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Flow transitions and combined free and forced convective heat transfer
in rotating curved channels: The case of positive rotation
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School of Mechanical & Production Engineering, Nanyang Technological University, 639798 Singapore

K. C. Cheng
Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2G8, Canada

(Received 11 July 1995; accepted 29 January 1996

The simultaneous effects of curvature, rotation and heating/cooling in channel flow complicate the
flow and heat transfer characteristics beyond those observed in the channels with simple curvature
or rotation. The phenomena encountered are examined for steady, hydrodynamically and thermally
fully developed flow in square channels. The governing equations are solved numerically by using
a finite-volume method. Certain hitherto unknown flow patterns are found. And the results show
both the nature of the flow transition and the effect of this transition on the distributions of
temperature, friction factor and Nusselt number in a square channel99® American Institute of
Physics[S1070-663196)00406-X]

I. INTRODUCTION with spanwise rotatiohereinafter referred to as the Coriolis
problem. The similarity among these three problems has

are Zlnuclg ﬂn(i‘évr:;qnh;%tl.tI:anSSf:t;'r:Sr?;?t'cr:)gngu?tls:js %?i?gglfbeen recognized by a number of investigators. The dynami-
u : INg sy u Cal parameters for these three problems akkg,

generators and generator motors for pumped-storage statio ) —ReRa the product of the Reynolds numbgre and
. . . . m_
They are also employed in applications such as separati ayleigh numberRa), square of the Dean numb@e?

processes, heat exchangers and physiological field. The ~ T
transport and flow phenomena in the rotating curved chan} e=Reyo, acomb_maﬂon of the Reynolds numtiee and
e curvature ratio of the channelr) and Dg

nels have, therefore, challenged engineers and scientists f
some time. A remarkable che?racterigtic of the flow and hea Dﬂ_:ReR@l’ the product of the Reynolds pumldfe and
transfer in a rotating system is the presence of the centrifugz{Pt""t'Onal Reynolds numb_eReQ), fespe‘?“"e'f’ Here
and Coriolis forces. Under certain conditions, these forcegezwmdh_/” (Wm is the axial mean velocitydy, IS the hy_'
may induce a secondary flow in a plane perpendicular to thdrodynamic diameter %f the channel ands the kinematic
direction of the main flow. This could significantly affect the ViSCOSIty, Ra=BgATdy/(va) (B is the thermal-expansion
resistance to the fluid flow and convective heat transfer. ~ cO€fficient, g is the gravitational acceleratiolyT is the
According to its inducing conditiohthe secondary flow chara_ct_erlstlc temperature_ difference amdis th_e ther_mal
could be created by the Coriolis force for a constant propertfliffusivity), o=dn/R; (R is the curvature radius, Fig.) 1
fluid, while the centrifugal force is purely hydrostatic, analo- 2ndRen=Qdi/ v (Q is the angular speed of rotatjorDe-
gous to the Earth’s gravitational field. When a temperaturePending on the value of the dynamical parameter, fully-
induced variation of fluid density occurs, both Coriolis anddeveloped secondary flow exhibits three different structures
Centrifuga|-type buoyancy force could contribute to the gen.for all three prOblemS in the laminar flow region as follows.
eration of the secondary flow. On the other hand, secondary At a relatively small value of the dynamical parameter, it
flow also arises due to centrifugal force when a channel i€onsists of one-pair of counter-rotating vortices in a plane
curved? Therefore, centrifugal, Coriolis and centrifugal-type perpendicular to the axis of the channel. Upon increasing the
buoyancy forces all contribute to the generation of the secvalue of the dynamical parameters sufficierithgpending on
ondary flow if the channel is curved, rotated and heatedthe value of the Prandtl numb@r, curvature ratiar or the
cooled. The nonlinear interaction of these body forces withrotational Reynolds numbeRe,, respectively, for these
the other forces in the flow field may result in a complicatedthree problemy the centrifugal, Coriolis or buoyancy force
structure of the secondary flow. We attempt to examine thisnstability may lead this one-pair vortex flow structure to
structure and its effects on pressure-driven main flow anéwnother form of two-dimensional flow with a two-pair or
temperature field in a square channel by using a finiteroll-cell vortex structurgdepending on the geometry of the
volume method. channel in the cross-plane. Such two-pair vortex flows are
The secondary flow under consideration is essentially #und to be unstable to asymmetric perturbations in the Dean
nonlinear combination of the buoyancy force-driven seconproblem® in the Coriolis probleth and in the mixed-
dary flow in the mixed-convection problem, the centrifugal convection probleni.Upon increasing the dynamical param-
force-driven secondary flow in the Dean problem and theeter further, all two-dimensional flows become unstable, and
Coriolis force-driven secondary flow in straight channelsthere are evidences for the evolution of streamwise periodic
three-dimensional flows in all of the three probletn%The

aTelephone(65)799-5563; fax:(65)791-1859; electronic mail: reference concerning these three problems may be found, for
miwang@ntuvax.ntu.ac.sg example, in Nandakumar and WeinitschKer the mixed-
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rate of heating and rotation. The work also clearly shows the

