferromagnets (AFM)
are coupled by a quartic term on equivalent bonds, and Si

and Ti denote the spin-1�2 and orbital-1�2 operators at a
lattice site i, respectively. The physical condition for deriv-
ing the above effective model Hamiltonian is that, among
the possible two-particle states obtained upon virtual hop-
ping, the interorbital singlet is the lowest energy state due
to the dynamical Jahn-Teller effect. The condition might
be realized in the large body of new molecular compounds
based on C60 [18] or layered fullerides and some two-
dimensional (2D) copolymers [19]. Based on numerical
calculations, Santoro et al. argued that the ground state
of the model shows a spin-Peierls–like dimerization in
one dimension (1D) [16], while on a 2D square lattice no
evidence of order of any kind has been found so that the
ground state is concluded to be a spin liquid of resonating
valence bonds (VB) [17]. In order to put these results on
firm ground, it is thus of great interest to develop new ap-
proaches to this model.

In this Letter, we use an SU�4� Schwinger boson repre-
sentation [20] to denote both the spin-1�2 and orbital-1�2
operators, and the model Hamiltonian is simplified to a
reduced interaction, describing a symmetric pairing attrac-
tion among the nearest-neighbor hard-core bosons. By in-
1-1 0031-9007�01�87(15)�157201(4)$15.00
troducing a symmetric VB order parameter, a mean field
theory is developed. In 1D, a spin-orbital liquid state with a
finite gap in the excitation spectra is obtained, correspond-
ing to a quantum disordered VB state. On a 2D square
lattice, due to the presence of the Bose-Einstein conden-
sations, we found a novel spin-orbital ferromagnetically
(FM) ordered state, corresponding to a short-ranged VB
crystal state, while both the spin and orbital degrees of
freedom form an AFM ordering.

The model Hamiltonian can be rewritten as follows:

H � 2
X
�i,j�

�Si ? Sj 1 Ti ? Tj�

2
X
�i,j�

µ
2Si ? Sj 1

1
2

∂ µ
2Ti ? Tj 1

1
2

∂
, (2)

where the direct quadratic couplings among spins and or-
bitals are antiferromagnetic, and the quartic coupling be-
tween spins and orbitals is ferromagnetic. The model
Hamiltonian has an SU�2� ≠ SU�2� symmetry, represent-
ing rotational invariance in both spin and orbital spaces,
and also interchange symmetry between the spins and or-
bitals. Moreover, one also notices that the total spin, or-
bital, and combined staggered spin-orbital operators are
as follows:

Sa �
X
j

Sa
j , Ta �

X
j

Ta
j ,

Lab �
X
j

eiQ?Rj 2Sa
j T

b
j ,

where Q is the AFM reciprocal vector, which generates
an SU�4� Lie algebra and also commutes with the model
Hamiltonian. Therefore, Eq. (1) possesses the SU�4� sym-
metry [16]. For a state with the SU�4� symmetry, im-
plying that the state is invariant under the rotation in the
SU�4� space, we have an identity for the static correlation
functions

�Sa
i Sa

j � � �Tb
i T

b
j � � eiQ?�Ri2Rj��4Sa

i T
b
i Sa

j T
b
j � , (3)

where �· · ·� represents the expectation value on the SU�4�
© 2001 The American Physical Society 157201-1
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symmetric state. The underlying physics for the identi-
ties is very clear: if the spin and orbital degrees of free-
dom are antiferromagnetically correlated, the combined
spin-orbital correlation functions will be ferromagnetic.
This property originates from the additional phase fac-
tor in the generators of Lab. It should be mentioned that
another spin-orbital model Hamiltonian H 0 �

P
�i,j� �2Si ?

Sj 1
1
2 � �2Ti ? Tj 1

1
2 �, the natural generalization of the

SU�2� Heisenberg spin model and exactly soluble in 1D,
has also been used to understand some orbital properties of
transition metal oxides [10–15]. However, although these
two models have the same symmetry, the fifteen genera-
tors of the SU�4� symmetry group are not the same, and
the identities of the correlation functions induced from this
symmetry are also different. In this sense, the physics in-
volved in these two models are independent.

