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PHYSICS OF FLUIDS VOLUME 15, NUMBER 8 AUGUST 2003
Another exact solution for two-dimensional, inviscid
sinh Poisson vortex arrays

K. W. Chow,a) S. C. Tsang, and C. C. Mak
Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong

~Received 8 November 2002; accepted 25 April 2003; published 2 July 2003!

Arrays of vortices are considered for two-dimensional, inviscid flows when the functional
relationship between the stream function and the vorticity is a hyperbolic sine. An exact solution as
a doubly periodic array of vortices is expressed in terms of the Jacobi elliptic functions. There is a
threshold value of the period parameter such that a transition from globally smooth distributions of
vorticity to singular distributions occurs. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1584046#
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One possible mode of two-dimensional, incompressib
inviscid, steady flows free of body forces is governed by
relation

¹2c5cxx1cyy5 f ~c!52v. ~1!

c is the stream function andv is the vorticity. f is a differ-
entiable but otherwise arbitrary function. The choice

f ~c!52s sinhc5¹2c, ~s.0! ~2!

is known as the sinh Poisson equation1–7 ~shP!, and serves as
a model in the studies of the most probable state in invis
two-dimensional flows in fluids and plasmas. Exact solutio
are thus of fundamental fluid dynamical interests as wel
of relevance in applications. Examples from the literatu
include:

~a! the Mallier–Maslowe vortices2

c54 tanh21F b cos~A11b2x!

A11b2 cosh~by!
G , s51; ~3!
he

2431070-6631/2003/15(8)/2437/4/$20.00

Downloaded 08 Nov 2006 to 147.8.21.97. Redistribution subject to AIP 
,
e

id
s
s

e

~b! a doubly periodic array of vortices in terms of pro
ucts of elliptic functions8

c54 tanh21F S sk1

rA12k2D cn~rx,k!cn~sy,k1!G ,

r 4k2~12k2!5s4k1
2~12k1

2!, ~4!

r 2~122k2!1s2~122k1
2!5s;

~c! doubly periodic arrays of vortices in terms of ration
expressions of elliptic functions6,9

~ i! c54 tanh21FAksn~rx,k!2Ak1sn~sy,k1!

11Akk1sn~rx,k!sn~sy,k1!
G ,

s2~12k1!25114r 2k, s~11k1!5r ~11k!,

s51,
~ ii ! c54 tanh21Fdn~rx,k!dn~sy,k1!2~12k2!1/4~12k1
2!1/4

~12k1
2!1/4dn~rx,k!1~12k2!1/4dn~sy,k1!G ,

r ~11A12k2!5s~11A12k1
2!, s52r 2~12A12k2!214s2A12k1

2.
d

g

The main goal of the present work is to present anot
exact solution for shP. Equation~2! is first rewritten in bilin-
ear form

c54 tanh21S g

f D , ~5!

~Dx
21Dy

22C0!~g•g1 f • f !50,
~6!

~Dx
21Dy

22C01s!g• f 50.

a!Telephone:~852! 2859 2641; fax:~852! 2858 5415. Electronic mail:
kwchow@hkusua.hku.hk
rC0 is a constant andD is the Hirota bilinear operator define
by

Dx
mDt

ng• f 5S ]

]x
2

]

]x8D
mS ]

]t
2

]

]t8D
n

3g~x,t ! f ~x8,t8!ux5x8,t5t8 . ~7!

The bilinear forms are known to be effective in obtainin
solitary and periodic waves for nonlinear equations.6,10

A doubly periodic array of vortices. Periodic solutions
can now be derived by searching forg and f in terms of
products of elliptic and theta functions.11 The methodology is
7 © 2003 American Institute of Physics
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very similar to the one used in our earlier work,6 and hence
only the final results will be stated here. A product period
solution for the sinh Poisson equation is

c54 tanh21H A0F dn~rx,k!

~12k2!1/42
~12k2!1/4

dn~rx,k! G
3Fdn~sy,k1!

~12k1
2!1/42

~12k1
2!1/4

dn~sy,k1!G J , ~8!

where the amplitude parameter is defined by

A05
s~12k1

2!1/4

2r ~12A12k2!
. ~9!

