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Based on a semiclassical model, the transport properties in systems of cylindrical or spherical
magnetic granules are investigated analytically. It is shown that the conductivities as well as the
magnetoresistance of these systems depend strongly on the size of the granules. In particular, there
is always an optimum granular size for the magnetoresistance. ©1996 American Institute of
Physics.@S0021-8979~96!79808-0#
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Recently, there has been much interest in the study
giant magnetoresistance~GMR! in magnetic inhomogeneou
systems1–7 both experimentally and theoretically. Fo
multilayer structures, almost all the low-temperature featu
of GMR could be understood by semiclassical models8–12or
quantum theories13–15 by including spin-dependent interfac
scattering and bulk scattering. Previous theoreti
investigations5,16 on the GMR in granular systems are bas
on the assumption that transport in these systems is q
close to that in multilayered systems with current perp
dicular to the layers. However, differing from those in mu
tilayered structures, both the distributions of the electric fi
and currents are spatially varied in these three-dimension
inhomogeneous systems. Therefore, it is valuable and in
esting to develop a theory which includes spatial variatio
in the electric field and in the currents.

In this article, we present a semiclassical description
the GMR in magnetic granular systems, in which the spa
variations of the electric fields and the currents are con
ered. A new formalism of the position-dependent curren
developed. In particular, analytical expressions for the re
tivity are obtained. We focus our attention on systems
cylindrical magnetic granules. We find that both the GM
and the resistivities depend strongly on the granular sizes
that there is always an optimum granular size for the GM

Let us consider a general inhomogeneous system
which charge carriers are scattered by impurities and ro
interfaces. For convenience, we do not include the spin
grees of freedom for a while. In the presence of an exte
electric field, the steady-state transport properties in this
tem can be described by the following effective Boltzma
equation:17

v•¹g1g/t5ev–Eeff, ~1!

wheret is the position-dependent relaxation time andg is a
function characterizing the deviation of the distribution fun
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tion f from the equilibrium distributionf 0, which satisfies
the relationf5 f 01g(] f 0/]e). Since interface scattering is
also considered as impurity scattering in thin mixing films14

the entire scattering effect is included in the positio
dependent relaxation timet~r !. Eeff~r ! is the effective inter-
nal field to be determined from the continuity condition
the current.

In general, the position-dependent current is related
the electric-field by a two-point conductivity tenso
sab~r ,r 8!, such that

Ja~r !5E d3r 8sab~r ,r 8!Eb
eff~r 8!, ~2!

where the summation is indicated by two same coordin
labels. By using the path-integral approach,12,14we solve the
Boltzmann Eq.~1! and obtain

sab~r ,r 8!5Cer 0ar 0bF~r ,r 8!, ~3!

with

F~r ,r 8!5
1

4pur2r 8u2
expF2E

r8→r

du9

l~r 9!G , ~4!

Ce53nee
2/2mvF , r̂05~r2r 8!/ur2r 8u, andl~r !5vFt~r !. The

integral in Eq.~4! is along the straight line connecting th
pointsr andr 8, anddu9 is the element of line at the pointr 9.
The effective fieldEeff, determined by combining Eq.~2!
with the continuity condition for the current, is found to be17

Eeff5Eex2¹m, ~5!

wherem 5 GDbEb
exwith

G5~12FL!21511FL1••• , ~6!

Da~r ,r 8!5r 0aF~r ,r 8!, andL~r ,r 8!5d~r2r 8!/l~r !. Here,GDb

represents the integral*dr 9G~r ,r 9!Db~r 9,r 8!. The constant
Eex in the above expressions is actually the external fie
since
625555/3/$10.00 © 1996 American Institute of Physics
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Eex5^Eeff&, ~7!

where^•& means taking the average over the whole syste
Now let us turn to investigate transport in granular sy

tems within the framework of a mean-field treatment. W
consider theNp-particle system to be realized by adding o
particle to the system ofNp21 particles. The effective field
in the system ofNp21 particles is written asEbc, which is
essentially the sum of the applied field and the field produ
by the accumulated charge on theNp21 particles. The
Np-particle problem is then treated approximately as that
an isolated particle in the background fieldEbc. The above
considerations can be explicitly represented as

Eeff5Ebc2¹~G1D1,bEb
bc!. ~8!

A Subscript 1 has been used to indicate that the parame
are associated with the single-particle case. The backgro
field Ebc will be determined from the boundary condition~7!.
Equation~8! is highly useful for us to determine the effectiv
electric field in theNp-particle system, because we need on
to solve the problem of an isolated particle in the backgrou
electric field. We wish to point out that Eq.~8! is appropriate
only in the small region near the central particle. Neverth
less, using this equation in the region of every particle,
are able to obtain the field in the whole system.