As we know, the Schwinger boson mean field approach
has been a successful theory in describing the low-energy
excitations of the conventional FM and AFM Heisenberg
spin models [20,21]. In particular, starting from short-
ranged VB order parameters, it can produce either quantum
disordered or quantum long-range ordered magnetic states.
In our model, when two sets of SU�2� Schwinger bosons
are introduced to denote the spin-1�2 and orbital-1�2 op-
erators separately, we have

2Si ? Sj 1
1
2

�
X
a,b

a
y
i,aai,ba

y
jbaj,a ,

2Ti ? Tj 1
1
2

�
X
m,n

d
y
i,mdi,nd

y
j,ndj,m ,

with local constraints
P

a a
y
i,aai,a � 1 and

P
m d

y
i,mdi,m �

1, where the indices a, b and m, n are taken with val-
ues 1 and 2 corresponding to eigenstates of Sz � 61�2
and Tz � 61�2, respectively. Both ai,a and di,m opera-
tors satisfy the boson commutation relations. To treat the
quartic spin-orbital interaction term on an equal footing as
the spin-spin and orbital-orbital interactions, the fact has
been used that in the model Hamiltonian the Hilbert space
on each lattice site consists of four basic states in terms
of jSz; Tz �:Ç

1
1
2

; 1
1
2

¿
� j1�,

Ç
2

1
2

; 1
1
2

¿
� j2� ,

Ç
1

1
2

; 2
1
2

¿
� j3�,

Ç
2

1
2

; 2
1
2

¿
� j4� .

These four states form a set of local basis to represent
the SU�4� symmetry group. The conventional SU�4�
generators Jn

m�i� act on a basic state jh�i according to
the equation Jn

m�i� jh�i � dn,hjm�i with a local constraintP
m J

m
m �i� � 1, where the indices m and n are taken with

values from 1 to 4 corresponding to the four eigenstates
of j6

1
2 ; 6

1
2 �. The SU�4� Lie algebra is defined by the

commutation relation

�Jn
m�i�,Jl

k �i�� � dn,kJl
m�i� 2 dm,lJ

n
k �i� .
157201-2
In terms of four-component hard-core bosons, we have
Jn

m�i� � b
y
i,mbi,n with the local constraint

P
m b

y
i,mbi,m �

1. Therefore, the quartic spin-orbital exchange interaction
can be written asµ

2Si ? Sj 1
1
2

∂ µ
2Ti ? Tj 1

1
2

∂
�

X
m,n

b
y
i,mbi,nb

y
j,nbj,m . (4)

By a projection procedure, both the spin-spin and orbital-
orbital quadratic interactions can also be expressed in
terms of the four-component hard-core bosons. For-
tunately, most of the resulting terms are found to be
exactly canceled with the quartic spin-orbital exchange
interaction, and the resulting Hamiltonian is reduced to a
simple and compact form,

H � 2
X
�i,j�

��by
i,1b

y
j,4 1 b

y
i,4b

y
j,1� 2 �by

i,2b
y
j,3 1 b

y
i,3b

y
j,2��

3 ��bj,4bi,1 1 bj,1bi,4� 2 �bj,3bi,2 1 bj,2bi,3�� .
(5)

Actually, this reduced model Hamiltonian has explicitly
displayed that the main physics of the symmetrically cou-
pled spin-orbital interaction is to induce a unique attractive
pairing instability among the nearest-neighbor hard-core
bosons. We also emphasize here that the quartic spin-
orbital exchange interaction plays the same role as that of
the spin-spin and orbital-orbital superexchange terms.

In the reduced spin-orbital model Hamiltonian, the lo-
cal attractive interaction shares closely a resemblance to
the effective model Hamiltonian in the conventional BCS
superconductivity theory. Such a feature allows us to in-
troduce an SU�4� short-ranged VB pairing order parameter

D � 2��bj,4bi,1 1 bj,1bi,4� 2 �bj,3bi,2 1 bj,2bi,3�� ,

which one can assume to be real. A following mean
field theory develops naturally, leading to the mean field
Hamiltonian,

Hmf � l
X
i,m

b
y
i,mbim 2 lN 1 ZD2N

1 D
X
�i,j�

��by
i,1b

y
j,4 1 b

y
i,4b

y
j,1�

2 �by
i,2b

y
j,3 1 b

y
i,3b

y
j,2� 1 H.c.� ,

where the local constraint has been imposed on average
through a Lagrangian multiplier, N is the total number of
lattice sites, and Z is the number of the nearest neighbors.
In the momentum space, Hmf becomes