The wavenumbers and the moduli of the elliptic functions,k,
k1 , are related by

s2~12k1
2!1/4@12A12k1

2#5r 2~12k2!1/4@12A12k2#.
~10!

The vorticity parameter,s @Eq. ~2!#, is given by

s5r 2@6A12k2221k2#1s2@6A12k1
2221k1

2#. ~11!

We verify by direct differentiation that Eqs.~8!–~11!
satisfy Eq. ~2! using the computer algebra softwa
MATHEMATICA .

Figure 1 shows that Eq.~8! in general represents again
doubly periodic array of vortices. The direction of rotation
each cell is different from that in the adjacent cells. T
Jacobi elliptic function dn(x) has period 2K whereK is the
complete elliptic integral of the first kind

K~k!5E
0

p/2 du

A12k2 sin2 u
.

Moduli of the elliptic functionsk, k1 will be used below
to represent the periods of the doubly periodic arrays of v
tices.

FIG. 1. Streamlines for the doubly periodic arrays of vortices,r 5s51, k
50.9 ~dotted lines denote negative values of the stream function!.
Downloaded 08 Nov 2006 to 147.8.21.97. Redistribution subject to AIP 
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The boundaries of the cells are horizontal and verti
lines defined by the equations

dn~rx,k!5~12k2!1/4, dn~sy,k1!5~12k1
2!1/4. ~12!

The vorticity within each cell~Fig. 2! can be related to
the circulation around the cell boundaries

R udx1vdy,

by the Stokes theorem. Analytical expressions are feasibl
identities of elliptic functions, but the details will not b
pursued here.

A nearly circular singularity in vorticity. In general val-
ues of the stream function will get larger ask or k1 ap-
proaches one~Fig. 3!. The intriguing aspect of the presen

FIG. 2. Lines of constant vorticity for the doubly periodic arrays of vortice
r 5s51, k50.9 ~dotted lines denote negative values of the vorticity!.

FIG. 3. Streamlines in a cell near the threshold value ofk, r 5s51, k
50.984~dotted lines denote negative values of the stream function!.
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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solution is that patterns of point vortices or finite regions
vorticity singularities are reached before the long wave lim
is taken or attained.

For simplicity in algebra we focus on the caser 5s, k
5k1 . Consider the point~0, 0!. From Eq.~8!, the hyperbolic
tangent will attain the value one, and hence the value of
stream function will become infinite if

1

~12k2!1/42~12k2!1/452,

or

12k25~&21!4, k'0.985 171. ~13!

Although the vorticity parameters of Eq. ~11! appears to be
zero due to Eq.~13!, the vorticity at~0, 0! is actually given
by

v5
4sT~11T2!

~12T2!2 , T5tanh
c

4
, T→1,

as k→0.985 171, ~14!

and hence the vorticity still possesses a simple pole at
particular value ofk given by Eq.~13!.

It is instructive to study the actual transformation for t
plots of vorticity ask varies. Neark50.985 171,s is close to
zero and the vorticity is very small except in the vicinity
T51 ~Fig. 4!.

For still larger values ofk, the stream function as give
by ~8! is not defined in a finite region within each cell, as t
hyperbolic tangent must be less than one in absolute va
The boundary is defined by

F dn~rx,k!

~12k2!1/42
~12k2!1/4

dn~rx,k! GF dn~ry ,k!

~12k2!1/42
~12k2!1/4

dn~ry ,k! G
52S 1

~12k2!1/42~12k2!1/4D . ~15!

The curve resembles a circle~Fig. 5!.