Pressure-d Buoyancy force
flow “oooing heaing heat transfer enhancement due to the rotation for a straight
a \ rectangular channel with a high aspect ratio for a range of
Y spanwise rotation rates. Matsson and Alfred$8eisualized
e vl and measured the flow in a curved air channel with a high
z aspect ratio and a spanwise rotation using smoke visualiza-
. e 4| BT q o x Contifugalforce tion and hot-wire measurements with an emphasis on the
i ! ' ] effect of spanwise rotation on the primary and secondary
instabilities in curved channel flow. When the Coriolis force
\ X enhanced the centrifugal for¢positive rotation, the vortex
“"a"‘" pairs were observed to split and merge. When the Coriolis
-a force counteracted the centrifugal foreegative rotatio)
Coriolis force the primary Dean instability in forms of Dean vortices could
negative  positive be cancelled. As well, a high negative rotation rate could
lead the vortices to appear on the inner convex channel wall.
FIG. 1. Physical problem and rotating toroidal coordinate system. In this work, we present a relatively comprehensive nu-

merical study on the laminar flow and combined free and
forced convective heat transfer in a rotating curved square
channel at low to relatively rapid rotation rates where both
the convective and diffusive terms play an important role
A combination of two or all of these three problems and, consequ.entl.y, the full nonlinear equatip_ns must be

olved. Attention is focused on the flow transitions of sec-

arises in many engineering fields. This has stimulated thgndar flow and main flow in the fully developed region and
interest on the flow and heat transfer under the combinef{1 y y p g

effect of two or all of three body forces. Because of thethe effects of the flow transitions on temperature distribution,
complexities of the problem, early worké have been conlriction factors and Nusselt number for a wide range of char-
strained to some simplified limiting cases in which there ex_ac'terlstlc. parar.n'e'ters. Thg empha3|§ IS also placed on the
istsonedominated body force. Under the condition that flow Primary instabilities (centrifugal, Coriolis and buoyancy

is fully developed and laminar, combined Dean and COriOIiSforce instabilitie$ arising in the rotating curved channels,

problem was theoretically examined by Hockihgand and not their secondary instabilities or the transition to tur-
Ludwieg13 for a rectangular or square channel with Strongbulence, although the vortices studied ultimately have an im-
spanwise rotation, and Ito and Mdtfor a circular curved portant influence on the transition. The motivation for the
tube with weak sp,anwise rotation. MiyazHki®analyzed the ~Present study arose from the following observatio(®:

fully developed laminar flow and heat transfer in a CurVedThere exists no detailed study of the flow and heat transfer in

circular/rectangular channel with spanwise rotation and heaf channel with simultaneous effects of curvature, rotation

ing effect by a finite-difference method. Because of the con@nd heating/cooling. While flow and heat transfer under three

vergence difficulties of the iterative method used, no solu—effects resemble those with pnly two or one factors when one
two body forces are relatively wedthis is the case con-

tions in the range where three forces are of comparable ordé)rrd d by Mi 19, 1 q d with
of magnitude could be obtained. Besides, the examination oydered by Miyaza , they are endowed with some more

the governing equations employed by Miyazaki shows thagomplex features due to the nonlinearity of the problem and
some errors existed in the Viscous terms the nonuniform interactions of these forces over the flow

Since the solution is only for the asymptotic cases Ofdomain, especially when three forces are of comparable or-

slow and rapid rotation, the secondary flow revealed by théier of magnitude; and?) the transitions in flow structure

works mentioned above consists of one-pair of countergue to the action of centrifugal, Coriolis and buoyancy forces

rotating vortices in a plane perpendicular to the axis of théﬂ""“’e not been fully studied. In pqrtlcular, the'dlsappearance
channel. The interaction of the secondary flow with theand reappearance of Dean-vortices, Coriolis-vortices and

pressure-driven main flow shifts the location of the maXi_buoyancy-vortlces have in general received less attention in

mum axial velocity away from the center of the channel anoIhe past.

in the direction of the secondary velocities in the middle of

the channel. When the three forces are of comparable ordélr FORMULATION OF THE PROBLEM

of magnitude, a complicated structure of the secondary flow The geometrical configuration of the physical model for

might be expected since then the nonlinear effects could ba rotating curved rectangular channel and its coordinate sys-

quite strong. tem are illustrated in Fig. 1. A viscous fluid is allowed to
More comprehensive studies have been made bflow through a channel of rectangular cross section with

Thangam and Spezidfe and Matsson and Alfredssdf. width X height= a X b under the action of the pressure gra-

Thangam and Spezidfenumerically examined the effect of dient along the channel axisstreamwise direction The

sidewall heating in the pressure-driven laminar flow of anchannel is uniformly curved around the axi$z’, and ro-

incompressible viscous fluid through a straight rectangulatates about the axis with a constant angular velo@ityThe

channel under a spanwise rotation. The secondary flow wa®tation can bepositive or negativeas shown in Fig. 1 in

found to be unicellular or multicellular, depending on theterms of angular velocity vector. A positive rotation gives

convection problem; Nandakumar and Masliyahd Hwang
and Chad’ for the Dean problem; Nandakumat al.® and
Yang et al!* for the Coriolis problem.
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rise to a Coriolis force in the cross-plane that is directed o W

along the positiveX-direction, and vice versa. In addition to + 1+ o(x—(1+ 1/y)/4) X

the curvature and rotation, the channel is being uniformly

heated or cooled at the wall with a uniform peripheral tem- a’w _

perature. The properties of the fluid, with the exception of T (L+o(x—(1+1y)/4)2) @

density, are taken to be constant. To facilitate the discussion, -

each side of the channel wall is termed the inner, outer, upEN€rgy equation:

per and lower walls as shown in the figure. at ot ADKW
Consider a non-inertial toroidal coordinate systemu——-+v—— —