Hmf � l
X
k,m

b
y
k,mbk,m 2 lN 1 ZD2N

1 2ZD
X
k

gk��by
k,1b

y
2k,4 2 b

y
k,2b

y
2k,3� 1 H.c.� ,

(6)

where gk �
1
Z

P
d eik?d and the vector d points to the

nearest-neighbor sites. When a Nambu spinor is defined by
157201-2
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Cy�k� � �by
k,1,b

y
k,2, b

y
k,3, b

y
k,4; b2k,4, b2k,3,b2k,2, b2k,1�,

the mean field Hamiltonian is expressed in the compact
matrix form

Hmf �
1
2

X
k

Cy�k�Hmf�k�C�k� 1 ZD2N 2 3lN ,

(7)

with Hmf�k� � lV0 1 2ZDgkV2. The corresponding
Lagrangian is thus given by

Lmf �
1
2

X
k

Cy�k, ivn� �ivnV1 2 Hmf�k��C�k, ivn� .

Here the generalized 8 3 8 Dirac matrices have been
defined by V1 � sz ≠ s0 ≠ s0, V2 � sx ≠ sz ≠ sz ,
where sx , sy, sz, and s0 are three Pauli 2 3 2 matrices
and a unity matrix, respectively. V0 is the 8 3 8 unity
matrix, and V1 and V2 obey the anticommutation relation
�V1, V2�1 � 2V0. From the Lagrangian, the bosonic
Matsubara Green function is given by

G�k, ivn� �
2ivnV1 2 lV0 1 2ZDgkV2

v2
n 1 �l2 2 �2ZDgk�2�

, (8)

which implies that the bosonic quasiparticle excitations
form a continuum band, and their dispersion relation is
vk �

p
l2 2 �2ZDgk�2. Moreover, the free energy can

be evaluated as

Fmf �
1
b

X
k,m

ln

∑
2 sinh

µ
bvk

2

∂∏
1 ZD2N 2 3lN , (9)

and the saddle point equations are derived as follows:
157201-3
1
N

X
k

2lp
l2 2 �2ZDgk�2

�2nB�vk� 1 1� � 3 ,

1
N

X
k

�2Zgk�2p
l2 2 �2ZDgk�2

�2nB�vk� 1 1� � Z .

(10)

The first equation corresponds to the request of the local
constraint on average, and the second one determines the
SU�4� short-ranged VB order parameter self-consistently.

To get the collective excitations of the model, the dy-
namical correlation functions of the spin, orbital, and com-
bined spin-orbital density operators should be calculated.
The corresponding density operators can be written in
terms of the Nambu spinor introduced above,

Sz
i �

1
4 Cy�ri�V3C�ri� ,

Tz
i �

1
4 Cy�ri�V4C�ri� ,

Lzz
i �

1
4 Cy�ri�V5C�ri� ,

where V3 � sz ≠ s0 ≠ sz , V4 � sz ≠ sz ≠ s0, and
V5 � s0 ≠ sz ≠ sz are introduced. Except for the
anticommutation relations �V1, V2�1 � �V2, V3�1 �
�V2, V4�1 � 2V0, all other relations between the Dirac
matrices from V1 to V5 satisfy the commutation relations.

In a 1D system, we have Z � 2 and gk � cosk. At
T � 0 K, there are no particle excitations nB�vk� � 0.
When the summations over momenta are converted into the
integrals within the first Brillouin zone, the self-consistent
equations are easily solved, leading to D � 1.67476 and
l � 7.31391. The corresponding ground state energy per
site is given by ´g � 22D2 � 25.60964, and there is
a finite gap in the bosonic quasiparticle excitation spec-
trum, v0 �

p
l2 2 16D2 � 2.93533 at the momentum

k � 0, p. These results have shown that the ground state
is a quantum disordered state of resonating valence bonds,
in qualitative agreement with the previous numerical
calculations [16]. Moreover, the dynamical susceptibili-
ties at zero temperature can be easily evaluated as follows:
x�q, v 1 ih� �
Z dk

16p

∑
l2 6 16D2 cosk cos�k 1 q�

vkvk1q
2 1

∏

3

∑
1

v 1 vk 1 vk1q 1 ih
2

1
v 2 vk 2 vk1q 1 ih

∏
, (11)
where h is a positive infinitesimal, both the spin and
orbital dynamic susceptibilities are equal to each other
and choose the lower minus sign, and the combined spin-
orbital dynamic susceptibility takes the upper plus sign.
The dynamic density spectra are then easily obtained:

ImxS�q ! Q, v� � ImxT �q ! Q, v�
� ImxL�q ! 0, v�

�
p

16jvj

s
4l2 2 v2

v2 2 4l2 1 64D2 , (12)

where 2v0 , jvj , 2l. Clearly, there is a finite en-
ergy gap Er � 2v0 � 5.87066 in both the spin and or-
bital collective excitations at q � Q, and in the combined
spin-orbital collective excitation at q � 0. Therefore we
conclude that the ground state is a quantum disordered
spin-orbital liquid state with a finite-energy gap in the col-
lective excitations.

On a 2D square lattice, Z � 4 and gk �
1
2 �coskx 1

cosky�. At zero temperature, the conversion from the sum-
mations over momenta to the integrals will be invalid as
�8D� ! l. Following the analogous treatments for the
Bose-Einstein condensation [22], we separate the diver-
gent terms at k� � 0 and k� � Q from the summations
to yield
157201-3
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Z d2k

�2p�2

lp
l2 2 �8Dgk�2

1
4nB�vk��p

1 2 �8D�l�2
�

3
2

,

Z d2k

�2p�2

lg
2
kp

l2 2 �8Dgk�2
1

4nB�vk��p
1 2 �8D�l�2

�
l

16
.

(13)

When �8D� ! l, the boson condensation occurs, and the
ratio r � 4nB�vk� ��

p
1 2 �8D�l�2 is finite, which can

be determined from the first equation by setting l � 8D

inside the integral: r � 0.107. Similarly, from the second
equation, one can also obtain the order parameter D �
1.3159 and thus l � 10.5271. Moreover, the ground state
energy per site is evaluated to be ´g � 24D2 � 26.9263.
The bosonic quasiparticle excitation spectrum now be-
comes linearly dependent on momentum near the minimal
points k� � 0, Q. When the boson condensation is care-
fully treated, the dynamical structure factors for spin, or-
bital, and combined spin-orbital collective excitations can
also be calculated through the fluctuation dissipation theo-
rem. After some algebra, the final results are given by

SS�q ! Q, v� � ST �q ! Q, v� � SL�q ! 0, v�

�
pr2

2
d�v� sgnv . . . , (14)

where K�x� is the complete elliptical function of the sec-
ond kind. In the range of 0 , jvj , 2l, there is a sharp
resonance in the collective excitations at zero frequency,
corresponding to the formation of a novel long-range or-
dered spin-orbital crystal state of resonating valence bonds.
In such a state, both the spin and orbital degrees of free-
dom from an AFM long-range order separately, while the
combined spin-orbital degrees of freedom form an FM
long-range ordering. The corresponding magnetizations
can be read off from the coefficient of the delta function
m � r�2 � 0.0535, which is much smaller than that of
the SU�2� antiferromagnetic Heisenberg spin model. Ac-
tually, this result is consistent with the identity in Eq. (3),
as the VB ordered state in the mean field theory has kept
the SU�4� symmetry of the model. The present results are
in conflict with the prediction of a spin-liquid state with
a finite-energy gap by the quantum Monte Carlo Green
function calculations on a small square lattice for the same
model [17]. However, the very small magnetization clearly
indicates that the quantum fluctuations in the spin-orbital
coupled model are much stronger than those in the pure
spin model. The numerical data show that the energy gap
(even if it exists) is very close to zero. In this sense, both
analytical and numerical results seem to be consistent with
each other. Compared with the numerical method, the
SU�4� Schwinger boson mean field approach for the sym-
157201-4
metrically coupled spin-orbital systems has provided the
insight into the exact nature of the ground state and its
first excitations.

In conclusion, we derived a reduced effective spin-
orbital Hamiltonian in a symmetric spin-orbital system by
introducing the SU�4� Schwinger boson representation.
After introducing a symmetric pairing VB order parameter,
a mean field theory was developed, leading to a quantum
disordered liquid state with a finite gap in the collective
excitations in 1D and, on a 2D square lattice, a novel
long-range FM ordered spin-orbital crystal state, where
both the spin and orbital degrees of freedom form AFM.
The new ordering properties due to the interplay between
the spin and orbital degrees of freedom should be de-
tected in future experiments on transitional metal oxides.
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