FIG. 4. Variation of vorticity across a cross section (y50) of the cell near
the threshold value ofk, r 5s51, k50.984.
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The flow configuration beyond the critical value ofk
defined by ~14! requires careful consideration. Inside th
critical contour the stream function given by~8! cannot be
used since the hyperbolic tangent is larger than one in
interior. However, we propose that the flow field given by

u5cy , v52cx ,

is still a valid flow field, and the resulting vorticity remain
finite. Mathematically the stream function would be compl
constants in the interior streamlines. However, physi
quantities, such as velocities~derivatives of the stream func
tion! and mass flow~difference of adjacent streamlines! can
still be calculated in a meaningful way. The vorticity fie
remains finite in the interior region. Hence one would obta
a ‘‘nearly circular singularity’’ in the vorticity field along the
curve defined by Eq.~15! for k beyond the critical value~of
about 0.985 171!.

One possible way to avoid a singularity is to conside
closed curve exterior to the boundary defined by~15!. Out-
side the closed curve the sinh Poisson equation holds, w
the interior is governed by a different principle of vorticit
dynamics. The situation is then analogous to the case of
classical Lamb dipole. A brief account of this vortex patte
is given here for completeness. Basically the flow is irro
tional outside a circle of radiusa, but the vorticity is propor-
tional to the stream function~c! inside the circle. Matchingc
and its derivative across the circle give the Lam
dipole5,12–14

c52US r 2
a2

r D sinu, r .a,

c5CJ1~kr !sinu, v52Ck2J1~kr !sinu, r ,a,

J1~ka!50, C5
22U

kJ0~ka!
.

U is the free stream speed in the far field.
Special reduction and potential applications. The long

wave limits of these doubly periodic patterns of vortex arra

FIG. 5. Singularity boundary (tanhc/451) beyond the threshold value o
k, r 5s51, k50.99.
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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will typically lead to known solutions. For simplicity we
shall first take the solution equation~4! as an example. The
cn function has period 4K, whereK is the complete elliptic
integral of the first kind. The stream function is given by E
~4!, and there are two equations relating the five parame
r , s, k, k1 , s. The periods in thex, y directions are 4K/r ,
4 K1 /s, respectively.K1 is the complete elliptic integra
with parameterk1 .

To construct a solution, one first selects~or is given! the
parametersk, k1 . One then defines the period~or length of
the box! and the vorticity by solving forr , s, ands. Since
only two equations are involved, one can further assig
value to one ofr , s, ands.

The long wave limit refers to the case ofk1 approaching
one. An inspection of the equations shows that the fin
plausible solution isk approaching zero, and this case r
duces to the Mallier–Maslowe vortices.

The main formula of the present work@Eq. ~8!# will also
reduce to the Mallier–Maslowe vortices in the limitsk→0
andk1→1. These auxiliary results are needed

dn2~rx !512k2sn2~rx !, sn~rx !→sin~rx ! as k→0,

dn~sy!→sech~sy! as k1→1.

On simplifying the algebra,~8! reduces to~for the cases
51)

c54 tanh21Fs sech~sy!cos~2rx !

2r G , 4r 2511s2,

which is a form of the Mallier–Maslowe vortices@Eq. ~3!#.
Numerical computations of two-dimensional, incom

pressible turbulence have revealed the emergence of co
ent vortex structures. Such self-organization of the flow
serves attention, since vortex–wall interactons w
eventually become important as the size of the vorti
increases.15 Experiments on such quasi-two-dimension
flows in rotating16 or stratified17 fluids, or electromagneti-
cally forced flows18 are often performed in containers of fi
nite size and with rigid boundaries. Isolated or arrays of v
tices resembling those found in the present work
observed, and hence the present formulation can enhanc
capability in understanding such flows.

Arrays of vortices are indeed observed in these exp
mental situations. Especially striking are flows produced i
thin layer of electrolyte by using a steady, spatially period
electromagnetic forcing.19 The flow patterns resemble thos
predicted by the kind of analytical formulation in this pap

Stability of the these vortices remains an open quest
Methods similar to those used earlier in the literature3–5 can
presumably be applied. Alternatively full scale numeric
Downloaded 08 Nov 2006 to 147.8.21.97. Redistribution subject to AIP 
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simulations should be performed. Indeed three-dimensio
secondary instability of the Mallier–Maslowe vortices h
been studied by computational methods, and related to
tures observed experimentally in shear flows and wakes20

ACKNOWLEDGMENT

Partial financial support has been provided by the R
search Grants Council through contracts HKU 7067/00E
HKU 7006/02E.