(0,X,Y,0) fixed to the curved channel rotating with a con- X ay  oPrltoX=(1+1/y)/4)

stant angular velocit§) abouto’z’ axis, as shown in Fig. 1. 1/t % o at
The radial(norma), spanwise and streamwigaxial) direc- “priaa ™ WZ*‘ 1+ o(x—(1+1/y)/48) ox) ®)

tions are K,Y, 6), respectively. The direction of the relative . . . _
velocity of the fluid in the channel is chosen in the direction The dimensionless variables are defined as

of increasingd, while the angular velocity of the channel is X v

taken as(Q>0 for increasingd (positive rotation and X=—: y=—;

Q<0 for decreasing (negative rotatio)y respectively. In dn dn

order to facilitate the numerical programming, the origin of d,U dyV W
the coordinate system is located at the center of the inner u= T; v= T; w= Wl;

wall instead of the center of the cross section.

The flow is assumed to be laminar and steady. Let p To—T

U,V andW be the velocity components in the directions of
X,Y and#, respectively, and, T,, be the temperature of the

TN S

fluid and the wall. By using the usual Boussinesq approxiwherev andp are the kinematic viscosity and the density of
mation to deal with the density variation, the continuity, the fluid, d,, is the hydrodynamic diameter defined as
Navier-Stokes and energy equations governing the fullyd,=2ab/(a+b), P is a pseudo pressure which absorbs any
developed laminar flow and heat transfer are given in term$orce residual implied by using the Boussinesq approxima-

of the dimensionless variables®ake following. continuity

equation:
i 1+
ox

a
+_
ay

4x—(1+ 1/vy)
— v

(1+0_4X— (:L_f—l— lly))v)

o

momentum equations:

au+ au 16D k?w? 4L ,Dk?w
ax Yoy o(1+a(x—(1+ 1/y)/4)) 30

u

Ax—(1+1/
—16DKL, 1+o+y)>t
ap [d°u  d%u o au
=——+ |+t —
ax \axc  dy: 1+a(x—(1+1y)ld) dx

o2u )
(Lt o(x—(1+1/y)/4)2)

v ap [d*v %

U&'f'v E =— E + W-l— (9_y2
N o dv
1+o(XxX—(1+1/y)/8) dx)’
ow N ow N ouw N olLqiu
Uox TV oy T 1t ox—(1+ 1y)a) | 12
- 1 N 9w . 9w
1+ o(x—(1+1/y)148) |\ ax®  ay?
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)

)

)

tion (P=p’' —p[X—al2+ (X—a)?/(2R,)]RQ? with p’ as
the fluid pressure an®. as the curvature radiy$>*® and
W, and AT are the representative axial velocity and tem-
perature difference, respectively, which are defined as
dic,
W]_:_; AT:PrdhCZ.
72

Here u is the viscosity of the fluidPr is the Prandtl number,
c, is the axial pressure gradient which is a positive constant
for hydrodynamically fully developed flow
(c;= — ap’'IR.96),**®and c, is the axial temperature gra-
dient which is a constant for the thermally fully developed
flow, but can be positive and negative depending on heating
or cooling of the fluid €, = 9T/R.36) 31920

It is customary to use the mean axial velocity,, and
the difference between the wall temperature and the bulk
mean temperaturel(,—T,) for the non-dimensionalization
of the axial velocity and temperature, respectively. However,
the employment of these gquantities results unavoidably in the
appearance of two unknown dimensional parameters in the
governing equations which comprise the unknowwg and
Ty, respectively. Consequently, the iterative procedure
should be applied, assuming some initial estimated values to
them. It requires an additional computation time. In order to
avoid this additional increase in computation time, we follow
Miyazaki*>%in usingW; and AT as the representative axial
velocity and the representative temperature difference, re-
spectively. They involve the axial pressure gradieptand
the axial temperature gradiecy, which are usually given as
design parameters so that it does not induce a difficulty in
using the computation results for design. The velo¥ity is
proportional to the pressure drop in the axial direction. For

L. Wang and K. C. Cheng 1555
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the flow in a stationary straight circular tube, the mean axiaDean number, the rotational Reynolds number and the rota-
velocity Wi, is related tow; asW,,=W,/8 (Miyazaki*>'9.  tional Rayleigh number in an explicit way, there should be
The temperature differencAT is, on the other hand, pro- no difficulty in application of results. In particular,
portional to the fluid temperature difference between theRo=2DKkL;/(3Re) andRay=16DKkL,. HereRois the ro-

channel inlet and outlet. tation number defined @&o=Qd,,/W,,.
Six dimensionless parameters are defined as In this work, we attempt to examine the transition of
a d symmetric secondary flow with respect to the horizontal cen-
y==; o= _“; Pr= K; terline only. Thus it suffices to consider the upper half region
b R a alone for the analysis. Then the boundary conditions may be
ody W, 3Rey, Rag written, in terms of dimensionless variables, as
a0 Mok Miek o
u=v=w=t=0, atx=0, 3(1+3),
in which
C
ReQ:T; RaQ=—V2—,

u=v=w=t=0, aty=%1+7y),
with B8 as the thermal-expansion coefficient.