To obtain the average conductivity analytically, we no
take the local limit, i.e.,

sab
c ~r ,r 8!5s~r !dabd~r2r 8!, ~9!

wheres~r !5ne2l~r !/2mvF .
18 Since¹3Eeff50, it is conve-

nient to define an effective scalar potential by

Eeff~r !52¹Ueff~r !. ~10!

We consider first the system composed of parallel ferrom
netic cylinders of radiusa in a nonmagnetic medium. The
electric field is assumed to be applied along thez axis and
perpendicular to the cylinders. For simplicity,l~r ! is taken to
be the constantl0 in the medium,lF in the particles, andlI
in the mixing films, respectively. If we consider all granule
to be identical cylinders, the equation of continuity for th
current becomes Poisson’s equation in all regions. In
case, the effective potential in thex–y plane has the form

Ueff~r,w!52sin~w!H Ebcr1D/r,
C1r1C2 /r,
EFr,

r.a1d
a1d.r.a

a.r
.

~11!

HereD, C1, C2, andEF are constants to be determined fro
the continuity of the scalar potential and the current atr5a
and r5a1d. For example, the electric field in the insid
region of the particlesEF is found to beEF5gFE

bc with
gF52l0/(l01lF1l0lFRI /a). We have assumed thatd is
much less thana, so that only the ratioRI5d/l I is of sig-
nificance.

Now, we need to calculate the average of the effect
electric field. We emphasize that even when the thickn
goes to zero, the contribution from the field in the interlay
cannot be neglected. In terms of Eq.~7!, we obtain

Eex5@~12 f !1~gF1g I ! f #E
bc, ~12!
6256 J. Appl. Phys., Vol. 79, No. 8, 15 April 1996
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where f is the volumetric filling factor, andg I5lFRIgF/a.
The average conductivity is evaluated from^J&/Eex.

In order to elucidate the GMR effect, the spin degrees
freedom need to be included. We focus on the cases wh
the spin diffusion length is much larger than the mean fr
path, so that the total conductivity is the sum from the tw
spin channels, and for each channel the previous formu
can be extended straightforwardly. LetlI

s andlF
s , with s5↑

for the majority spin ands5↓ for the minority spin, denote
the mean free path of electrons in the mixing films and in th
particles,8 respectively then we arrive at

sD

s0
5

2~12 f !1 f ~gF
↑lF
↑1gF

↓lF
↓ !/l0

2~12 f !1~gF
↑1gF

↓1g I
↑1g I

↓! f
, ~13!

for the demagnetized state, and

sM

s0
5 (

s5↑,↓

~12 f !1 fgF
slF

s /l0

2~12 f !12~gF
s1g I

s! f
, ~14!

for the magnetized state, withs05ne2l0/mvF .
The GMR effect is measured byDs5sM2sD, which

can be found to be always positive. Its amplitude is defin
as Dr/rD5Ds/sM with rD51/sD, rM51/sM, and
Dr5rD2rM. For simplicity, we here assume the spin–
asymmetry factors in the particles and in the mixing film a
of the same valueN5lF

↓ /lF
↑5RI

↑/RI
↓ although they are quite

different. In Fig. 1~a!, we plot the resistivity as a function of
the inverse of radius, which is approximately in linear pro
portion. The GMR is shown in Fig. 1~b!. There is always an
optimum radius for the GMR. To understand this feature, w
notice that there two factors that determine the GMR. On o
hand, since the number of atoms at interfaces is invers
proportional to the radius, the proportion of the spin
dependent interface scattering to the total scattering increa
with decreasing size of the cylinders. On the other hand, t

FIG. 1. ~a! Resistivity rD as a function ofl0/a and ~b! percent of GMR
Ds/sM as a function ofa/l0 in systems of cylindrical granules for severa
spin-asymmetry factorsN. The other parameters aref50.3, lF

↑50.6l0 and
RI
↑51.0.
Sheng et al.
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smaller the radius, the more easily the currents pass by
cylinders, an effect which results in the decrease in the s
dependence of the scattering of the electrons. The comp
tion between these two factors leads to a maximum of t
GMR.

The above calculations can be extended straightf
wardly to the case of spherical granules. We can find th
eqs.~13! and ~14! are still valid if the parametersgF

s andgI
s

are represented as

gF
s5

3l0

2l01lF
s12l0lF

sRI
sa
, ~15!

g I
s52lF

sRI
sgF

s /a. ~16!

In summary, we have presented a new and efficient a
proach to calculate the conductivity in inhomogeneous sy
tems based on the effective Boltzmann equation. Within
mean-field framework, we employ our formal theory to in
vestigate in detail the GMR effect in cylindrical magneti
granular systems.
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