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We present a general theoretical formulation, based on nonequilibrium Green’s functions, for
nonlinear dc transport in multiprobe mesoscopic conductors. The theory is gauge invariant and is
useful for the predictions of current–voltage characteristics and the nonequilibrium charge pileups
inside the conductor. We have provided a detailed comparison between the gauge invariant
scattering matrix theory and our theory. We have also given several examples where theI –V curve
can be obtained analytically. The effects of exchange and correlation have been considered
explicitly. © 1999 American Institute of Physics.@S0021-8979~99!06121-6#
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I. INTRODUCTION

Many practical electronical devices, such as diodes
transistors, operate on nonlinear current–voltage (I –V)
characteristics:I a5I a($Vb%), where subscriptsa andb de-
note leads which connect the device to the outside wo
Classically, one can predict theI –V curves by solving the
coupled equations of classical electron motion such as
Boltzman equation, and the Poisson equation for the elec
static potential of the conductor, subjecting to the bound
conditions that at the asymptotic region of the leadb, the
external bias voltage is fixed atVb . For coherent quantum
conductors in the mesoscopic regime, one still must solve
coupled equations but the electrons are now quantum e
ties. Clearly the prediction ofI –V curves becomes muc
more difficult in the quantum situation. As a consequen
most theoretical analysis of quantum transport in cohe
quantum devices do not predictI –V curves: they focus on
the linear dc conductanceGab which can be calculated from
a variety of theoretical methods.1,2 This is then compared
with experiments which extractGab from the measuredI –V
curves at a vanishing bias voltage:I a5SbGabVb .

Because linear conductanceGab does not give the whole
picture concerning a nonlinear device, it is very important
theoretically, go beyond the linear transport regime and p
dict the wholeI –V curve. At nonlinear situations, one mu
worry about a fundamental physics requirement: the ga
invariant condition which dictates that the predicted elec
current should be the same when potential everywher
shifted by a constant amount.3 Büttiker and co-workers3,4

have developed a scattering matrix theory~SMT! which sat-
isfies the gauge invariant condition and predicted the seco
order nonlinear conductance. When the scattering ma
takes a specially simple4 form, e.g., the Breit–Wigner form
the full nonlinearI –V characteristics is also obtained.4 The
key idea,3,4 in order to maintain gauge invariance, is to i
clude the internal potential landscape into the analysis wh
is a result of long range Coulomb interactions.5 For example,
Ref. 4 treated internal potential to linear order in bias vo
5090021-8979/99/86(9)/5094/9/$15.00
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age, thus it can predict nonlinear conductance up to the
ond order. Recently, this SMT has been extended to pre
higher order weakly nonlinear conductances6 and connec-
tions to the framework of response theory has be
formalized.7 In both SMT4,6 and the response theory,7 one
calculates the nonlinear conductance perturbatively orde
order in voltage. Such theories make sense for weakly n
linear situations where the external bias is finite but sm
Hence practically, it is very difficult to computeI –V curves
for more general situations.

From the nonequilibrium Green’s functions~NEGF!,8–15

Ref. 16 provided an analysis ofI –V curve in the wide-band
limit, where gauge invariance was satisfied by including
internal potential phenomenologically through the use o
capacitive charging model. The charging model is, howev
not fully nonlinear since the internal potential is treated l
early in it. It is thus important and attractive to further d
velop the NEGF to the fully nonlinear regime for the purpo
of predicting I –V characteristics of multiprobe cohere
quantum conductors. It is the purpose of this work to prov
such a development: we have formulated a general ga
invariant nonlinear dc theory based on NEGF by treating
nonlinear internal potential from first principles. Our theo
also goes beyond the wide-band limit and can directly p
dict the I –V curves and the nonequilibrium charg
pileups3,17 inside the conductor. The former can be expand
to obtain weakly nonlinear conductances which we sh
compare with results obtainable from SMT at lower orders18

while the latter gives a voltage-dependent nonlinear cap
tance coefficient which is experimentally measurable. O
theory provides a solid base for further numerical predictio
of I –V curves for complicated coherent quantum device
ometries. We will provide the theoretical formalism in Se
II. In Sec. III, we will give detailed comparison between th
result of our theory and that of SMT. We will calculate th
I –V curve for a number of examples. The summary will
given in Sec. IV.
4 © 1999 American Institute of Physics
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II. GAUGE INVARIANT FORMULATION

Let’s consider a quantum coherent multiprobe conduc
with the Hamiltonian

H5(
ka

ekacka
† cka1Hcen$dn ,dn

†%

1 (
ka,n

~Tka,ncka
† dn1c.c.!, ~1!

whereeka5ek
01qVa . The first term of Eq.~1! describes the

probes where dc signal is applied far from the conductor;
second term is the general Hamiltonian for the scatter
region which is a polynomial in$dn

† ,dn% that commutes with
the electron number operator16 N5Sndn

†dn ; the last term
gives the coupling between probes and the scattering re
with the coupling matrixTka,n . Here,cka

† (cka) is the cre-
ation ~annihilation! operator of electrons inside thea probe.
Similarly, dn

† (dn) is the operator for the scattering region
The electric current can be written in terms of Gre

functions in the usual manner19,20 (\51),

Ja52 iqE ~dE/2p!Tr„Ga~E2qVa!

3$@Gr~E,U !2Ga~E,U !# f ~E2qVa!1G,~E!%…,

~2!

whereGr(E,U) is the retarded Green’s function which d
pends onU, the electrostatic potential builds up inside o
conductor. Although Eq.~2! is derived in momentum space
physical quantities such as current do not depend on re
sentation. Hence, one can calculate the Green’s function
current using Eq.~2! either in momentum space or in re
space. To get analytic solution, one can assume the w
band limit and work in momentum space. On the other ha
in the numerical calculations, it is more convenient to wo
in real space where a tight-binding form of the Hamiltoni
is used. In the Hartree approximation, the retarded Gre
function in real space is given by2

Gr~E,U !5
1

E2H2qU2S r , ~3!

whereS r[SaSa
r (E2qVa) is the self-energy21 and Ga(E)

522 Im@Sa
r (E)# is the linewidth function. Within the den

sity functional theory,22 we can further include the exchang
and correlation effect,

Gr~E,U !5
1

E2H2qU2Vxc2S r , ~4!

where Vxc5dExc /dr is the potential due to the exchang
and correlation energyExc andr is the charge density. It is
worth to emphasize that a most important departure of
theory from the previous NEGF analysis19,20,16 is that we
explicitly include the internal potential landscapeU(r ) into
the Green’s functions self-consistently. This is the cruc
step in the development of a gauge invariant nonlinear
theory. At Hartree levelU(r ) is determined by the self
consistent Poisson equation,
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¹2U~x!524pr54p iqE ~dE/2p!@G,~E,U !#xx , ~5!

whereG, is the lesser Green’s function in real space anx
labels the position. Within Hartree approximation,G, is re-
lated to the retarded and advanced Green’s functionsGr and
Ga,

G,~E,U !5Gr(
b

iGb~E2qVb! f ~E2qVb!Ga. ~6!

Equation~5! is, in general, a nonlinear equation becauseGr ,a

depends onU(r ) @see Eq.~3!#. Using Eq.~6! we reduce the
current into the following form;

Ja52q(
b

E ~dE/2p!Tr~GaGrGbGa!~ f a2 f b!, ~7!

where we have used the notationGa[Ga(E2qVa), G
5SaGa , andf b[ f (E2qVb). To make connection with the
SMT, we introduce the screened transmission function

Aab5Tr@GaGr~Gdab2Gb!Ga#/~4p2!, ~8!

we then arrive at the familiar form of the current in SMT,4

Ja522pq(
b

E dE fbAab . ~9!

Equations~7!, ~3!, and ~5! completely determines the
nonlinearI –V characteristics of an arbitrary multiprobe co
ductor, they form the basic equations of our theory. T
self-consistent nature of the problem is clear: one must so
the quantum scattering problem~the Green’s functions! in
conjunction with the Poisson equation. It is easy to pro
that the current expression Eq.~7! is gauge invariant: shifting
the potential everywhere by a constantV, U→U1V and
Va→Va1V, Ja from Eq. ~7! remains the same. Note in Eq
~7!, the quantityG depends on voltage and without such
voltage dependence, the gauge invariance cannot be sati
On a technical side, Eqs.~7!, ~3!, and ~5! also form a basis
for numerical predictions ofI –V curves. For instance, on
can compute the various Green’s functionsG and the cou-
pling matrixG for multiprobe conductors using tight-bindin
models;2 and the Poisson equation can be solved using v
powerful numerical techniques.23

III. RESULTS

The main thrust of the previous section~and of this
work! is the solution of the gauge invariance problem for
nonlinear transport in general terms of bias voltages. In
rest of the article, we shall derive analytical expressions fo
number of examples which can be solved in closed form.
low bias where SMT3 and linear response7 are applicable for
weakly nonlinear situation, we show that our general form
reduces and becomes compatible with them. But for hig
bias where these previous theories are not applicable,
theory becomes an unique approach for analyzing nonlin
dc quantum transport. Hence, we derive the general curre
voltage characteristics for the entire range of nonlinearity
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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a tunneling device, and prove that results obtained with
without gauge invariance can differ substantially not on
quantitatively but also qualitatively.

A. Weakly nonlinear regime

For weak nonlinearity, we can series expand all qua
ties in terms of the small external bias voltage3 and obtain
results order by order: this is precisely the approach ada
in SMT3 and response theory.7 In this subsection, we confirm
that our nonlinear theory indeed reduces to these prev
approaches at the weakly nonlinear regime where they
applicable. In particular, we shall derive analytical expr
sions for the local density of states~LDOS! and the second
order weakly nonlinear dc conductance, which are the
interesting quantities for weakly nonlinear regime.

In both SMT3 and response theory,7 LDOS plays a very
important role. From our NEGF theory, LDOS can be eas
derived from the right-hand side of Eq.~5!, which is the
charge density, with the help of Eq.~6!. Here, we shall
present the explicit expression at the lowest order7 expansion
in the external voltage. Hence, we seek the solution ofU(r )
in the following form:

U5Ueq1(
a

uaVa1
1

2 (
ab

uabVaVb1¯ , ~10!

whereUeq is the equilibrium potential andua(r ), uab..(r )
are the characteristic potentials.3,7,6 It can be shown that the
characteristic potential satisfy the following sum rules:3,7,6

(
a

ua51 ~11!

and

(
geb

ua$b% l
50. ~12!

Here, the subscript$b% l is a short notation ofl indicesg, d,
h,... . ExpandingG, of Eq. ~5! in power series ofVa , we
can derive the equations for all the characteristic potenti
In particular, the expansions are facilitated by the Dys
equation to the appropriate order~in the absence of the ex
change and correlation effect!:

Gr5G0
r 1G0

r S qU2qUeq

1(
a

@Sa
r ~E2qVa!2Sa

r ~E!# DG0
r 1¯ ~13!

with G0
r the equilibrium retarded Green’s function, i.e., wh

U5Ueq. At the lowest order, we thus obtain
Downloaded 02 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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2¹2ua~r !52q2E dE f~G0
r uaG0

r GG0
a1c.c.!rr

22q2E dE f~G0
r ]ESa

r G0
r GG0

a1c.c.!rr

22q2E dE@G0
r ~Ga]Ef 1]EGa f !G0

a# rr ,

~14!

whereGa andf no longer depend on voltage after the expa
sion; and c.c. denotes complex conjugate.

The first term on the right-hand side of Eq.~14!, which
depends on internal potentialua , describes the induced
charge density in the conductor. It can be simplified us
the fact iG5(G0

r )212(G0
a)21, hence it becomes

4pq2S r 8P rr 8ua(r 8), whereP is the Lindhard function24,7

defined asP rr 852 i *(dE/2p) f (G0rr 8
r G0r 8r

r
2G0rr 8

a G0r 8r
a ).

The second and third term of Eq.~14! which do not depend
on characteristic potential correspond to the charge den
due to external injection. They are the local partial density
states~LPDOS! dna(r )/dE called injectivity in the language
of the scattering matrix,3

dna~x!/dE52E ~dE/2p!@G0
r Ga]Ef G0

a#

2E ~dE/2p! f @G0
r ]EGaG0

a1G0
r ]ESa

r G0
r GG0

a

1G0
r GG0

a]ESa
r G0

a#

52E ~dE/2p! f @G0
r ~G0

r Ga1GaG0
a!G0

a#

1E ~dE/2p! f @G0
r ~]ES rG0

r Ga1GaG0
a]ESa

2]ESa
r G0

r G2GG0
a]ESa

a !G0
a#. ~15!

Comparing this result with that derived by SMT,5 the SMT
result5 corresponds to the first term on the right-hand side
Eq. ~15!. Hence, the local partial density of states obtain
from our general theory is slightly different from that define
in SMT.5 However, it can be proven that the difference, e.
the second integral of Eq.~15!, becomes negligible in the
limit of large scattering volume. The proof follows the a
proach detailed in our earlier work Ref. 25.

We obtain LDOSdn(r )/dE from Eq. ~15!:

dn~r !/dE5(
a

dna /dE

52E ~dE/2p! f @G0
r ~G0

r G1GG0
a!G0

a#

5 i E ~dE/2p! f ~G0
r G0

r 2G0
aG0

a!. ~16!

This is exactly the same as the LDOS we obtained from
response theory.7 The agreement is actually not surprisin
because we are dealing with dc transport where there is
reversal symmetry, the result of NEGF should be the sam
 license or copyright, see http://jap.aip.org/jap/copyright.jsp



a

o
th

n
bia

h

a

nd
e

t

a

e

rd

ak
ned
ec.
ge
nd

li-
ses
ntial

ple

sys-
he

he

a-
nse
he
p-
16
en-
f

tic

tify

al

ev-

5097J. Appl. Phys., Vol. 86, No. 9, 1 November 1999 Wang, Wang, and Guo
that of the linear response. Our result of LDOS exactly s
isfies the general relationship:24,3 S r 8P r ,r 85dn(r )/dE.

As a second comparison to the results obtainable fr
SMT and response theory, we now derive a formula for
second-order nonlinear conductanceGabg from our theory
of Sec. II. In weakly nonlinear regime, the electric curre
can be expanded in a series form in terms of external
voltages,

Ja5(
b

GabVb1(
bg

GabgVbVg

1(
bgd

GabgdVbVgVd1¯ ~17!

To compute the second-order nonlinear conductanceGabg ,
it is enough to calculateua for the internal potential. Ex-
panding the general expression for the current Eq.~7! to the
second order in voltage, it is straightforward to obtain t
second-order nonlinear conductance:

Gabg52q3E ~dE/2p!Tr@]EGaG0
r ~Gdag2Gg!G0

a]Ef dab

2GaG0
r ~ub2]ESb

r !G0
r ~Gdag2Gg!G0

a]Ef

1GaG0
r ]EGgG0

a]Ef dab2GaG0
r ]EGgG0

a]Ef dbg

1~1/2!GaG0
r ~Gdag2Gg!G0

a]E
2 f dbg

2GaG0
r ~Gdag2Gg!G0

a~ub2]ESb
a !G0

a]Ef #. ~18!

This result is gauge invariant as one can explicitly verify th
it satisfies the gauge invariant condition4 Sb(Gabg1Gagb)
50. This result agrees with that derived from SMT4 if we
neglect the terms involving]EG and ]ES. In that case, we
obtain

Gabg5q3E ~dE/2p!Tr@~G0
aGaG0

r ubG0
r

1G0
aubG0

aGaG0
r 21/2G0

aGaG0
r G0

r dbg

21/2G0
aG0

aGaG0
r dbg!~Gdag2Gg!#]Ef

52pq2E dE~2]Ef !@1/2q]EAabdbg1]Vb
Aag#,

~19!

which agrees exactly with the result in Ref. 4. The seco
order nonlinear conductance has been investigated num
cally for several systems using the scattering approach.26 For
detailed discussion of the numerical technique needed for
calculation, see Ref. 26.

Finally, we comment that by expanding Eq.~5! to higher
order in terms of voltage, it is straightforward to show th
the nonlinear characteristic potentialsuab... satisfy a Poisson
equation similar to Eq.~5! with different source terms
dnab... /dE which correspond to nonlinear LDOS. Th
higher order nonlinear coefficientGab... can be obtained in
similar fashion as we have done here for the second-o
coefficient.
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B. I – V curve in the wideband limit at zero
temperature

In the last subsection, we examined the limit of we
nonlinearity. However, the main advance we have obtai
from the gauge-invariant NEGF formalism developed in S
II is to be able to predict the full nonlinear current–volta
(I –V) curves. Several analysis will be presented in this a
the next subsections for theI –V curves.

In the commonly used wide-band limit,19 the coupling
matrix G is independent of energy which drastically simp
fies the algebra. The wide-band limit corresponds to ca
where the probes have no feature, thus the internal pote
U(r ) becomes just a space-independent constantU0 ~the
value of U0 depends on the voltages$Va%!. In wide-band
limit the steady state Green’s function takes a very sim
form, G0

r 51/(E2E01 iG/2), thus, the integral in Eq.~7! can
be done exactly. We obtain

Ja52
q

pG (
b

~Gdab2Gb!Ga

3arctanS DE2qU01qVb

G/2 D , ~20!

whereDE5EF2E0 and the constantU0 is determined by
the charge conservation condition*dETr@G,(E,V)#
5*dETr@G,(E,0)#, i.e.,

(
b

Gb arctanS DE2qU01qVb

G/2 D5G arctanS DE

G/2D . ~21!

To obtain this equation, the quasineutrality approximation5 is
assumed which neglects the charge polarization in the
tem in addition to the use of total charge neutrality. T
gauge-invariant condition in Eq.~20! is clearly satisfied: rais-
ing bothVb andU0 by the same amount does not alter t
current. Equations~20! and ~21! have been obtained before4

from SMT where a Breit–Wigner form of the scattering m
trix is assumed. Hence, we may conclude that in this se
the wide-band limit in NEGF approach is equivalent to t
Breit–Wigner approximation in the scattering matrix a
proach. It is, however, different from that derived in Ref.
where a linear charging model is used for the internal pot
tial buildup. It is not difficult to confirm that the result o
Ref. 16 is recovered if we solve forU0 in Eq. ~21! to the first
order in voltageV, i.e., we compute the internal potentialU0

by neglecting the contributions of higher order characteris
potentials uab ... . In this limit, we obtain U0

5Sa(Ga /G)Va . Substitute this into Eq.~20! we arrive at
the result of Ref. 16. This exercise also allows us to iden
the phenomenological parameterCi of Ref. 16 to beG i , and
it indicates that the linear charging model for the intern
potential is not complete for the full nonlinearI –V curve
predictions.

Next, let’s derive the full nonlinearI –V curve for a
quantum dot with two resonant levels. For two resonant l
els in a quantum dot, the retarded Green’s function27 can be
derived to have the following expression:
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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Gr5
1

@1/~E2E12qU!11/~E2E22qU!#211 iG/2
,

~22!

where E1 and E2 are energies of the two resonant leve
From Eq.~7!, we obtain the current is

Ja5
q

2pG (
b

~Gdab2Gb!Ga

3ImF ln~ab
22b2!1

iG

2b
lnS ab1b

ab2bD G , ~23!

where ab5EF1qVb2qU02(E11E2)/21 iG/2 and b2

5(E12E2)2/42G2/4. In the quasineutrality approximation
we derive that the internal potentialU0 is determined by
following equation:

(
b

Gb ImF ln~ab
22b2!1

iG

2b
lnS ab1b

ab2bD G
5G ImF ln~a22b2!1

iG

2b
lnS a1b

a2bD G , ~24!

wherea5EF2(E11E2)/21 iG/2.
Figure 1 plots the predictedI –V curve Eq.~23! with the

parameterG15G250.1, E150.3, E251.4, andEF50.11.
To compare theI –V curves with and without gauge invar
ance, in Fig. 1 we have plotted three curves. The dot-das
line represents the gauge-invariant solution Eq.~23!. Since
this solution is gauge invariant, we chooseV15V and V2

50 in Fig. 1. Both the other two lines~solid and dotted! are
for U050 thus no internal potential is taken into accou
self-consistently. Two observations warrant to be discus
First, the two non-self-consistentI –V curves, solid line with
V15V and V250 and dotted line withV15V/2 andV25
2V/2, give differentI –V curves. This is clearly wrong be
cause electric current must only depend on the bias vol
difference which isV for both curves, and not on the choic
of the reference point for potential. This is a direct con
quence of the flaw of a non-self-consistent theory. Seco

FIG. 1. Current vs the voltage for a resonant tunneling structure with
resonant levels for self-consistent solution and non-self-consistent sol
with two different voltage gauges. Solid line: non-self-consistent solut
for V15V and V250; dotted line: non-self-consistent solution forV1

5V/2 andV252V/2; dot-dashed line: self-consistent solution. The syst
parameters areG15G250.1, E150.3, E251.4, andEF50.11.
Downloaded 02 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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the qualitative behavior of the current versus voltage curv
different. Both curves of the non-self-consistent analy
show quantized steps, which the self-consistent analysis
quasineutrality approximation does not give. This differen
in qualitative behavior can be understood as due to
quasineutrality approximation. The electric current for t
incident electrons with energyEF will increase sharply when
the chemical potentialm5EF1qV is close to the first reso
nant energy levelE1 . When the internal potential build-up i
not included in the non-self-consistent analysis, this curr
saturates after crossing the first level but increases a
whenm is near the second resonant level. This is actuall
reasonable picture. In the self-consistent solution wit
quasineutrality approximation, however, the internal ene
U0 solved from quasineutrality condition Eq.~24! increases
linearly V5kU0 with the voltage with coefficientk close to
one. Hence, as the chemical potential rises, the resonant
also increases with approximately the same amount. T
the second resonance level will not be reached~within the
quasi-neutrality approximation! for the range of voltages o
Fig. 1. Finally, In Fig. 2, we have plotted the differenti
conductancedI/dV of two non-self-consistent solutions. Fo
the caseV15V and V250 ~solid line!, two peaks show up
nearV50.2 andV51.3. Since the Fermi level in the equ
librium is EF50.11, those two peaks reflect the resona
behavior when the chemical potentialqV11EF is in line
with two resonant levelsE150.3 andE251.4. WhenV1

5V/2 andV252V/2 ~dotted line!, the chemical potential is
again qV11EF5qV/21EF , so we found two peaks atV
50.38 andV52.6. However, the spacing between two pea
are different for two different choice of voltageV1 andV2 : it
is therefore important to include the Coulomb interaction
that the theory is gauge invariant.

Our results strongly suggest that as far as theI –V curve
prediction is concerned, without interaction one violat
gauge invariance, but including interaction within th
quasineutrality approximation is still not enough as it miss
the expected resonance levels in theI –V curve, which are
often observed in experimental situations.28 Hence, it maybe
necessary to go beyond the quasineutrality approximatio

o
on
n

FIG. 2. Corresponding differential conductance for the non-self-consis
solutions of Fig. 1. Solid line: non-self-consistent solution forV15V and
V250; dotted line: non-self-consistent solution forV15V/2 and
V252V/2.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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C. Exchange and correlation effect

So far the electron-electron interaction which gives r
to the internal potential buildup has been treated within
Hartree approximation with the quasineutrality condition.
this subsection, we examine the effects of exchange and
relation to the nonlinearI –V curves within the wide-band
limit for a resonant tunneling structure. We must also
beyond the quasineutrality approximation.

Going beyond quasineutrality approximation means t
we must consider the local charge distribution under the c
dition of overall charge neutrality. For a double-barrier tu
neling structure, let’s introduce capacitance coefficientsC1

andC2 for the left and the right barrier, respectively. The
the charge in the quantum well due to Coulomb interactio
given by29

DQ52 i E ~dE/2p!@G,~E,U0!2G0
,#

5C1~U02V1!1C2~U02V2!, ~25!

whereDQ is the total charge in the well,U0 is the overall
shift of the band bottom of the well due to the Coulom
interaction, andG0

, is the equilibrium lesser Green’s func
tion. For the system with only one resonant level, this eq
tion reduces to

(
b

Gb arctanS EF2H01qVb

G/2 D2G arctanS EF2H0

G/2 D
5@C1~U02V1!1C2~U02V2!#pG/q, ~26!

where the wideband limit is assumed andH05E01qU0

1qVxc . The current is given by

Ja52
q

pG (
b

~Gdab2Gb!Ga arctanS EF2H01qVb

G/2 D .

~27!

Here, we note that Eqs.~21! and~26! are equations to deter
mine the internal potentialU0 which is needed in order tha
expressions for current in Eqs.~20! and ~27! to be gauge
invariant.

To plot theI –V curve determined by Eqs.~26! and~27!,
we use Vxc521.5aDQ1/3 in the Hartree–Fock–Slate
approximation,22,30 where 2/3<a<1. Parametrized by the
coupling constantsG i and the geometrical capacitance co
ficientsCi , we thus can calculate the nonlinearI –V curves
from Eqs.~26! and~27!. Figure 3 presents current as a fun
tion of voltage differenceV5V12V2 . We have compared
the cases with or without exchange and correlation poten
Vxc for two different set of system parameters: symme
barrier with G15G250.5, C15C255.0, DE521.0, a
50.7 ~dotted line withVxc , solid line without!; and asym-
metric barrier with G150.1, G250.5, C151.0, C255.0,
DE521.0, a50.7 ~dashed line withVxc and dot-dashed
line without!. We observe that the current for the symmet
barrier is much larger than that of the asymmetric barrier
V.2, but it can be smaller for smaller bias between 1,V
,2, and becomes larger again at very smallV,1. Without
the internal potential buildup taken into account, it is w
known that symmetrical tunneling barriers have larger tra
Downloaded 02 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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mission coefficients hence larger current than those of as
metrical barriers. The behavior of theI –V curves in Fig. 3 at
the V→0 limit is consistent with this picture. However, a
larger voltages, this expectation may or may not be true,
to the nonlinear effects and the internal potential buildu
We found that for both symmetrical and asymmetrical ba
ers, the exchange and correlation effects are to increase
electric current. This is seen more clearly from the differe
tial conductancedI/dV versus voltage in Fig. 4. Since th
exchange and correlation termVxc is to lower the bottom of
the conduction band, the peak ofdI/dv shifts to the small
voltage as a result.

When exchange and correlation effects are included
the two-level tunneling system, Eqs.~23! and~24! are modi-
fied in a similar way as Eqs.~27! and ~26!. Figure 5 shows
the I –V curve for two-level system forG15G250.1, C1

5C251.0, E150.3, E251.4, EF50.11, anda50.7. The
I –V curves with~dotted line! and without~solid line! Vxc

are plotted for comparison, but bothI –V curves now show
two steps reflecting the two resonance levels for tunneli
Hence, by going beyond the quasineutrality approximati
the gauge-invariant theory developed in Sec. II predict

FIG. 3. Gauge invariant current vs the voltage for a resonant tunne
structure with one resonant level. Solid line~Vxc not included! and dotted
line ~Vxc included!: G15G250.5, C15C255.0, DE521.0, a50.7; dot-
dashed line~Vxc not included! and dashed line~Vxc included!: G150.1,
G250.5, C151.0, C255.0, DE521.0, a50.7.

FIG. 4. Differential conductance of a resonant tunneling structure with
resonant level. The parameters are the same as that of Fig. 3.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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‘‘quantized’’ I –V curve which, as mentioned above,
physically reasonable. Again, whenVxc is present, the cur-
rent increases.

In Fig. 6, we show the differential conductancedI/dV
for the same system parameters as that of Fig. 5. When
exchange and correlation potential is included~solid line!, it
is surprising to observe that there are three peaks indI/dV
instead of two~dotted line withoutVxc!. In addition, the
peaks ofdI/dV are shifted towards smaller values of bias
compared to thedI/dV curve forVxc50. The entire behav-
ior of dI/dV can be understood as the following. The inte
nal Coulomb potentialU0 tends to move the resonant lev
up ~to higher energy! and the exchange and correlation p
tential Vxc tends to lower it down, these two effects giv
compensating factors to move the resonance levels inside
quantum well. At very small voltage,uVxcu increases much
faster than the internal potentialU0 does as the bias is in
creased~see inset of Fig. 6!, thus the resonant levelE1

moves downwards in energy from its ‘‘bare’’ valueE1

50.3: a resonance peak is expected when it is lowered to
chemical potential. As the voltage increases such that

FIG. 5. Gauge invariant current vs the voltage for a resonant tunne
structure with two resonant levels. Solid line~Vxc not included! and dotted
line ~Vxc included!: G15G250.1, C15C251.0, E150.3, E251.4, EF

50.11.

FIG. 6. Differential conductance of a resonant tunneling structure with
resonant levels. The parameters are the same as that of Fig. 5. Inse
exchange and correlation potentialVxc vs voltage of a resonant tunnelin
structure with two resonant levels.
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level E1 is lowered to below the chemical potential,dI/dV
decreases from the resonance peak consistent with the fa
going off resonance. When the voltage increases further,
resonant levelsE1 and E2 start to move upward in energ
due to the effect ofU0 , and it will again pass the chemica
potential resulting to the resonance peak nearV50.5. Fi-
nally, when the voltage is aroundV52.0, the chemical po-
tential is near the second resonant level and we see a s
increase ofdI/dV and the third peak shows up as a resu
We conclude that the quasineutrality condition may need
be extended in predictingI –V curves when the system is i
the tunneling regime. Here, we have used a phenomeno
cal but nonlinear capacitance charging model to include
charge polarization effects, which are seen to play an imp
tant role in predicting quantizedI –V curves. It is further
found that the exchange-correlation potentialVxc can be
quite important as it provides a compensating effect to
Hartree internal potentialU0 .

D. I – V curve with Hubbard U term

To maintain the gauge invariance, we have so far c
sidered the Coulomb interaction in the Hartree approxim
tion with or without an exchange-correlation term. In th
subsection, we will consider the on-site Coulomb interact
in terms of HubbardU model with the following Hamil-
tonian forHcen in Eq. ~1!:

Hcen5(
s

E0ds
†ds1U1n↑n↓ . ~28!

Here, we assume that the quantum dot contains one en
level E0 with Coulomb repulsion energyU1 which accounts
for the interaction between different spins. In addition toU1

we assume that the long range Coulomb potentialU between
different sites gives an overall a constant shiftU0 to the
bottom of conduction band. This is similar in spirit to th
energy shiftD introduced in Refs. 19 and 31. However,
our case,U0 has to be determined self-consistently. Equat
~28! has been used by many authors before,32,9 but the gauge
invariant condition has not not been considered there.

The current is still determined by Eq.~2!. But now the
lesser Green’s function is given by33

Gs
,~E,U !52@Gs

r 2Gs
a #(

b
Gb f b /G, ~29!

where34–36

Gs
r ~E,U !5

^ns̄&
E2E02U12qU1 iG/2

1
12^ns̄&

E2E02qU1 iG/2
~30!

and

^ns&52 i E ~dE/2p!Gs
, . ~31!

The internal Coulomb potentialU can be determined in
terms of the geometrical capacitancesC1 andC2 ,

g

o
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E ~dE/2p!(
s

Gs
,~E,U !2E ~dE/2p!(

s
Gs0

,

5C1~U02V1!1C2~U02V2! ~32!

from Eq. ~30!, this condition becomes

(
b

Gb(
s

^ns̄&arctanS DE2U12qU1qVb

G/2 D
1(

b
Gb(

s
~12^ns̄& !arctanS DE2qU1qVb

G/2 D
2G(

s
^ns̄&arctanS DE2U1

G/2 D2G(
s

~1

2^ns̄& !arctanS DE

G/2D
5@C1~U02V1!1C1~U02V1!#2pG/q. ~33!

With the potentialU determined this way, the current is fi
nally written as

Ja52
q

pG (
b

~Gdab2Gb!Ga

3F(
s

^ns̄&arctanS DE2U12qU1qVb

G/2 D
1(

s
~12^ns̄& !arctanS DE2U11qVb

G/2 D G ~34!

which can be calculated numerically using Eqs.~31!, ~33!,
and ~34!. In Fig. 7, we have plotted the differential condu
tance versus voltage forG15G250.5, C15C255, DE
521.0, andU154.0. As expected, there are two peaks c
responding to two different energiesE0 andE01U1 . Since
the Coulomb interactionU increases linearly with voltage
2U'V, the separation between the two peaks becom
2U1 .

FIG. 7. Differential conductance of a resonant tunneling structure with H
bardU term. The parameters are:G15G250.5, C15C255.0, DE521.0,
andU154.0.
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IV. SUMMARY

In this work, we have developed a general gaug
invariant nonlinear dc transport theory based on the none
librium Green’s functions. The main idea of this develo
ment is to self-consistently couple the NEGF with the prop
Poisson equation for the internal potential buildup inside
mesoscopic conductor. It is the consideration of the inter
potential distribution which has made the NEGF theo
gauge invariant. At various limiting cases, our theory p
dicts results consistent with those of scattering matrix the
and response theory, but our theory allows a general tr
ment of the full nonlinear dc transport regime which a
perhaps, impossible for the other formalisms. The pres
theory is natural to allow the inclusion of exchange and c
relation potential within the density functional formalism
Hence, it is appropriate for transport in multiprobe condu
tors in the quantum coherent regime, and we have applie
to the analysis of resonant tunneling with one and two re
nance levels. Our results clearly show that without se
consistent analysis the predicted current would depend
the choice of potential zero, which is wrong. For the tunn
ing device, our analysis also indicated the importance of
cluding charge polarization effect. This effect can be cons
ered using the phenomenological model involvi
capacitance coefficients, as done here; or it can be inclu
through numerical solutions of a charging model as carr
out in Ref. 23. Finally, we found that in general a larg
current is obtained when exchange and correlation effects
included into the analysis.

Many further applications of the present formalism c
be made. An important further development is to aband
the wide-band limit. In this work, we have used this limit
order to derive analytical formula, but one can go beyo
this limit in numerical calculations. In the wide-band limi
the coupling matrix is independent of energy. A cons
quence, as we observe from theI –V curves, is that the cur-
rent increases monotonically with bias~no peaks in theI –V
curve itself!. Hence, the negative differential resistan
~NDR! can not be observed. To overcome this limitatio
Jauhoet al.19 have introduced a lower energy cutoff to allo
a finite occupied bandwidth of the contact. This modificati
allowed NDR to appear, but the current at large voltage
not agree with experimental results. Therefore, to obt
NDR quantitative correctly, we must go beyond the wid
band limit. This can be done within our formalism using t
numerical method developed by McLennanet al.37,2
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FCAR of Québec. The authors thank the computer center
HKU for computational facilities.

1R. Landauer, IBM J. Res. Dev.1, 233 ~1957!; M. Büttiker, Y. Imry, R.
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