The dimensionless groups adopted here are those in  fq, OSXSE
Miyazaki*>'® and Morris® The y is a geometry parameter 2
denoting the aspect ratio of a rectangular cross section. The
curvature ratioo is also a geometry parameter, representingdu  dw ot
the degree of curvature. The Prandtl numBet a thermo- 5y~ gy ~ oy
physical property parameter, represents the ratio of momen-
tum diffusion rate to that of thermal diffusiorDk is a
pseudo Dean number withW; as the characteristic
velocity 1*1® The rotational Reynolds numb&e, emerges
from the Coriolis term of the momentum equations. It indi- Within the scope of the present study, the equatidns
cates ratio of the Coriolis force to the viscous force. A posi-(5) under the boundary condition®)—(8) constitute the
tive Req represents the case of positive rotation. A negativanathematical model of the problem under consideration. The
Re, is for the case of negative rotation. It is noted that in theimposition of the symmetry condition about the horizontal
literature the rotational Reynolds number is also known agenterline constrains us to consider the symmetric solution
the Taylor number or the reciprocal of Ekman number. It isonly. However, the instabilities of the physical probleat
adopted here instead of the Ekman number because the ithe various orders, secondary and the higher ¢rdeuld
crease inRe, implies the growth of the Coriolis force, and suggest the existence of the asymmetric solutions in some
its effects are more readily conceivaljle particular for the  region of the parameter space, the region with the high dy-
limiting case as()—0). The rotational Rayleigh number namical parameters in particular. The flow occurring in an
Rag has its origin in the centrifugal buoyancy terms. It is experiment may, therefore, be non-symmetric in those re-
similar to the Rayleigh numbdRa encountered in the study gions. As found numerically and experimentally by a number
of gravitational buoyancy due to the Earth’s gravitationalof investigatorgsee, for example, the works by Nandakumar
field but with the gravitational acceleration replaced by theand his co-workers and Finlay and his co-worketise sym-
centrifugal acceleration measured at the center line of thenetric solution(in particular, the four cell floywcan be stable
channel. It denotes the ratio of the centrifugal-type buoyancyn some parameter region but unstable to various perturba-
force to the viscous force. A positivRa, represents the tions in some other parameter range for the Dean- , Coriolis-,
heating case while a negatiRRsa,, is for the case of cooling. mixed convection- and combined-problems, leading the flow
It is noted that the Rayleigh number is being used more antb be asymmetric or in the form of travelling waves. A thor-
more instead of the Grashof numigér. oughly numerical calculation should allow the flow to be

Different  scaling quantites in the non- asymmetric and carry out secondary and higher order insta-
dimensionalization may result in different parameter groupsility analyses w.r.t. various perturbations. Such analyses are
for the effects of rotation, curvature and heat/cooling. Herébeyond the scope of the present study and are believed to be
we introduce thd_; andL, to represent the effects of rota- difficult for a pressure-driven flow in a channel with finite
tion and heating/cooling, respectively, because they represpan and simultaneous effect of the curvature, the rotation
sent the ratios of the dynamical parametegs (in the Cori-  and the heating/cooling. However, even in the range of the
olis problem andD, (in the mixed-convection problento  dynamical parameters where the instabilities could essen-
the parameteDe? in the Dean probler®® They were found tially cause the flow to be asymmetric, a symmetric analysis
to be two parameters in determining the flow patterns in theppears still worthy to carry out in the sense ttiatthe flow
channel with curvature, rotation and heating/coofif§?®  from such analyses forms the base flow which one must
and are introduced in the governing equati@l)s-(5) explic-  know in order to make instability analyses, and tf&tsuch
itly since we are mainly concerned with the transition of thean analysis would indicate where in the dynamical parameter
flow structures in this work. Note that they are related to thespace one should make the higher order instability analyses.

1
1+ —), (7)
Y

0, v=0, aty=0,

1
1+ =

: ®
Y

f 0 L
<x<_—
or X<3
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IIl. NUMERICAL METHOD OF SOLUTION 10

] Present work ).'4
. _ . 81 A Baylis (1971) Al
The governing equationd)—(5) are a set of convection- 1 ©  Cheng & Akiyama (1970) g‘o’/
diffusion equations with velocity-pressure coupling. In order 64 O %enz et:lz-l({w'ls) <§‘°+’°//
to obtain solution for this kind of equations by finite-volume . . Gmﬁarlslokhe;t(1(;?79)o )&Y; ¥
method, two factors are considered to be extremely essential: S 41 @ Ludwieg (1951) ¢
(1) using the correct difference scheme for convection term E — — Mori et al. (1971) o@’ _
and(2) decoupling the velocity and pressure properly. After g 1 ¢ {f
discretization in the domain, the governing differential equa- ~
tions become a set of algebraic equations, the so-called dis- 21
cretization equations. The methods of solving these discreti- (@)
zation equations are also vital to the success. Therefore the
difference scheme, treatment of the velocity-pressure cou- X
pling and the method of solving the discretization equations 10 102 103 10*
may be regarded as three major factors for the success of a De
finite-volume method. And they are also the major criteria - S
for distinguishing one scheme from the other. G‘T Present work s@‘}&"ﬂﬂ ,
~In the last twenty years, numerous papers were pub- sl 0 gf:u;t&d‘kgﬂ AV
lished dealing with the three aspects of the finite-volume O Chengetal (1975) — = ,
method mentioned above. Based on the review and compari- 44— — Mori & Uchida (1967) /
son among various methods in terms of their transport and /;§°
conservative properties, convective numerical stability, é 3 4
economy and exactitude, we chose the power-law scheme to 2
discretize the convection term; employ the SIMPLE scheme 2
to deal with the problem of velocity-pressure coupling; and
use an alternating direction line-by-line iterative method ®)
(ADI) with block correction technique to solve the discreti-
zation equations. The description of the numerical imple- 1
mentation can be found, for example, in Patarflar. o 10 i0%
The initial calculation for the Dean problem was per- De

formed by setting angular velocit =0 to verify the code. L L )
In Fig. 2. the mean friction factor and Nusselt number forrlG' 2. V_arlatlons of friction factor and Nuss_eltnumber with Dean number_

