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We analyze a new scheme for quantum information processing, with superconducting charge qubits
coupled through a cavity mode, in which quantum manipulations are insensitive to the state of the cavity.
We illustrate how to physically implement universal quantum computation as well as multiqubit
entanglement based on unconventional geometric phase shifts in this scalable solid-state system. Some
quantum error-correcting codes can also be easily constructed using the same technique. In view of the
gate dependence on just global geometric features and the insensitivity to the state of cavity modes, the
proposed quantum operations may result in high-fidelity quantum information processing.
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Superconducting qubits have recently attracted signifi-
cant interest because of their potential suitability for inte-
grated devices in quantum information processing [1–4].
So far, experimental research on quantum information
processing using this kind of system has mostly focused
on the behavior of a single isolated qubit as the decoher-
ence time of this solid-state system is quite short [1]. Only
very recently significant achievements on superconducting
two-charge-qubit systems were reported, i.e., realization of
an entangled state for two qubits, and implementation of a
conditional gate [2]. Also note that multiparticle entangle-
ment was experimentally reported only in photons and
trapped ions. Implementation of a universal set of high-
fidelity quantum gates and generation of multiqubit entan-
glement will be the next significant and very challenging
steps towards quantum information processing based on
this scalable solid-state approach.

In this Letter, by designing a device consisting of super-
conducting charge qubits coupled through a cavity, we
propose a feasible scheme to implement a universal set
of quantum gates and produce the Greenberger-Horne-
Zeilinger (GHZ) state [5] based on unconventional geo-
metric phases. In addition, we find that this scheme is also
applicable to construct quantum error-correcting codes
(QECC) [6]. In particular, we show how to realize the
geometric evolution operators Ux;y��� � exp�i�J2x;y� with
Jx;y collective operators and � an unconventional geomet-
ric phase [7], which may have some inherent fault-tolerant
features due to the fact that unconventional geometric
phases depend only on some global geometric property
[7–13]. It is also shown that in terms of Ux;y��� of the
present system one is able to achieve a universal set of
quantum gates, to generate even-N-qubit entanglement
simultaneously by one operation [14], and to construct
the QECC [15]. All of these are essential ingredients in
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quantum information processing. Implementation of these
tasks based on the same set of geometric quantum opera-
tors may simplify the experimental operations. Apart from
the high-fidelity advantage, the geometric scheme pro-
posed here has other distinctive merits: the operator is
insensitive to the state of the cavity modes [14,16], is
tolerant to device parameter nonuniformity in quantum
computation, and the process can be fast [17,18].

Superconducting nanocircuits coupling through cavities
have been shown to be a promising solid-state system for
implementation of quantum computation and quantum
communication [19–22]. One of advantages for qubits
placed in a cavity is that the cavity can also protect the
qubits from the environment, which is important for a
useful operation of qubits especially in the scaling up of
the solid-state devices. Moreover, an architecture using
one-dimensional transmission line resonators to reach the
strong coupling limit between cavity and superconducting
nanocircuits was theoretically proposed in Ref. [21] and
then experimentally achieved in Ref. [22]. In the present
work, we address a system with N specially designed
superconducting charge qubits coupled through a high-
quality single-mode cavity, as shown in Fig. 1. Clearly,
as shown in Fig. 1(a), the newly designed single qubit is
significantly different from those studied before
[1,2,10,19]. The jth qubit consists of a small superconduct-
ing box with nj excess Cooper-pair charges, formed by two
SQUIDs with Josephson coupling energies E�lj �� �

a; b; l � 1; 2� and a �-phase junction, and each SQUID
is penetrated by a magnetic flux��

j . A control gate voltage
Vgj is connected to the system via a capacitor Cgj . The
Hamiltonian of the jth qubit reads

H � Ech�nj � 	nj�
2 �

X
�l

E�lj cos’�lj ; (1)
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FIG. 1 (color online). Josephson charge qubits. (a) A single
Josephson charge qubit. (b) A series of Josephson charge qubits
coupled through a cavity.
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where Ech � 2e2=Cj is the charging energy with Cj being
the total capacitance of the box; 	nj � CgjV

g
j =2 is the in-

duced charge and can be controlled by changing Vgj . The
gauge-invariant phase difference ’�lj � �j � �2�=�0��R
A�l
j � dl, with �j being the phase difference of the super-

conducting wave function across the junctions in a particu-
lar gauge and A�l

j being the vector potential in the same
gauge. Assuming that Josephson junctions are placed in-
side a single-mode resonant cavity, we have �2�=�0��R
A�l
j � dl � �2�=�0�

R
A0�l
j � dl� gj�a� ay�, where a

and ay are the creation and annihilation operators for the
single mode, �0 � � 	h=e is the flux quantum, gj is the
coupling constant between the junctions and the cavity, and
A0�l
j is the vector potential determined by the magnetic flux

��
j penetrating the �th SQUID hole in the jth qubit.
At temperatures much lower than the charging energy

and the gate voltage being tuned close to a degeneracy
( 	nj 
 1=2), the relevant physics is captured by considering
only the two charge eigenstates nj � 0; 1, which constitute
the basis fj0i; j1ig of the computational space of the qubit.
If we have N such qubits located inside a single-mode
cavity [Fig. 1(b)] with frequency !c=2�, to a good ap-
proximation, the whole system can be considered as N
two-state systems coupled to a quantum harmonic oscil-
lator. On the other hand, ’�lj are determined from the flux
quantization for two independent loops and an effective
�-phase junction between a2 and b1 for each qubit [see
10050
Fig. 1(a)]; that is, ’a1j � ’a2j � �a
j , ’b1j � ’b2j � �b

j , and
’a2j � ’b1j � �, where the flux ��

j �
~�j
� � gj�a� ay�

with ~�j
� � 2���

j=�0. Moreover, the average phase dropP
�l’

�l
j =4 is equal to �j, which conjugates to the Cooper-

pair number nj. Here we assume that Ealj � Eblj � Elj and
g�j � gj. In this case, the whole system can be described by
the Hamiltonian H � H0 �H0

int, where

H0 � 	h!c

�
aya�

1

2

�
�

XN
j

E 	nj�
z
j=2; (2)

H0
int ��

1

2

X
lj

�i��1�lElj�1� ei�
l
j�e�i�

�
j =2�� �H:c:�: (3)

Here E 	nj � 2Ech� 	nj � 1=2�, �lj � ��
j � i��1�l�1 �

���
j � g�a� ay��, and ��

j � � ~�a
j � ~�b

j �=2. A spin nota-
tion is used for the qubit j with Pauli matrices f�xj; �

y
j ; �

z
jg,

and ��
j � ��xj � i�yj�=2. It is interesting to note that this

Hamiltonian is similar to that used in Ref. [14] when the
external magnetic flux ~��

j depends on the time t with a
constant rate !�

j .
Comparing with the charge qubit made of one SQUID

and coupled to the cavity [19], where the initial cavity
mode should be in the ground state in performing quantum
gates (the task is exceedingly difficult to implement ex-
perimentally), one more SQUID being penetrated through
another magnetic flux is used here. Two magnetic fluxes
for one qubit can be used to manipulate the qubit states.
The function of these fluxes is similar to bichromatic lights
in quantum computation based on trapped ions [14]: tran-
sition paths involving unpopulated cavity states interfere
destructively to eliminate the influence of the cavity mode.
This phenomenon plays a key role in the implementation of
a quantum gate which is insensitive to the initial state of
cavity mode and robust against changes in the cavity state
occurring during operation. This scenario has been used in
the implementation of quantum computation with trapped
ions [13,14,16–18,23,24] and in generating experimentally
the maximally entangled state for four ions [23]. In the
following we illustrate how this strategy can be applied to
the present system.

To eliminate the influence of the cavity mode, we now
propose to apply two constantly growing external fluxes
penetrating the designated SQUIDs in the jth qubit: ~�a

j �

!�
j t� !0

j and ~�b
j � !�

j t� !0
j � 2k�, where !0

j (!0
j �

2k�) is the initial value of ~�a
j ( ~�b

j ) and k is an integer.
Experimentally, one possible way is to place each SQUID
just above an approximately inductive circuit with a con-
stant voltage V0 � !�

j �0=2�. Expanding the Hamiltonian
(3) to the first order of gj in the Lamb-Dicke limit and
under the rotating wave approximation as well as in the
interaction picture U0 � exp��iH0t�, with E 	nj � 0 (i.e.,
2-2
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the qubits are set at the degeneracy point) and E1
j � E2

j �

Ej, yields

H#
int �

XN
j

gjEj�aye
i$jt�i!

0
j �H:c:��#j ; �#� x;y�; (4)

where # � x, y for k � 0; 1, and $j � !c �!�
j � !�

j

[25].
We now show that the Hamiltonian described in Eq. (4)

can be used to perform universal quantum computation as
well as to produce the GHZ state. Let us first address a
simpler case, in which all parameters for different qubits
are the same, namely, E�lj � E, $j � $, and !0

j � !0. The
corresponding Hamiltonian (4) can be rewritten as

H#
int � gE�ayei$t�i!

0
� H:c:�J#; (5)

where J# �
PN
j �

#
j is the collective spin operator. By

using the magnus formula, the evolution operator U�t� is
found as [7]

U#�t� � ei��t�J
2
#e�%�t;!

0�ay�%��t;!0�a�J# ; (6)

where %�t; !0� � �gE= 	h$��1� ei$t�ei!
0

and ��t� �
�gE= 	h$�2�$t� sin$t�. Here %�t; !0� is a periodic function
of time and vanishes at tm � 2m�=$ for an integer m. At
the time t � tm, the evolution operator is explicitly ex-
pressed as

U#��� � exp�i�J2#�: (7)

This operator is insensitive to heating by removing the
influence of the cavity mode represented by the last ex-
ponent in Eq. (6).

Interestingly, the evolution operators (7) can provide a
set of universal quantum gates. It is well-known that, for
achieving universal quantum computation, we need to
realize two noncommuting single-qubit gates and one non-
trivial two-qubit gate. When only two qubits are consid-
ered, it is straightforward to check that Ux (or Uy) is a
nontrivial two-qubit gate. Ux can be used to produce an
entangled state from an untangled state. For example, the
maximally entangled state �j00i � ij11i�=

���
2

p
is derived

when U��=2� is directly applied to the untangled state
j00i. Moreover, a controlled-NOT gate is explicitly gener-
ated by Ux plus single-qubit rotations in Ref. [14]. We now
work out how to use the operators Ux;y to achieve a set of
noncommuting single-qubit rotations if one of the qubits is
an auxiliary qubit. Denoting j x;y� ia as the eigenstate of the
operator �x;y for the auxiliary qubit with eigenvalue �1,
and choosing the initial state as one of the eigenstates, we
then have

Ux;yj ij 
x;y
� ia � e2i��e�2i��x;yj i�j x;y� ia: (8)

It is clear from Eq. (8) that an effective single-qubit gate
U�1�
x;y � exp��2i��x;y� is obtained (up to an irrelevant
10050
overall phase) by application of Ux;y to two qubits, but
one of them is an auxiliary qubit with a fixed initial state
and then is disregarded after the gate operation. Since
j x�ia and j y�ia are the ground states of the Hamiltonian
at � 	na � 1=2; �� � 0� and � 	na � 1=2; �� � ��, respec-
tively, it is rather easy to experimentally realize the re-
quired initial state in the present system. Certainly, U�1�

x

and U�1�
y are noncommuting and consist of the well-known

single-qubit rotations. Although one more auxiliary qubit
is required, all important operations required (all logical
gates and construction of QECC are addressed below) can
be achieved with similar manipulations, which may sim-
plify experimental operations. In addition, comparing with
qubits coupled through capacitance, a nearest neighbor
interaction, the distinctive merit is that the nontrivial
two-qubit gate proposed here may act on any pair of qubits.

It is worth pointing out that a nontrivial two-qubit gate
can also be implemented when the parameters gj and Ej
are dependent on j; thus the method is also insensitive to
fabrication errors often appearing in realistic solid-state
experiments. We still consider N charge qubits in a cavity,
but only two of them are resonant with the cavity and thus
are controlled by the Hamiltonian (4). So only the two
resonant qubits are relevant and the evolution operator is
given by

U�t� � ei
P

2
j;l�1

�jl�
#
j �

#
l e�

P
2
j�1

%j�t;!0
j ��

#
j a

y�H:c:�; (9)

where %j�t; !
0
j � � �gjEj 	h$j��1� ei$jt�ei!

0
j and �jl�t� �

�gjglEjEl=� 	h2djl$j$l���$j sin�djlt � !0
jl� � djl sin�$jt �

!0
jl� � $l sin!

0
jl� with djl � $j � $l and !0

jl � !0
j � !0

l

when djl � 0. Note the facts that
P
j%j�t; 0� �

�
P
j%j�t; ��, and �jl�t� is the same for !0

j � !0
l .

Therefore, the influence of the cavity mode can also be
eliminated by using two operators in succession: two qu-
bits evolve with !0

j � !0
l � 0 for a first period (=2 and

then with !0
j � !0

l � � for the second period (=2.
Moreover, the controlled phase gate diag�1; 1; 1;�1� is
obtained when �jl � �� after performing one-qubit op-
erations [17].

Remarkably, following the approach addressed in
Ref. [7], it is straightforward to find that the phase � in
the operators (7)–(9) satisfies the relation � � ��g (�d �
�2�g), where �g is the geometric phase and �d is the
dynamic phase accumulated in the evolution. Thus � is an
unconventional geometric phase shift, which consists of
both a geometric component and a nonzero dynamic com-
ponent, but still depends only on global geometric features.
Because of this, the high fidelity of the gates in the present
system may be experimentally achieved. Note that a recent
experiment on trapped ions demonstrated that the opera-
tion realized by unconventional geometric phases pos-
sesses the high fidelity [13], which really benefits from
the geometric features: the phase is determined only by the
2-3



PRL 94, 100502 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
18 MARCH 2005
path area, not on the exact starting state distributions, path
shape, orientation in phase space, or the passage rate to
traverse the closed path. Moreover, this operation is robust
to small noncyclic perturbations [7,26].

At this stage, we illustrate how to produce the GHZ state
in this system. Note that the operator (7) is independent on
the number of qubits, by choosing � � �=2 and an initial
state j�ii � j00 � � � 0i; the final state j�fi � ei�=2J

2
x j�ii is

found to be a GHZ state given by [14]

j�fi�
1���
2

p �e�i�=4j00���0i�ei��1=4�N=2�j11���1i�; (10)

whenN is even. Although the operator (7) does not directly
produce the maximally entangled state described in
Eq. (10) for odd N, it suffices to get the GHZ state by
applying the unitary operator U � exp��i�Jx=2� in addi-
tion to the application of Eq. (7). Starting from Eq. (3), it is
not difficult to see that the operationU can be implemented
in the system by just choosing � 	nj � 1=2; ��

j � 0; ��
j �

0�. To see the feasibility of the present scheme with current
technology, we now use typical values of physical parame-
ters in the system to estimate the operation time (. We have
�
 g2E2(= 	h2$. Therefore, (
 � 	h2$=2g2E2 for � �
�=2, which is about 20 ns for E � 40 *eV [2], 	h!c �
30 *eV, $ � !c=10, and g � 10�2 [20,21]. Thus ( is
significantly less than the decoherence time of qubit
(
0:5 *s) without the protection of the cavity [4] and is
much less than the photon lifetime of the cavity mode (c �
Q=!c � 22 *s, as the quality factor of the cavityQ � 106

was reported experimentally [27]. In this case the voltage
V0 required to generate the external flux is9!c�0=20�

13 *V, a typical voltage for manipulating Josephson
junctions.

Another useful application of the present geometric
approach is to construct QECC in this solid-state system.
The operator (7) can also be used for QECC [15]. For
example, the Shor coding

%
�
1���
2

p �j000i � j111i�
�
�3

� !
�
1���
2

p �j000i � j111i�
�
�3

(11)

with j%j2 � j!j2 � 1 is achieved by using the operator (7)
plus single-qubit measurement or using the operator (7)
and a coupling �z�z, which arises naturally in charge
qubits coupled through capacitors. Therefore, the approach
proposed here provides a geometric way to efficiently
construct this kind of essential code in quantum informa-
tion. A significant result here is that implementation of a
universal set of quantum gates as well as construction of
QECC can be based on the same set of geometric quantum
operators with intrinsic fault-tolerant features and then
may simplify the experimental operations for quantum
computation.
10050
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