1D. Montgomery, W. H. Matthaeus, W. T. Stribling, D. Martinez, and
Oughton, ‘‘Relaxation in two dimensions and the sinh-Poisson equatio
Phys. Fluids A4, 3 ~1992!.

2R. Mallier and S. A. Maslowe, ‘‘A row of counter rotating vortices,’’ Phys
Fluids A 5, 1074~1993!.

3R. A. Pasmanter, ‘‘On long-lived vortices in 2D viscous flows, most pro
able states of inviscid 2D flows and soliton equation,’’ Phys. Fluids6,
1236 ~1994!.

4T. Dauxois, ‘‘Nonlinear stability of counter-rotating vortices,’’ Phys. Flu
ids 6, 1625~1994!.

5T. Dauxois, S. Fauve, and L. Tuckerman, ‘‘Stability of periodic arrays
vortices,’’ Phys. Fluids8, 487 ~1996!.

6K. W. Chow, N. W. M. Ko, and S. K. Tang, ‘‘Solitons in (210) dimen-
sions and their applications in vortex dynamics,’’ Fluid Dyn. Res.21, 101
~1997!.

7K. W. Chow, N. W. M. Ko, R. C. K. Leung, and S. K. Tang, ‘‘Inviscid two
dimensional vortex dynamics and a soliton expansion of the sinh-Pois
equation,’’ Phys. Fluids10, 1111~1998!.

8B. N. Kuvshinov and T. J. Schep, ‘‘Double-periodic arrays of vortices
Phys. Fluids12, 3282~2000!.

9K. W. Chow, ‘‘A class of doubly periodic waves for nonlinear evolutio
equations,’’ Wave Motion35, 71 ~2002!.

10M. J. Ablowitz and H. Segur,Solitons and the Inverse Scattering Tran
form ~SIAM, Philadelphia, 1981!.

11M. Abramowitz and I. Stegun,Handbook of Mathematical Functions~Do-
ver, New York, 1964!.

12A. H. Nielsen and J. Juul Rasmussen, ‘‘Formation and temporal evolu
of the Lamb dipole,’’ Phys. Fluids9, 982 ~1997!.

13J. S. Hesthaven, J. P. Lynov, A. H. Nielsen, J. Juul Rasmussen, M
Schmidt, E. G. Shapiro, and S. K. Turitsyn, ‘‘Dynamics of a nonline
dipole vortex,’’ Phys. Fluids7, 2220~1995!.

14V. V. Meleshko and G. J. F. van Heijst, ‘‘On Chaplygin’s investigations
two dimensional vortex structures in an inviscid fluid,’’ J. Fluid Mec
272, 157 ~1994!.

15H. J. H. Clercx, S. R. Massen, and G. J. F. van Heijst, ‘‘Spontane
spin-up during the decay of 2D turbulence in a square container with r
boundaries,’’ Phys. Rev. Lett.80, 5129~1998!.

16E. J. Hopfinger and G. J. F. van Heijst, ‘‘Vortices in rotating fluids,’’Ann
Rev. Fluid Mech.25, 241 ~1993!.

17B. M. Boubnov, S. B. Dalziel, and P. F. Linden, ‘‘Source-sink turbulen
in a stratified fluid,’’ J. Fluid Mech.261, 273 ~1994!.

18P. Tabeling, S. Burkhart, O. Cardoso, and H. Willaime, ‘‘Experimen
study of freely decaying two-dimensional turbulence,’’ Phys. Rev. Lett.67,
3772 ~1991!.

19O. Cardoso, D. Marteau, and P. Tabeling, ‘‘Quantitative experimen
study of the free decay of quasi-two dimensional turbulence,’’ Phys. R
E 49, 454 ~1994!.

20S. Julien, J. M. Chomaz, and J. C. Lasheras, ‘‘Three-dimensional stab
of periodic arrays of counter-rotating vortices,’’ Phys. Fluids14, 732
~2002!.
license or copyright, see http://pof.aip.org/pof/copyright.jsp