. . or a stationary square channel-a comparison of the present results with
curved square channel obtained by the present analysis aggailable theoretical, experimental and numerical findi@sfriction factor
shown together with the available theoretical, numerical andBaylis 197£% experiments; Cheng and Akiyama 1§%umerical analy-
experimental results. In the figure, the friction factor andSis: Chenget al. 1976". numerical analysis; Thangam and Hur 1880

. numerical analysis; Ghia and Sokhey 1&7umerical analysis; Ludwieg
Nusselt number are shown as a function of the Dean numbgigs Experiments; Moriet al. 197F% boundary layer correlations(b)
on the basis of those for a stationary straight square channelusselt number(Mori et al. 1972% experiments; Cheng and Akiyama
The results of the present analysis are in good agreemeﬁWdei numerical analysis; Chenet al. 1975 numerical analysis; Mori
with the published results. and Uchida 196% boundary layer correlations

In the present computations, four pairs of grid sizes uni-

formly distributed in the flow domain were used to check the
grid dependence. They are 837, 43x21, 5125 and
59x29. The results obtained by using these four grid sizesields for different grid sizes, and found that:825 is indeed
are shown in Table | for six caseslat=—30,-5,1,5,8 and a reasonably accurate choice for the grid size for square
30, respectively, withy=1,0=0.01Pr=0.7Dk=100 and  channels. It is worth noting that the CPU time increases rap-
L,=—5. These six cases are chosen because they cover @lly as the grid spacing decreases. In order to have a balance
typical secondary flow patterns obtained in the present workbetween the cost of the computer time and the accuracy of
Four representative properties, namely, the Dean numbehe solution, we carried out all the computations with a
(De=Reyo, Re=W,d,/» with W, as the axial mean ve- 51x 25 uniform meshes for square chanriéls.
locity), the maximum of absolute values of secondary flow  Typically, the computations were made for given values
stream function [(4]man, Maximum axial velocity Wmay) ~ of the aspect ratioy, curvature ratioo, Prandtl number
and maximum temperature,.(,,), as well as the CPU time, Pr, Pseudo Dean numbédk and the parameters; and
are listed in Table | for comparisofl. The computations L,. The calculations were performed iteratively using the
were carried out on the AMDAHL computer. The initial alternating direction line-solutiofADI) with the block cor-
guesses of the fields far, v, w, t, andp were all set to rection technigue, and the solution was assumed to be con-
zero. The general trend of these results as the grid size igergent in a numerical sense if the maximum relative error in
decreased tends to indicate that the solutions for the case eich of the primitive variable§.e., velocity components,
(51x 25) grids are accurate to within 1% tolerance. We alsaemperature and the pressui less than % 10 ° between
checked the detailed variations of the flow and temperatursuccessive iterations.

Phys. Fluids, Vol. 8, No. 6, June 1996 L. Wang and K. C. Cheng 1557
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TABLE I. Variations ofDe, [¢/|max: Wmax, tmax, @nd CPU time in seconds  cooled, it will act in the negativeX-direction. From this
with different grids. simple analysis about force directions, it is clear that cen-
y=1 Dk=100 0=001 Pr=07 L,=-5 trifugal, Coriolis and buoyancy forces enhance each other for
L, Grids De [Wmax ~ Wimax tmax  CPU(S some cases, and cancel each other for other cases. This
would make the flow and heat transfer more complex than
-30 35x17  46.93 1286 00177  16.79 th f ch | with simole rotati i
43x21  47.94 1288 00182  17.22 865 ose of channel with simple rotation or curvature.

51x25  48.66 12.88 0.0184 17.54 184.4 The flow and heat transfer under consideration are char-
59x29  49.04 12.88  0.0185 17.66 465.7  acterized by six dimensionless parameteyss,Pr,Dk,L
-5  3x17 6333 1347 00252 23.35 andL,. These parameters are coupled with and affect each

43x21  64.02 13.38  0.0273  26.75 125.7
E1x25 6822 1351 00286 2861 1927 other, so that the effects of the parameters on the flow and

50x29 6850 1347 00286 2885 1300.8 heat transfer are very complex. Extensive computations are
1 35x17  72.30 11.13 0.0299 29.85 required for a large number of cases to cover the entire ef-
43x21  72.75 11.07  0.0301  30.19 1705 fect, which requires an extremely long computation time.
géi ;g ;g‘l)% ﬂ-gz g-gggg gg-ig %8-3 Fortunately, the introduction df, andL, , analogous to the
5 3517 9011 1057 00405 4937 ' _nor.mallzatlon of the problems, enables one to obtain some
43x21 9045 10.64 00407 4979 1065 insight of the problem from not so large a number of cases.
51x25  90.63 10.63  0.0407  49.95 214.0 This results from the fact that they are the dynamical param-
59x29  90.74 10.65  0.0408  50.03 369.0 eters for the Coriolis problem and mixed convection problem
8 igx ;Z igi-ig g-ig 8-8322 22-;“13 L62.0 based on the dynamical parameter for the Dean
51§ 55 10154 951 0o4ea  ecgs  osos Problem>*ZEven so, however, it is still a lengthy process
50x29  101.60 9.54 0.0464  66.81 15403 (0 describe the typical results covering the whole range of
30 3517  51.83 10.37  0.0194  21.24 the parameters. The results shown in this paper will be
43x21  52.81 10.33  0.0198  21.80 79.6  mainly confined to the case of the positive rotation with
g;i;g gggg ig-gg 8-8;8; ;g;g 41123'(1) y=1,0=0.02 andPr=0.7 with the exception of those in
: ' : i : Sec. IV B. The readers are referred to Wafay the case of
negative rotation.

Some features of the main flow and temperature distri-
butions can be expected and understood through the force
balance and energy balance in the governing equations. It is

In addition to the usual viscous and inertial forces, thethe secondary flow that makes the axial velocity and tem-
fluid in the rotating curved channel is subjected to centrifugaPerature profiles different from the parabolic profile in Poi-
force (due to the curvature of the chanpeCoriolis force  seuille flow. The effect of the secondary flow enters the gov-
(due to the rotation and curvatyrand the centrifugal-type erming equation for the main floiEg. (4)] through three
buoyancy forceresulting from temperature-induced density terms: the convection term, and two Coriolis terms due to the
variation of the fluid in the rotating fieJdWhile the centrifu- ~ curvature and rotation, respectively. Two Coriolis terms may
gal and buoyancy forces act on the plane of cross section, tHee in the same direction or opposite to the main flow depend-
Coriolis forces have botk and # components for the con- ing on the sign ofU although they are always in the same
figuration, as shown in Fig. 1. That due to the curvature iglirection for the case of positive rotation. The absence of
—UWI/(R,—a/2+ X) (#-component Those due to rotation these three terms leads to the Poiseuille solution which has
are perpendicular to both the axis of rotation and the direcan axisymmetric and parabolic profile.Xk, L, andL, are
tion of the relative velocity of the fluid, i.e.—2QU small enough, then secondary flow would be too weak to
(6-component and 20W  (X-component Two  modify the main flow and temperature distributions effec-
#-components of the Coriolis force may act in the directiontively. Such axial velocity and temperature profiles are es-
or direction opposite to the main flow depending on the signsentially axisymmetric and parabolic with the maximum
of U andQU. Consequently, they may accelerate or decelvalue occurring along the horizontal centerline at or very
erate the main flow. Furthermore, these two components eilose to the center of the cross section. One case with this
ther enhance or cancel each other depending on the rotatidind of flow and temperature distribution is shown in Fig. 3.
direction of the channel. If the rotation is positive, they en-This is a limiting case examined by previous studfefm
hance each other. Otherwise, they cancel each other. this flow region, the inertial force in Ed4) is very weak as

In the plane of the cross section, the centrifugal forcecompared with the viscous force. The driving force for main
always acts outwards in the positivedirection. However, flow (i.e., pressure terjnis mainly balanced by the viscous
the Coriolis force may act in either the positive or negativeforce in whole flow domain. Other forcésmertial, Coriolis
X-direction depending on the rotation direction. If the rota-forceg are very weak. The stability analysis, performed by
tion is positive, it will act along the positivX-direction.  Winters and Yanase, Goto and Yamamdtoshowed that
When the rotation is negative, however, it will act in the this one-pair vortex flow is stable to an arbitrary perturbation
negative X-direction. Similarly, the centrifugal-type buoy- in the Dean problem.
ancy force may act in the positive or negatiXedirection The effect of the secondary flow enters the energy equa-
depending on the direction of the heat flux. If the fluid istion through one term only, i.e., convection term. When the
heated, it will be along the positiv&-direction. If fluid is  secondary flow is sufficiently weak such that the Coriolis

IV. RESULTS AND DISCUSSION
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FIG. 3. Weak curvature and rotatio€ 1, 0=0.02,Pr=0.7,Dk=5,L,=0.01,L,=0, Re=35,R0=0.000952,Ra, = 0. Maxima of stream function, axial
velocity and temperature are 0.0592,0.0737 and 4.064, respettively

terms in the momentum equation in tidedirection are too inward flow near the upper and lower wall is observed and
weak to modify the main flow effectively, the main flow and this induces the Ekman lay&8r[Fig. 4(a)-(ii)]. A uniform
temperature distributions should be qualitatively similar.outward secondary flow in the core region has two effects on
However, they might have qualitatively different distribu- the main flow. One is pushing the axial velocity peak out-
tions if the secondary flow is strong enough. ward, thereby increasing the local shear stress and heat trans-

A. Flow transitions and temperature distributions fer near the outer wall. Another is inducing an upstream
1. The case without the effect of buoyancy force Coriolis force, which flattens the axial velocity profilEig.
(L,=0) 3(a)-(ii)].

Figure 4 illustrates the secondary flow patterns, axial AsLy !ncreases from zero, Fh? secondary flow becomes
velocity isopleths and profiles, and isotherms and temperas-t_ronger since the OUtW"’_‘rd Cor'OI'S force enhances the cen-
ture profiles for several representative values Lgf at  tifugal force. However, it consists of the same type of one
0=0.02, Dk=100 andL,=0. Because of the symmetry P& of counter-rotating vortices, as shown in Figb)(i).
about the horizontal centerline, they are shown in the uppefhere exists a weak secondary flow region in triangular form
half of the cross section only. In the figure, the stream funciFig. 4(b)-(i)] near the central part of the outer wall. This
tion, axial velocity and temperature are normalized by theiforeshadows the onset of an Coriolis instability to be de-
corresponding maximum absolute valye8 .y, Wmax @and  scribed later.
tmax- A Star is used to denote the position at which they  Shown in Figs. &), (b)-(ii) are the axial velocity isop-
reach the maximum values. A vortex with a positiveega-  leths and profiles corresponding to the secondary flow pat-
tive) value of the stream function indicates a counter-terns in Figs. 4a), (b)-(i). It is observed that the isovels are
clockwise(clockwisg circulation. more sparsely spaced in the region near the inner wall than

_ With zero value ofl.,, centrifugal-type buoyancy force near the outer wall. Consequently, pronounced peripheral
disappears. Heat transfer is purely forced convection. In thgariations are expected in the local friction factors. The
plane of cross section, both centrifugdue to curvatureand  yansely distributed isovels near the center part of the outer
Coriolis forces(due to the_ .rotat|o)1 gct rad|glly outwards wall results in a high pressure region, since centrifugal force
(+X) for the case of positive rotation. If; is also set to d Coriolis force are proportional /72 and W. respec-
zero, the Coriolis force then disappears and the problem r an . prop . ' P .
duces to the classical Dean problem which has been W§|vely. The TIO,W in the channel cpre IS not geostrophic; it is
examined by many investigators. The secondary flow Conggepsltrophlm.e., pressurg gr.adle.nts are balanceq by both
sists of one-pair of counter-rotating vortices as shown in Fig:COI’IO“S force and convegtlve inertial force. Two axial veloc-
4(a)-(i) for the case of low Dean number. The fluid in the ity peaks are observed with one on the upper half of the cross
core region is driven in the positivé-direction by the cen- section and the other on the lower half. The regions of maxi-
trifugal force. The outward flow in the core region forces themum velocity are moved toward the upper and lower walls
fluid near the upper and lower walls to flow in the negativewh“e they are shifted toward the outer wall by the curvature
X-direction and one-pair of counter-rotating vortices is gen-and rotation in the positive direction. There is an indication
erated. These are the so-called Ekman-vortices. The strorg peaking of the axial velocity near the boundary layer re-
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(iii) Isotherms and temperature profiles

(a) L =0;Re=542;Ro=0 (b) L, =1;Re=494; Ro=0135

(c) L, =25Re=453Ro=0368
(5.641;0.0496;39.89) (6.865;0.0440;31.88)

(7.778;0.0394;26.65)

FIG. 4. Flow transitions and temperature distributiongatl, c=0.02,Pr=0.7,Dk=100 andL,=0 (Ra,=0). [Three values for each case are the maxima
of the absolute value of the stream functio#],,), axial velocity (w,,,0) and temperaturé;,.,.]

gions at the upper and lower walls. The peaking results bestructure can be seen from the profiles of the axial velocity
cause the boundary layer is being fed by high velocity fluidalong the vertical centerline and the horizontal centerline by
from the outer wall; the core, however, is being fed by lowercurves 0 and 1 in Fig. 5. The axial velocity changes lin-
velocity fluid from the inner wall. A depression in the axial early across the core and slightly from the lower to the upper
velocity profile near the outer wall shown in Fig(bd(ii) wall. Then the vorticity is nearly constant. Slow-moving
foreshadows the onset of the instability to be described latefluid from the inner wall is accelerated across the core axially
A striking feature of this ageostrophic one-pair vortexat a constant rate until the outer wall is approached. Coriolis
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(iii) Isotherms and temperature profiles

(d) L, =3;Re=423Ro=0473

(e) L =10;Re=363;Ro=1837
(7.256;0.0353;22.40)

(9.239;0.0293;19.16)

FIG. 4. (Continued)

(f) L, =70,Re=195;Ro=2393
(3.606;0.0132;15.06)

and convective inertial forces dominate the ageostrophiperipheral variations in the local Nusselt number will result
core. Axial velocity falls to zero in the viscous layers on thefrom the more sparsely spaced isotherms in the region near
inner and outer walls. The constant-vorticity, inviscid corethe inner wall than near the outer wall. The reason for this is
flow structure suggests a possible analysis by the asymptotibat the larger axial velocity gradients exist in the region near
method. It appears that no such attempt was made so far the outer wall. Two symmetri@vith respect to the horizontal
centerling high temperature regions are observed. The
Qualitatively similar results are observed for the tem-physical mechanism can be explained by recalling the sec-
perature distributiofFigs. 4a),(b)-(ii)]. The pronounced ondary flow patterns in Figs.(d,(b)-(i). The larger inward

the literature.
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1.0 - Coriolis-vortices affect the isovels and the profile of the axial

] "N\, velocity. Significantly distorted isovels are observed in the
0.8 1 ) region with the Coriolis-vortices. Corresponding to the
1 strong inward secondary flow, the isovels in that region are
0.6 ) moved inwards by the Coriolis-vortices. Two symmetric
1 * curve L, high velocity cores are found. The position of the maximum
0 ] 9o 0 axial velocity, at which the centrifugal and Coriolis forces
zZ s are maximum, is located on the boundary line between the
0z ] ¢ 1 Ekman and Coriolis-vortices. It is clear that the centrifugal
) and Coriolis forces due to the main flow become the driving
] : (») forces for the secondary flow. Comparing with those in Figs.
' 9DTBED51ADE 000 0z oA 05 0B 1o 4(a),(b)-(ii), the isovels in the region near the upper and

lower wall are more tightly spaced. The large velocity gra-
FIG. 5. Axial velocity distributions aty=1, 0=0.02, Pr=0.7, Dk=100 dients are also found between each pf the two h|gh_velocny
andL,=0 (Ray=0): (3 along the vertical centerline of the channg) cores and the outer wall. Thus the higher local friction fac-
along the horizontal centerline of the channel. tors are expected there.

The axial velocity distributions along the vertical and
horizontal centerlines are shown by curves 2 and 3 in Figs.

secondary flow near the upper and lower walls brings th&(@,(b). Again, the axial velocity is substantially distorted,
relatively cold (i.e., non-dimensional temperature close toWith its maximum velocity shifting toward the low-pressure
zero fluid to the inner wall; the colder fluid near the inner Side of the channefFig. 5b)]. The axial velocity profile
wall returns to the core region of the channel, flows outwardflong the vertical centerline is symmetric and flat with peaks
and isolates the warmer fluid in the upper and lower sides ocated near the boundary of the boundary layers at the upper
the channel. And the fairly uniform outward secondary flowand lower walls. The most striking feature is that the axial
in the core region leads to a flattened isotherm distribution irvelocity has inflection points on both the vertical and hori-
that region. zontal centerlines. Similar features were found in the Dean
When the rotation becomes more rapid, the ageostrophiroblent’ and Coriolis probleni’ From inviscid reasoning,
one-pair vortex breaks down into a configuration of two-pairsuch profiles may be unstable in accordance with Rayleigh’s
of counter-rotating vortices that is asymmetric with respectnflection point criterion. Assuming the channel with infinite
to the vertical centerline of the chanréligs. 4c),(d)-(i)]. span, the linear stabilities of Dean-vortices Dean prob-
The additional pair of counter-rotating vortices located in thelem) and Coriolis-vorticegin Coriolis problem were exam-
center of the outer wall are calleQoriolis-vortices They  ined by Finlay, Keller and Ferzig&rand Finlay*® Two dif-
result from the Coriolis instability and are similar to the ferent wavy travelling vortex flows, namelyndulating
Dean-vorticesdue to the centrifugal instability. A strong in- vortex flow andtwisting vortex flow, are developed due to
ward secondary flow exists between these two vortices and e instability of the Dean-vortices and Coriolis-vortices sub-
strong outward secondary flow appears between the origingécted to the streamwise wavy perturbations. These two
larger vortices(Ekman-type-vorticgsand the smaller vorti- kinds of vortex flows are confirmed experimentally by Lig-

ces(Coriolis-vortices. rani et al*® and Ligrani and Nivel* for the Dean problem
The onset of theCoriolis-vorticesis consistent with the with large aspect ratio.
instability explanation given by Cheret al?’ for the Dean The stability of Dean-vortices and Coriolis-vortices sub-

problem. In the region near the central outer wall, the presjected to two-dimensional, spanwise-periodic perturbations
sure gradient across the channel in delirection is posi- (i.e., Eckhaus stabililywas examined numerically by Guo
tive, but the centrifugal force and Coriolis force decreaseand Finlay? for infinite-span cross section. They found that
from a maximum value to zero at the outer wall. The insta-Eckhaus stability boundary is a small closed loop. Within the
bility due to the imbalance between the pressure gradiertoundary, Dean-vortices or Coriolis-vortices are stable to
inwards and the Coriolis and centrifugal forces outwards respanwise perturbations. Outside the boundary, Eckhaus in-
sults in an unstable region. If the rotation speed becomestability causes the vortex pairs to split apart or merge to-
large enough, viscous effects can no longer hold the one-pagrether. Experimental observations of splitting and merging
vortex structure in place, thus additional vortices may ap-of vortex pairs were made by Ligrani and NivErAlfreds-
pear. The resulting secondary flow is similar to those obson and Persséhand Matsson and Alfredssdf However,
tained by Chengt al?’ for the Dean problem and Spezidle this type of hydrodynamic stability analysis has not been
for the Coriolis problem. However, the instability here is extended to the geometries with finite cross sections. It is
caused by both the Coriolis and centrifugal forces rather thaalso noted that such an analysis has not been made for
by centrifugal force(Coriolis force alone as in the Dean buoyancy-vortices which will be discussed later.
problem (Coriolis problem. Since no such instability can Based on a displaced particle argum&ra, stability cri-
exist in the absence of the Coriolis forfig. 4a)-(i)], we terion was derived in Warigand Wang and Chefi§*’ to
may still call this instability the Coriolis instability, and the analyze stable and unstable regions of flows with respect to
resulting additional pair of vortices as the Coriolis-vortices. the primary instability in a rotating curved channel of an
Figures 4c),(d)-(ii) demonstrates the way in which the infinite span. Such an analysis did not include the effect of

1562 Phys. Fluids, Vol. 8, No. 6, June 1996 L. Wang and K. C. