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We present a very simple and efficient method for calculating the transmission coefficient
two-dimensional quantum wire structures based on the time-dependent solution of the Schro¨dinger
equation. We apply the new method to a specific two-dimensional quantum wire structure. The n
method is much faster than the finite element method and can be used to study electron transpo
the presence of electron–phonon interaction and nonlinear interactions in the Schro¨dinger equation.
© 1996 American Institute of Physics.@S0021-8979~96!06319-0#
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There has been considerable interest recently in
properties of ballistic electron transport in confined semico
ductor geometries.1 This is due partly to the potential appli-
cations to ultrafast electronic devices. Indeed, devices w
operation principles entirely based on quantum interferen
have been proposed and fabricated.2,3 On the theory side, a
thorough understanding of quantum transport including t
ballistic regime is of great importance. So far, much theore
cal effort has focused on analyzing the transmission patt
of electrons propagating through various ultrasmall one- a
two-dimensional quantum systems where electron wav
maintain phase coherence. A particularly interesting syst
is the T-shaped quantum wire investigated by Solset al.4 as
they argued that such a structure can operate as a transi
Another interesting structure is the electron wave gui
coupler.5 This is an electronic analog of the optical direc
tional coupler and it switches electrons from one quantu
wire to another. In these quantum devices, switching is p
vided not by tuning a current but, rather, by tuning the pha
of the electron waves. In order to study the quantum tra
port of two-dimensional devices, one must deal with op
systems where a scattering problem of charge carriers
some peculiar boundary must be solved.

Currently, there are several methods to calculate
transmission coefficient including~1! the mode matching
method6 which is very fast but only suitable for regula
shaped two-dimensional quantum wire structures with co
stant potential energy;~2! the finite element method,7,8 al-
though much slower, can handle quantum wire structure
arbitrary shape and potential; and~3! the recursive Green
function method,4 whose speed is comparable to that of th
finite element method and can treat the structure of a
shape and potential. However, the recursive Green funct
method does not provide the electronic wave function insi
the quantum wire structure that is essential in studying t
physical properties such as dwell time and dynam
conductance.9 These three methods are static and time ind
pendent. Another method currently in use is the tim
dependent method10–13 which solves the time-dependen
Schrödinger equation numerically and calculates the tran
mission coefficient based on the transmitted wave. The
vantage of this method is that it can deal with the system
any shape or potential and the computational time sca
linearly with the system size. More important, it can be us
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to study the dynamical behavior in the presence of electro
phonon interaction,14,15 the nonlinear interactions in the
Schrödinger equation,16 the self-consistent solution of the
two-dimensional quantum wire structure including man
electron effects,17 and the strongly correlated quantum
system.18 In order to facilitate the time-dependent calcula
tion, one has to prepare an initial normalized Gaussian wa
packet with an average energyE0 and widthDE which de-
pends on the spatial spreads of the wave packet, follow the
time evolution of the wave packet, and then collect the tran
mitted waveCT which is identified as the transmission co
efficient T(E0 ,s)5* uCTu

2dV. To obtain the transmission
coefficientT as a function of incident electron energyE, one
must repeat the calculation for many different incident ene
gies E0. The transmission coefficientT(E0 ,s) calculated
this way depends on the spatial spread of the wave pack
Since the Gaussian wave packet is a superposition of ma
plane waves, the transmission coefficientT(E0 ,s) is only an
approximation of the exact transmission coefficient. To o
tain a more accurate result, one has to increase the spa
spread of the wave packets so that it is composed of fewer
plane waves. In the larges limit, one recovers the exact
transmission coefficientT(E). The tradeoff is that the system
size, and hence the computational time, is increased, wh
makes this method disadvantage over the static method
this communication, we present a more efficient metho
based the time-dependent method described above. The
provement of our method is twofold:~1! the transmission
coefficient calculated using the new method is exact, and~2!
one needs only one time-dependent calculation at a particu
E0 to get the wholeT(E) versusE curve which makes this
method very efficient. This is because when performing t
time-dependent calculation for a wave packet at an avera
incident electron energyE0, the transmitted wave has much
more information than merelyT(E0). Actually, the entire
T(E) versusE curve can be extracted from the transmitte
wave, which we will describe below.

To illustrate our method, let us consider a one
dimensional scattering problem, where a potential barrier
located in the region~0,a!. The scattering wave function for
an incident plane wave with wave vectork can be written as

c5 Heikx1r ~k!e2 ikx x,0
t~k!eikx x.a ,
6/80(7)/4208/3/$10.00 © 1996 American Institute of Physics
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where t(k)exp(ikx) is the transmitted wave andT5ut(k)u2

is the transmission coefficient. For an incident Gauss
wave packet, which is a superposition of plane waves,
initial wave function is given by

c~x,t50!5
1

~ps2!1/4
eik0xe2~x2x0!2/2s2

5(
k

f ~k!eikx, ~1!

where

f ~k!;e2s2~k2k0!2/2 ~2!

is the Fourier transform ofc~x,t50!. After the wave com-
pletely gets out of the scattering region~0,a!, the transmitted
wave is given by19,20

cT~x,t !5(
k
t~k! f ~k!eikx2 ivt, ~3!

wherev5\k2/2m, t is the time, andt(k) is the transmission
amplitude which can be calculated by Fourier transform
cT . Our method proceeds as follows: we follow the time
evolution of a Gaussian wave packet, compute the transm
ted wave, and finally the transmission amplitude is calcula
by Fourier transform:

t~k! f ~k!5cT~k!, ~4!

wherecT(k) is the Fourier transform ofcT(x,t) and f (k) is
given by Eq.~2!. We can also calculate the reflection coe
ficient from the reflected wave in a similar manner.

To demonstrate the efficiency of our method we consid
a two-dimensional quantum structure~T-junction4! shown in
Fig. 1. Assuming that the electron coherence length is lon
than the size of the junction, we treat the transport of ele
trons ballistically within the structure, but include scatterin
of the electrons due to the presence of the junction. Su
scattering, due to geometric junctions in two dimension
affects transmission much more significantly than in one
mension. The quantum wires are modeled in a similar fa
ion to those of Solset al.4 We assume, for simplicity of the
calculation, that the boundaries are hard walls.

The time evolution of the electron wave function is gov
erned by the time-dependent Schro¨dinger equation written as

FIG. 1. Schematic view of the T junction where regions II and IV form th
interaction region. The width of the quantum wirea and the width of the
side armb are taken to be 100 Å. The height of the side armL is 200 Å.
J. Appl. Phys., Vol. 80, No. 7, 1 October 1996
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]c~x,y,t !

]t
52

\2

2m* S ]2c~x,y,t !

]x2
1

]2c~x,y,t !

]y2 D
1V~x,y!c~x,y,t !. ~5!

We choose the initial condition to be a Gaussian wave pack
in the first subband located inside leadI :

c~x,y,t50!

5
1

~ps2!1/4
eik0xe2~x2x0!2/2s2

1

~2a!1/2
sinS p

a
yD , ~6!

where\k0 gives the initial average momentum@the initial
average energy isE05\2(k0

21p2/a2)/2m* #, x0 gives the
location of the peak att50, s determines the spatial spread
of the wave packet and gives an energy widthDE
5 A2\2E0 /m* (1/s), andm*50.067m0 is the isotropic ef-
fective mass for gallium arsenide. Equation~2! is solved us-
ing a typical Crank–Nicholson type algorithm21–23 on a
10 000320 grid with a typical spatial mesh size of 5 Å and a
time step less than 0.23 fs in our calculation.

The exact transmission coefficientT(E) for the T junc-
tion can be calculated using the mode-matching method an
is depicted in Fig. 2~solid line!. The approximate transmis-
sion coefficientT(E,s), obtained by sending a number of
Gaussian wave packets and collecting the transmitted wav
is also plotted in Fig. 2 for comparison~solid circle! where
we have chosen a large spatial spreads51000 Å and the
width of the lead isa5100 Å. In this calculation, we have
used 100 Gaussian wave packets with different values ofk0
uniformly distributed between the first and the second sub
bands. We see that because of the larges the agreement is
very good except at the resonance~reflection peak!.24 In Fig.
2 we plotT(E) versus incident energyE using our method
~dashed line!, where we have used only one Gaussian wav
packet with the average momentumk053.0, the width of the
lead a5100 Å, and the spatial spread of the wave packe
s5100 Å. It agrees with the exact result~solid line in Fig. 2!
very well. The agreement will be better if we increase the

e

FIG. 2. The transmission coefficient of the T junction vs incident energy
The solid line corresponds to the exact solution using the mode matchin
method and the solid circle to the approximate solution using the time
dependent method wheres51000 Å and 100 Gaussian wave packets with
differentk0 were used. The dashed line is obtained using our method whe
we have usedk053.0 ands5100 Å.
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system size. A practical way of getting an accurate transm
sion coefficient curveT(E) vs E is to do not just one but
several calculations with different average momentumk0 so
that eachk0 will cover a portion of the curve and overlap
with the otherk0. We have generated the entire curve usin
several differentk0. Similar results are obtained using differ
ent parameters such ask0 ands. We have also applied our
method to a quantum billiard and a multilead structure su
cessfully. In these calculations, we typically need to itera
about 7000 time steps in solving the time-dependent Sch¨-
dinger equation. All the calculations are done on an IB
RISC 6000 machine. It usually takes several hours for ea
calculation, which is much faster than the finite eleme
method.

There are several ways to improve the present meth
First of all, we can use the absorbing boundary condition11

for the reflected wave so that the numerical grid size can
reduced. Second, instead of using the tight-binding vers
of Eq. ~5! which is accurate up to second order in the me
width d which is dimensionless, we can use the fast Four
transform method to deal with the kinetic energy25 and elimi-
nate the error fromd.

In summary, we have presented a simple and efficie
method to calculate the transmission coefficient for tw
dimensional quantum wires based on the time-dependent
lution of Schrödinger equation. Currently, this method is be
ing extended to include the magnetic field.
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