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We present a general theoretical formulation, based on nonequilibrium Green’s functions, for

nonlinear dc transport in multiprobe mesoscopic conductors. The theory is gauge invariant and is
useful for the predictions of current—voltage characteristics and the nonequilibrium charge pileups
inside the conductor. We have provided a detailed comparison between the gauge invariant
scattering matrix theory and our theory. We have also given several examples whier&'tberve

can be obtained analytically. The effects of exchange and correlation have been considered
explicitly. © 1999 American Institute of PhysidsS0021-897699)06121-4

I. INTRODUCTION age, thus it can predict nonlinear conductance up to the sec-
ond order. Recently, this SMT has been extended to predict
Many practical electronical devices, such as diodes an@ligher order weakly nonlinear conductarfcemd connec-
transistors, operate on nonlinear current—voltage\) tions to the framework of response theory has been
characteristicst ,=1,({V}), where subscripter and8 de-  trmalized” In both SMT*® and the response thechyone
note leads which connect the device to the outside worldycjates the nonlinear conductance perturbatively order by

Classically, one can predlct_ the-V curves by_ solving the order in voltage. Such theories make sense for weakly non-
coupled equations of classical electron motion such as th L N
inear situations where the external bias is finite but small.

Boltzman equation, and the Poisson equation for the electr “ence practically. it is verv difficult to compute-V curves
static potential of the conductor, subjecting to the boundar¥ P Y L y P
or more general situations.

conditions that at the asymptotic region of the le@dthe o ) , 8-15
external bias voltage is fixed at;. For coherent quantum From the nonequilibrium Green’s functio®EGP),

conductors in the mesoscopic regime, one still must solve thB€f- 16 provided an analysis 6+V curve in the wide-band
coupled equations but the electrons are now quantum entliMit, where gauge invariance was satisfied by including the
ties. Clearly the prediction of—V curves becomes much internal potential phenomenologically through the use of a
more difficult in the quantum situation. As a consequence¢apacitive charging model. The charging model is, however,
most theoretical analysis of quantum transport in coherentot fully nonlinear since the internal potential is treated lin-
guantum devices do not predictV curves: they focus on early in it. It is thus important and attractive to further de-
the linear dc conductandg,,; which can be calculated from velop the NEGF to the fully nonlinear regime for the purpose
a variety of theoretical methods. This is then compared of predicting |-V characteristics of multiprobe coherent
with experiments which extraG,z from the measuret-V  quantum conductors. It is the purpose of this work to provide
curves at a vanishing bias voltage.== 3G .4V such a development: we have formulated a general gauge
Because linear conductanGe,; does not give the whole  jhyariant nonlinear dc theory based on NEGF by treating the

picture concerning a nonlinear device, it is very important to,ygnjinear internal potential from first principles. Our theory

theoretically, go beyond the linear transport regime and pre;;g goes beyond the wide-band limit and can directly pre-

dict the wholel -V curve. At nonlinear situations, one must ..+ o |_v curves and the nonequilibrium charge

worry about a fundamental physics requirement: the gaug ileups'!’inside the conductor. The former can be expanded

invariant condition which dictates that the predicted electri jo obtain weakly nonlinear conductances which we shall

current should be the same when potential everywhere is . .
shifted by a constant amou?ltBUttike? and co-wox\évfs“ compare with results obtainable from SMT at lower ordérs;

have developed a scattering matrix the@®@T) which sat- while the Ia.tt(.er gives- a Yoltage-dgpendent nonlinear capaci-
isfies the gauge invariant condition and predicted the second@nce coefficient which is experimentally measurable. Our
order nonlinear conductance. When the scattering matrif€0ry provides a solid base for further numerical predictions
takes a specially simpldorm, e.g., the Breit—Wigner form, Of |-V curves for complicated coherent quantum device ge-
the full nonlinearl —V characteristics is also obtainédhe ~ ometries. We will provide the theoretical formalism in Sec.
key idea>* in order to maintain gauge invariance, is to in- Il. In Sec. lll, we will give detailed comparison between the
clude the internal potential landscape into the analysis whickesult of our theory and that of SMT. We will calculate the
is a result of long range Coulomb interactiorBor example, |-V curve for a number of examples. The summary will be
Ref. 4 treated internal potential to linear order in bias volt-given in Sec. IV.
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Il. GAUGE INVARIANT FORMULATION
V2U(X)=—477p=4ﬂ-iqf (dE27)[G=(E,U) ]y, (5)
Let’s consider a quantum coherent multiprobe conductor

with the Hamiltonian whereG*= is the lesser Green’s function in real space and
labels the position. Within Hartree approximati@; is re-
H= ; €kaChaChat Heerdn,dl} Iélged to the retarded and advanced Green’s funct@hand
+an (TkanCradntC.C), (1) G=(E,U)=G"Y} iT4(E—qVy)f(E—qV,) G (6)
@, B

wheree,,= eg+qV, . The first term of Eq(1) describes the Equation(5) is, in general, a nonlinear equation becaG&é

probes where dc signal is applied far from the conductor; th@]epends oJ(r) [see Eq(3)]. Using Eq.(6) we reduce the

second term is the general Hamiltonian for the scatteringurrent into the following form;

region which is a polynomial{él{\dl ,dn} tpat commutes with

the electron number operatdrN=%,,d.d,; the last term - f r a _

gives the coupling between probes and the scattering region Ja qz;a: (dE2mTr(TG TG (T tg). (1)

with the coupling matrixT,, ,. Here,cf, (c.,) is the cre-

ation (annihilation operator of electrons inside theprobe.

Similarly, dl (d,) is the operator for the scattering region.
The electric current can be written in terms of Green

where we have used the notatidh,=I" (E—qV,), I'
=%,I',, andf ;=f(E—qV,). To make connection with the
SMT, we introduce the screened transmission function

functions in the usual manrér® (A =1), A =TI ,G'(I'8,5—T 5) G/ (472), (8)
. we then arrive at the familiar form of the current in SMT,
J,=—iq | (dE2m™)Tr(I (E—qV,)
X{[G'(E,U)—G*E,U)]f(E—qV,)+G=(E)}), J“:_qu% f AEfsAas- ©
2 Equations(7), (3), and (5) completely determines the

whereG'(E,U) is the retarded Green’s function which de- nonlinearl —V characteristics of an arbitrary multiprobe con-
pends onU, the electrostatic potential builds up inside ourductor, they form the basic equations of our theory. The
conductor. Although Eq(2) is derived in momentum space, self-consistent nature of the problem is clear: one must solve
physical quantities such as current do not depend on reprébe quantum scattering problefthe Green’s functionsin
sentation. Hence, one can calculate the Green’s function argPhjunction with the Poisson equation. It is easy to prove
current using Eq(2) either in momentum space or in real thatthe current expression Eg) is gauge invariant: shifting
space. To get analytic solution, one can assume the widdhe potential everywhere by a constant U—U+V and
band limit and work in momentum space. On the other handY«— Va1V, J, from Eq.(7) remains the same. Note in Eq.

in the numerical calculations, it is more convenient to work(7), the quantityl” depends on voltage and without such a
in real space where a tight-binding form of the HamiltonianVvoltage dependence, the gauge invariance cannot be satisfied.
is used. In the Hartree approximation, the retarded Green’®n a technical side, Eqs$7), (3), and(5) also form a basis

function in real space is given by for numerical predictions of—V curves. For instance, one
can compute the various Green’s functidBsand the cou-
G'(E,U)= ; 3) pling matrixI" for multiprobe conductors using tight-binding
’ E-H—-qU-3" models? and the Poisson equation can be solved using very

_ powerful numerical techniqués.
where3'=3 3" (E—qV,) is the self-energd} and T ,(E)

=—21Im[X!(E)] is the linewidth function. Within the den-
sity functional theory?? we can further include the exchange

and correlation effect, Il RESULTS
1 The main thrust of the previous sectigand of this
G'(E,U)= E-H—qU—V,—3" (4)  work) is the solution of the gauge invariance problem for dc
XC

nonlinear transport in general terms of bias voltages. In the
where V, .= 6E,./Sp is the potential due to the exchange rest of the article, we shall derive analytical expressions for a
and correlation energk,. andp is the charge density. It is number of examples which can be solved in closed form. At
worth to emphasize that a most important departure of outow bias where SMYand linear responéare applicable for
theory from the previous NEGF analysi€®!®is that we weakly nonlinear situation, we show that our general formula
explicitly include the internal potential landscapér) into  reduces and becomes compatible with them. But for higher
the Green’s functions self-consistently. This is the crucialbias where these previous theories are not applicable, our
step in the development of a gauge invariant nonlinear dt¢heory becomes an unique approach for analyzing nonlinear
theory. At Hartree levell(r) is determined by the self- dc quantum transport. Hence, we derive the general current—
consistent Poisson equation, voltage characteristics for the entire range of nonlinearity for

Downloaded 02 Nov 2006 to 147.8.21.97. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



5096 J. Appl. Phys., Vol. 86, No. 9, 1 November 1999 Wang, Wang, and Guo

a tunneling device, and prove that results obtained with or ) ) ) A
without gauge invariance can differ substantially not only ~ — VU.(r)=2q JdEf(GanGoFGﬁC-CJrr
guantitatively but also qualitatively.

- 2qu dEf(Gyoe2! GoI'G5+c.c),,

A. Weakly nonlinear regime 2 ; a
o : _ —2q° | dE[Go(I'ydef+del'of)Golrr
For weak nonlinearity, we can series expand all quanti-
ties in terms of the small external bias voltdgsd obtain (14)

results order by order: this is precisely the approach adapted
in SMT® and response theofyin this subsection, we confirm Wherel', andf no longer depend on voltage after the expan-

that our nonlinear theory indeed reduces to these previoud©M; and c.c. denotes complex conjugate.
y b The first term on the right-hand side of E§4), which

approaches at the weakly nonlinear regime where they argepends on internal potential, . describes the induced

applicable. In particular, we shall derive analytical expres o o X
sions for the local density of statésDOS) and the second- charge density in the conductor. It can be simplified using
he fact il=(G{) 1—(G3 ! hence it becomes

order weakly nonlinear dc conductance, which are the twd ) ) _ _ Y
interesting quantities for weakly nonlinear regime. 4779 2T ug(r )’, wherell is tr:e L'?dhard afuncglo?‘f"

In both SMT and response theof.DOS plays a very ~defined asll, = —if(dE2m)f(Cq Co ~ Goy Corry)-
important role. From our NEGF theory, LDOS can be easilyThe second and third term of E€L4) which do not depend
derived from the right-hand side of E¢5), which is the ©N characteristic potential correspond to the charge density
charge density, with the help of E@6). Here, we shall due to external injection. They are the local partial density of
present the explicit expression at the lowest oréapansion  States(LPDOS dn,(r)/dE called injectivity in the language
in the external voltage. Hence, we seek the solutiowfy  ©of the scattering matrix,
in the following form:
dna(x)/dE=—f (dE27)[ Gyl ,d:fGE]

1
U=Ugst+ u,V,+ = u,zV, Vgt---, 10
e ; @t 2 aE,B apTa”h (10 —f (dE/27)f[ GLoel ,Ga+ GLae3 G G2
r a r a
where U is the equilibrium potential and,(r), U,z (r) +Gol'Gode ,Gol
are the characteristic potentidl® It can be shown that the
characteristic potential satisfy the following sum rufé€: = —J (dE27)f[Go(Gol .+ T ,G§) GE]
r r r a a
S w1 11 +f (dE/2m) f[ Gy (93 GhT  + T, GA3ES
— 03" LI — G293 2)GA]. (15)
and Comparing this result with that derived by SMThe SMT

resulP corresponds to the first term on the right-hand side of
Eq. (15). Hence, the local partial density of states obtained
> Ua(gy, =0. (12 from our general theory is slightly different from that defined
vep in SMT.> However, it can be proven that the difference, e.g.,
the second integral of Eq15), becomes negligible in the
Here, the subscripfB}, is a short notation of indicesy, 8,  limit of large scattering volume. The proof follows the ap-
7,.... ExpandingG = of Eq. (5) in power series o¥/,, we  proach detailed in our earlier work Ref. 25.
can derive the equations for all the characteristic potentials. We obtain LDOSdn(r)/dE from Eq. (15):
In particular, the expansions are facilitated by the Dyson
equation to the appropriate ordén the absence of the ex- dn(r)/dE=2 dn./dE
change and correlation effgct a “

o :—j(dE/27T)f[G{)(G5F+FGS)G8]
G"=Gp+Gp| qU—qUgq

i f (dEf2m)f(GLG),— GGR). (16
+2 [SLE—aV,)—2L(B)]| Gyt (13
“ This is exactly the same as the LDOS we obtained from the
response theory.The agreement is actually not surprising:
with G the equilibrium retarded Green'’s function, i.e., whenbecause we are dealing with dc transport where there is time
U=Ugqy. At the lowest order, we thus obtain reversal symmetry, the result of NEGF should be the same as
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that of the linear response. Our result of LDOS exactly satB. /- V curve in the wideband limit at zero
isfies the general relationshify2 >, /11, ., =dn(r)/dE. temperature
As a second comparison to the results obtainable from |, ihe |ast subsection, we examined the limit of weak

SMT and response theory, we now derive a formula for the,inearity. However, the main advance we have obtained
second-order nonlinear conductan®gg, from our theory  fqm the gauge-invariant NEGF formalism developed in Sec.
of Sec. Il In weakly nonlinear regime, the electric current) js 15 e aple to predict the full nonlinear current—voltage

can be expanded in a series form in terms of external blaf(s| —V) curves. Several analysis will be presented in this and

voltages, the next subsections for the-V curves.
In the commonly used wide-band lintt,the coupling
Ja=2 Gaﬁvﬂ+2 Gapy VgV, matrix I" is independent of energy which drastically simpli-
B By fies the algebra. The wide-band limit corresponds to cases

where the probes have no feature, thus the internal potential
+E GapysVpV, Vst (17) U(r) becomes just a space-independent constant(the
Byé value of Uy depends on the voltagd¥,}). In wide-band
limit the steady state Green’s function takes a very simple
form, Gy=1/(E—Ey+il'/2), thus, the integral in E47) can
be done exactly. We obtain

To compute the second-order nonlinear conductdbgg, ,
it is enough to calculatel, for the internal potential. Ex-
panding the general expression for the current(&gto the
second order in voltage, it is straightforward to obtain the

second-order nonlinear conductance: J=— iz (T8,5~T T,
I’ B
Gupy= —q3f (dE2m)Tr[ 9l ,Go(I'8,,— T ) GiIef 8, " AE—qUg+qV,
arcta —Th ) (20
—T ,Go(ug— g2 3) Go(T 6,4y~ T ) Godef
+T ,Ghoel Gaoef 8,5~ T o, Ghoel G20t & where AE=Eg—E, and the constantl, is determined by
“ ’ o 7 p the charge conservation conditiofdETHG<(E,V)]
+(12)T ,Gy(I'8,,—T',) Gzt 8,4, =[dET{G~(E,0)], i.e.,
_ r _ a _ ayr~a
[.Go(I'8,y—T',)Golug— de23)Godef].  (18) AE-qUq+qV, AE
_ _ o - _ > Tgarctan ————| =T arctan = |. (21)
This result is gauge invariant as one can explicitly verify that B rr2 r/2

it satisfies the gauge invariant conditfoﬁﬁ(Gaﬁy+ Gayp)
=0. This result agrees with that derived from SMTwe  To obtain this equation, the quasineutrality approximatien
neglect the terms involvingel” and dgX. In that case, we assumed which neglects the charge polarization in the sys-

obtain tem in addition to the use of total charge neutrality. The
gauge-invariant condition in EQR0) is clearly satisfied: rais-

G . = 3f dE/2 TIT(GAT Ghu .G ing bothV, an.d Uy by the same amount does' not alter the
apy=0" | (dB2mTr(Gol'oGolsGo current. Equation§20) and (21) have been obtained befére

from SMT where a Breit—Wigner form of the scattering ma-
trix is assumed. Hence, we may conclude that in this sense
—1/2GSG3FaGB5;;y)(F5ay—Fy)]ﬁgf the wide-band limit in NEGF approach is equivalent to the
Breit—Wigner approximation in the scattering matrix ap-
_ 2 _ proach. It is, however, different from that derived in Ref. 16
—2mq f AE(= den ) 1/200eAap0,+ aVﬁA”]' where a linear charging model is used for the internal poten-
(19)  tial buildup. It is not difficult to confirm that the result of
Ref. 16 is recovered if we solve faf, in Eq.(21) to the first
which agrees exactly with the result in Ref. 4. The seconderder in voltageV, i.e., we compute the internal potentidj,
order nonlinear conductance has been investigated numeltdy neglecting the contributions of higher order characteristic

+Gau Gl ,Gh— 1/2GET ,GhGhdg,

cally for several systems using the scattering appré3€br  potentials Uyg---- In this limit, we obtain U
detailed discussion of the numerical technique needed for the 3 (", /T")V, . Substitute this into Eq(20) we arrive at
calculation, see Ref. 26. the result of Ref. 16. This exercise also allows us to identify

Finally, we comment that by expanding E§) to higher  the phenomenological parametey of Ref. 16 to bd’;, and
order in terms of voltage, it is straightforward to show thatit indicates that the linear charging model for the internal
the nonlinear characteristic potentialg; satisfy a Poisson potential is not complete for the full nonlinearV curve
equation similar to Eq.(5) with different source terms predictions.
dn,g. /dE which correspond to nonlinear LDOS. The Next, let's derive the full nonlineaft—V curve for a
higher order nonlinear coefficiel@,; can be obtained in quantum dot with two resonant levels. For two resonant lev-
similar fashion as we have done here for the second-ordesls in a quantum dot, the retarded Green’s funéi@man be
coefficient. derived to have the following expression:
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current
di/dv
o
o
]

voltage voltage

FIG. 1. Current vs the voltage for a resonant tunneling structure with twoFIG. 2. Corresponding differential conductance for the non-self-consistent
resonant levels for self-consistent solution and non-self-consistent solutiogolutions of Fig. 1. Solid line: non-self-consistent solution ¥4r=V and

with two different voltage gauges. Solid line: non-self-consistent solutionv,=0; dotted line: non-self-consistent solution fov;=V/2 and

for V,=V and V,=0; dotted line: non-self-consistent solution fuf; V,=—V/2.

=V/2 andV,= —V/2; dot-dashed line: self-consistent solution. The system

parameters ar€,=1",=0.1,E;=0.3,E,=1.4, andE=0.11.

the qualitative behavior of the current versus voltage curve is

1 different. Both curves of the non-self-consistent analysis
—— —— “TT7 show quantized steps, which the self-consistent analysis with
[I(E—E;—qU)+(E-E,—qU)] " +i (22) quasineutrality approximation does not give. This difference
in qualitative behavior can be understood as due to the

whereE; and E, are energies of the two resonant levels.quasineutrality approximation. The electric current for the

G'=

From Eq.(7), we obtain the current is incident electrons with enerdyg will increase sharply when

q the chemical potentigh=Eg+qV is close to the first reso-

\]azﬁE (F8ap—T T, nant energy levelE; . When the internal potential build-up is
B

not included in the non-self-consistent analysis, this current
iT /a.+b saturates after crossing the first level but increases again
In(aé— b?)+ %In B—b (23 when u is near the second resonant level. This is actually a
s reasonable picture. In the self-consistent solution within
where ag=Eg+qVg—qUy—(E;+Ey)/2+il'/2 and b? quasineutrality approximation, however, the internal energy
=(E;—E,)?/4—T?/4. In the quasineutrality approximation, U, solved from quasineutrality condition E(R4) increases
we derive that the internal potentiél, is determined by linearly V= xU, with the voltage with coefficienk close to
following equation: one. Hence, as the chemical potential rises, the resonant level
also increases with approximately the same amount. Thus,

X1m

Z [glm In(aﬁ b2)+ IF aﬁ+b the second resonance level will not be reackwithin the
aﬁ_b quasi-neutrality approximatigrfor the range of voltages of
ir /a+b Fig. 1. Finally, In Fig. 2, we have plotted the differential
=T"Im|In(a®—b?) + %In 5/ (24)  conductancell/dV of two non-self-consistent solutions. For

the caseV;=V andV,=0 (solid line), two peaks show up
wherea=Eg— (E;+Ey)/2+iT'/2. nearV=0.2 andV=1.3. Since the Fermi level in the equi-
Figure 1 plots the predicteld-V curve Eq.(23) with the  librium is Er=0.11, those two peaks reflect the resonant
parameterl’;=1',=0.1, E;=0.3, E,=1.4, andE=0.11.  behavior when the chemical potentigV,+Eg is in line
To compare thé—V curves with and without gauge invari- with two resonant level€;=0.3 andE,=1.4. WhenV,
ance, in Fig. 1 we have plotted three curves. The dot-dashed V/2 andV,= —V/2 (dotted ling, the chemical potential is
line represents the gauge-invariant solution E2f). Since  againqV;+Er=qV/2+E¢, so we found two peaks at
this solution is gauge invariant, we chooge=V andV, =0.38 andv=2.6. However, the spacing between two peaks
=0 in Fig. 1. Both the other two linesolid and dotteflare  are different for two different choice of voltagg andV,: it
for Up=0 thus no internal potential is taken into accountis therefore important to include the Coulomb interaction so
self-consistently. Two observations warrant to be discussedhat the theory is gauge invariant.
First, the two non-self-consistehtV curves, solid line with Our results strongly suggest that as far aslth¥ curve
V=V andV,=0 and dotted line withv;=V/2 andV,= prediction is concerned, without interaction one violates
—V/2, give differentl -V curves. This is clearly wrong be- gauge invariance, but including interaction within the
cause electric current must only depend on the bias voltagguasineutrality approximation is still not enough as it misses
difference which isv for both curves, and not on the choice the expected resonance levels in thé/ curve, which are
of the reference point for potential. This is a direct conse-often observed in experimental situaticfisdence, it maybe
guence of the flaw of a non-self-consistent theory. Secondiecessary to go beyond the quasineutrality approximation.
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C. Exchange and correlation effect 0.8

So far the electron-electron interaction which gives rise o7} e
to the internal potential buildup has been treated within the 08 . 1
Hartree approximation with the quasineutrality condition. In '
this subsection, we examine the effects of exchange and cor-
relation to the nonlinear—V curves within the wide-band
limit for a resonant tunneling structure. We must also go

s . ———
0.4 . _‘__..r‘-"“

current

..
beyond the quasineutrality approximation. o s
Going beyond quasineutrality approximation means that %2 /7 ]
we must consider the local charge distribution under the con- o1 b .
dition of overall charge neutrality. For a double-barrier tun- /7’ e
neling structure, let's introduce capacitance coefficigbis O =2 3 4 5 6 7 & 8 10
and C, for the left and the right barrier, respectively. Then, voltage
the charge in the quantum well due to Coulomb interaction isZIG. 3. Gauge invariant current vs the voltage for a resonant tunneling
given bfg structure with one resonant level. Solid lifg,. not included and dotted
line (V. included: I'y=T1",=0.5,C,=C,=5.0, AE=—-1.0, «=0.7; dot-
AQ=— ij (dE/27T)[G<(E,U0)—G§] lqazxs:hg.(é’Igllei\/:f.co’ng;:ln;l(l){dfgjrldll(éa’\zh:ecci).yhévxc included: I';=0.1,

=C1(Up—V1) +Cy(Ug—Vy), (295

whereAQ is the total charge in the wellJ, is the overall mission coefficients hence larger current than those of asym-
shift of the band bottom of the well due to the Coulomb Metrical barriers. The behavior of theV curves in Fig. 3 at
interaction, ands; is the equilibrium lesser Green’s func- the V—0 limitis consistent with this picture. However, at
tion. For the system with only one resonant level, this equal2r9er voltages, this expectation may or may not be true, due

tion reduces to to the nonlinear effects and the internal potential buildup.
We found that for both symmetrical and asymmetrical barri-
S arctaré Er—Ho+ qV,B) _r arctarE EF_HO) ers, the exchange and correlation effects are to increase the
z B /2 r/2 electric current. This is seen more clearly from the differen-
tial conductanceadl/dV versus voltage in Fig. 4. Since the
=[C1(Uo—V1)+Ca(Up—Vy)]nl'/q, (260 exchange and correlation teiy, is to lower the bottom of
where the wideband limit is assumed ahy—E,+qU, (he conduction band, the peak df/dv shifts to the small
+0Vyc. The current is given by voltage as a result. . _ _
When exchange and correlation effects are included in

. q Er—Ho+qVy the two-level tunneling system, Eq&3) and(24) are modi-
Jo=— ﬁ% (F&aB—FB)FaarctarE r/2 ) fied in a similar way as Eq€27) and(26). Figure 5 shows
(270 the I-V curve for two-level system foif';=1",=0.1, C;
=C,=1.0,E;=0.3, E;=1.4, E;=0.11, anda=0.7. The
|-V curves with(dotted ling and without(solid line) V,.
are plotted for comparison, but botkV curves now show
two steps reflecting the two resonance levels for tunneling.
Hence, by going beyond the quasineutrality approximation,
the gauge-invariant theory developed in Sec. Il predicts a

Here, we note that Eq$21) and(26) are equations to deter-
mine the internal potentidl ; which is needed in order that
expressions for current in Eq§20) and (27) to be gauge
invariant.

To plot thel =V curve determined by Eq&6) and(27),
we use V,.=—1.5¢AQY® in the Hartree—Fock—Slater
approximatiort>3® where 2/3<a<1. Parametrized by the
coupling constant$’; and the geometrical capacitance coef-
ficientsC;, we thus can calculate the nonlindafV curves
from Egs.(26) and(27). Figure 3 presents current as a func-
tion of voltage difference/=V,;—V,. We have compared
the cases with or without exchange and correlation potential

0.25

0.20 |-

V,. for two different set of system parameters: symmetric 015
barrier with I';=I',=0.5, C;=C,=5.0, AE=—1.0, « g
=0.7 (dotted line withV,., solid line withouj; and asym- o10 |

metric barrier withI';=0.1, I',=0.5, C;=1.0, C,=5.0,
AE=-1.0, «=0.7 (dashed line withV,. and dot-dashed
line withou®). We observe that the current for the symmetric
barrier is much larger than that of the asymmetric barrier for
V>2, but it can be smaller for smaller bias betweesri\l
<2, and becomes larger again at very snvadt 1. Without voltage

the internal pOtential bu”dUp taken into account, it is well FIG. 4. Differential conductance of a resonant tunneling structure with one
known that symmetrical tunneling barriers have larger transresonant level. The parameters are the same as that of Fig. 3.

0.05

0.00
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010 . . ‘ —— . level E; is lowered to below the chemical potentidl/dV
0os | BEEERRSS a - decreases from the resonance peak consistent with the fact of
008 | ] going off resonance. When the voltage increases further, the
N ] resonant level€, and E, start to move upward in energy
0.07 |+ - . . . .
: 1 due to the effect ofJy, and it will again pass the chemical

= 008 T ; potential resulting to the resonance peak n€ar0.5. Fi-

o . . .

g 008 nally, when the voltage is around=2.0, the chemical po-
0041 1 tential is near the second resonant level and we see a sharp
003 | . 1 increase ofdl/dV and the third peak shows up as a result.
002 [ 1 We conclude that the quasineutrality condition may need to
oot | : : be extended in predicting-V curves when the system is in
0.00 . ‘ . , . ; - ‘ s the tunneling regime. Here, we have used a phenomenologi-

0 1 =2 3 4 5 6 17 8 9 10

cal but nonlinear capacitance charging model to include the

charge polarization effects, which are seen to play an impor-

FIG. 5. Gauge invariant current vs the voltage for a resonant tunnelingant role in predicting quantizet-V curves. It is further

;tructure vyith two resonant levels. Solid li(é,. not included and dotted found that the exchange-correlation potenﬁ&Jc can be

line (V,. included: I'y=T,=0.1, C,=C,=1.0, E;=0.3, E;=1.4, E¢ P - . :

™ quite important as it provides a compensating effect to the
Hartree internal potentidl.

voltage

“quantized” 1-V curve which, as mentioned above, is
physically reasonable. Again, whaf, . is present, the cur- p. /—V/ curve with Hubbard U term

rent increases. L . )
To maintain the gauge invariance, we have so far con-

In Fig. 6, we show the differential conductand&/dV . . S .
for the same system parameters as that of Fig. 5. When tIﬁdered the Coulomb interaction in the Hartree approxima-

exchange and correlation potential is includedlid line), it t|og with or W'thqllljt an _zxch?nge—cqrre?tmln tebrm' In this
is surprising to observe that there are three pealdiidy ~ Supsection, we will consider the on-site Coulomb interaction

instead of two(dotted line withoutV,.). In addition, the N terms of HubbardJ model with the following Hamil-
peaks ofd1/dV are shifted towards smaller values of bias ast®Mian forHcenin Eq. (1):

compared to thell/dV curve forV,.,=0. The entire behav- .

ior of dI/dV can be understood as the following. The inter- Hcen=§ Eod,d,+Unin, . (28)

nal Coulomb potential, tends to move the resonant level

up (to higher energyand the exchange and correlation po- Here, we assume that the quantum dot contains one energy
tential V,. tends to lower it down, these two effects give level Eq with Coulomb repulsion energy; which accounts
compensating factors to move the resonance levels inside ti@r the interaction between different spins. In additiorttp
quantum well. At very small voltageV, | increases much We assume that the long range Coulomb poteitiaetween
faster than the internal potentibl, does as the bias is in- different sites gives an overall a constant stifg to the
creased(see inset of Fig. 6 thus the resonant levef, bottom of conduction band. This is similar in spirit to the
moves downwards in energy from its “bare” Va|LE1 energy shiftA introduced in Refs. 19 and 31. However, in
=0.3: a resonance peak is expected when it is lowered to theur casel, has to be determined self-consistently. Equation

chemical potential. As the voltage increases such that th€8) has been used by many authors befriéhut the gauge
invariant condition has not not been considered there.

The current is still determined by E¢R). But now the

018 ' — ' S ; lesser Green’s function is given Hy
. GE(E.U)=—[G;—63]% T4f4IT, (29
d wherg*-36
> 08
3 009 H 4 <n_>
o r _ p
4 ] c 10 GU(E,U)_E_EO_Ul_qU+iF/2
voltage X 1— < n;> N
E-E,—qU+IT/2 (30
000 5 6 7 8 and
voltage
i <
FIG. 6. Differential conductance of a resonant tunneling structure with two <n”> - J (d E/ZW)G‘T ! (31)

resonant levels. The parameters are the same as that of Fig. 5. Inset: th% . . . .
exchange and correlation potentM, vs voltage of a resonant tunneling 1 N€ internal Coulomb potentidl can be determined in

structure with two resonant levels. terms of the geometrical capacitané@sandC,,
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0.020 ‘ v » T ‘ 1 IV. SUMMARY
ooe ! In this work, we have developed a general gauge-
0018 invariant nonlinear dc transport theory based on the nonequi-
oor4 librium Green’s functions. The main idea of this develop-
o012} ment is to self-consistently couple the NEGF with the proper
g 0.010 Poisson equation for the internal potential buildup inside the
0.008 | mesoscopic conductor. It is the consideration of the internal
0.008 potential distribution which has made the NEGF theory
0.004 gauge invariant. At various limiting cases, our theory pre-
0,002 dicts results consistent with those of scattering matrix theory
0,000 o TS : and response theory,_ but our theory aIIows_ a gengral treat-
"o 2 4 & 8 10 12 14 16 18 20 ment of the full nonlinear dc transport regime which are,
voltags perhaps, impossible for the other formalisms. The present

FIG. 7. Differential conductance of a resonant tunneling structure with Hub-theo!’y 1S natural to ‘?”(?W the mCIUS_|0n of e?(Change a”q cor-
bard U term. The parameters arB;=I',=0.5,C,=C,=5.0,AE=—1.0,  relation potential within the density functional formalism.
andU,=4.0. Hence, it is appropriate for transport in multiprobe conduc-
tors in the quantum coherent regime, and we have applied it
to the analysis of resonant tunneling with one and two reso-
nance levels. Our results clearly show that without self-
J' (dE/ZﬂT)E Gj(E,U)—J (dE/Zw)E G5 consiste_nt analysis _the predict_ed (_:urrent would depend on
o o the choice of potential zero, which is wrong. For the tunnel-
ing device, our analysis also indicated the importance of in-
cluding charge polarization effect. This effect can be consid-
ered using the phenomenological model involving
capacitance coefficients, as done here; or it can be included
through numerical solutions of a charging model as carried
out in Ref. 23. Finally, we found that in general a larger
current is obtained when exchange and correlation effects are
AE—qU+qVy included into the analysis_. _
+> FBE (1—<n(,))arcta76 T) Many further applications of the present formalism can
B 7 be made. An important further development is to abandon
AE—-U, the wide-band limit. In this work, we have used this limit in
- <n;>arctar6 T) -T> (1 order to derive analytical formula, but one can go beyond
7 this limit in numerical calculations. In the wide-band limit,

=C1(Ug—Vy) +Cy(Up—Vy) (32
from Eq. (30), this condition becomes

> FBEJZ <ng>arctar{ 7

B

AE the coupling matrix is independent of energy. A conse-
—(n;))arctar{ m) guence, as we observe from theV curves, is that the cur-
rent increases monotonically with bigso peaks in thé—-V
=[C1(Uy—Vq1)+C1(Uy—Vy) 27T /q. (33 curve itselj. Hence, the negative differential resistance

(NDR) can not be observed. To overcome this limitation,
With the potentiall determined this way, the current is fi- Jauhoet al!® have introduced a lower energy cutoff to allow
nally written as a finite occupied bandwidth of the contact. This modification
allowed NDR to appear, but the current at large voltage did
not agree with experimental results. Therefore, to obtain
NDR quantitative correctly, we must go beyond the wide-
band limit. This can be done within our formalism using the

__ 9 _
o=~ 2 (Pou= Tyl

AE-U;—qU+qV i 37,2
x| (n‘,)arctaré 11"/2 a ﬁ) numerical method developed by McLenneinal.
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which can be calculated numerically using E¢31), (33),

and (34). In Fig. 7, we have plotted the differential conduc-

tance versus voltage fof';=I',=0.5, C;=C,=5, AE

=—1.0, andU,;=4.0. As expected, there are two peaks cor-

responding to two different energié€y andEy+U;. Since | _ .
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