The HKU Scholars Hub The University of Hong Kong 香港大學學術庫

Title	Are Self-Similar States in Fibonacci Systems Transparent?
Author(s)	Jin, GJ; Wang, Z
Citation	Physical Review Letters, 1997, v. 79 n. 26, p. 5298
Issued Date	1997
URL	http://hdl.handle.net/10722/42440
Rights	Creative Commons: Attribution 3.0 Hong Kong License

Are Self-Similar States in Fibonacci Systems Transparent?

In a recent Letter [1] Maciá and Domínguez-Adame intended to address the physical nature of critical wave functions in a generalized Fibonacci system. Apart from several interesting results presented, one main conclusion reached is that "*self-similar wave functions are those exhibiting higher transmission coefficients in a finite Fibonacci system.*" Although there exist extended or transparent states in many aperiodic systems under some special conditions, the conclusion itself is unfortunately incorrect and misleading, because it is based on a serious miscalculation of the transmission coefficient. In this Comment, we wish to clarify this point and present a correct calculation.

For the Hamiltonian considered in Ref. [1], four original transfer matrices (X, Y, Z, W) can be cast into two new matrices $R_A (\equiv ZYX)$ and $R_B (\equiv WX)$. R_A and R_B are arranged in a Fibonacci sequence. In the context of the formulation of Ref. [1], there always exists one energy *E* satisfying a relation

$$E = \alpha \frac{1 + \gamma^2}{1 - \gamma^2}, \qquad (1)$$

where α represents the on-site energy, γ the transfer integral. For these energies, $[R_A, R_B] = 0$. Based on

Eq. (1), the global transfer matrix M(N) in Ref. [1] is obtained. Using the M(N), the authors further derive the transmission coefficient as

$$\tau(N) = \frac{1}{1 + \left[(1 - \gamma^2)^2 / (4 - E^2) \gamma^2 \right] \sin^2(N\phi)}, \quad (2)$$

where ϕ is a function of E, α , and γ . Then they suggest that the transparent condition be fulfilled when $\sin(N\phi) = 0$. However, we must note that the condition $\sin(N\phi) = 0$ may not be consistent with Eq. (1), particularly in self-similar states. Therefore, under the condition $\sin(N\phi) = 0$ in the self-similar states, Eq. (2) cannot be used and thus $\tau(E) = 1$ should not be expected in the self-similar states. In the Letter, they take $N = F_{17}$, $\gamma = 2$, $\alpha = 0.1$, and $E = -\sqrt{\alpha^2 + 4 \cos(1160\pi/N)} = 0.3348...$ [correspond to $sin(N\phi) = 0$ to plot Fig. 2 in Ref. [1], which statistically exhibits self-similar features and is claimed to be at a transparent state $\tau(E) = 1$. Unfortunately, the above three energy parameters $(E, \alpha, \text{ and } \gamma)$ do not satisfy Eq. (1), so their claim that this self-similar state corresponds to a transparent state does not make sense.

Actually, if we consider E, α , and γ as three independent parameters and denote the global transfer matrix as T(N) with matrix elements $t_{i,j}s$ ((i, j = 1, 2), the transmission coefficient can be obtained as

$$\tau(N) = \frac{4 - E^2}{[t_{21} - t_{12} + (t_{22} - t_{11})E/2]^2 + (t_{22} + t_{11})^2(1 - E^2/4)},$$
(3)

where $t_{i,j}$ is a function of the three energy parameters. Note that Eq. (3) is more general and $T_N \neq M_N$ in a general case. Once T(N) = M(N) (i.e., Eq. (1) holds), it is straightforward to show that Eq. (3) is equivalent to Eq. (2). From Eq. (3), we can check that when Eq. (1) is satisfied, (i) if $\gamma = 2$, $\alpha = 0.75$, E = -1.25, then $\tau(F_{16}) = 0.5909...$; (ii) if $\gamma = 2$, $\alpha = 0.5$, E = -5/6, then $\tau = 0.7425...$, as obtained in Ref. [1]; the corresponding states are not self-similar. However, if we substitute $\gamma = 2$, $\alpha = 0.1$, $E = -\sqrt{0.1^2 + 4} \cos^2(1160\pi/F_{17})$ (corresponding to a self-similar state) into Eq. (3), $\tau(N) = 0.2298...$, instead of the result $\tau = 1$ in Ref. [1].

On the other hand, when Eq. (1) is fulfilled, we can further show that $R_A = R_C^3$, $R_B = R_C^2$, and $M(N) = R_C^N$, where

$$R_C = \begin{pmatrix} \gamma^{-1}(E - \alpha) & -\gamma \\ \gamma^{-1} & 0 \end{pmatrix}.$$
 (4)

Then in terms of Chebyshev polynomials of the second order, M(N) can be obtained more easily.

Finally, we wish to pinpoint that if R_A and R_B commutate, which corresponds to a zero-invariant case, one may find a higher transmission coefficient more easily. For example, (i) $\gamma = 2$, $\alpha = 0.1$, E = -1/6, $\tau(F_{17}) = 0.9232 \dots$; (ii) $\gamma = 1.5$, $\alpha = 0.1$, E =

-13/50, $\tau(F_{17}) = 0.9938 \dots$; (iii) $\gamma = 2$, $\alpha = 1.5$, and E = -2.5, $\tau = 1$. Notice that these states are not self-similar. It is well known that, in the on-site or in the transfer model, the self-similar states correspond to nonzero invariants [2]. In the mixing model, can the states with zero invariant be self-similar? From both analytical and numerical calculations, we find actually that if R_A and R_B commutate, there exist only extended states rather than *self-similar states*, in sharp contrary to the conclusion reached in Ref. [1].

G. J. Jin¹ and Z. D. Wang²
¹Department of Physics and National Laboratory of Solid State Microstructures, Nanjing University Nanjing 210093, People's Republic of China
²Department of Physics, The University of Hong Kong Pokfulam Road, Hong Kong, People's Republic of China

Received 7 October 1996 [S0031-9007(97)04854-0] PACS numbers: 71.23.Ft, 61.44.-n

- E. Maciá and F. Domínguez-Adame, Phys. Rev. Lett. 76, 2957 (1996).
- [2] M. Kohmoto, B. Sutherland, and C. Tang, Phys. Rev. B 35, 1020 (1987).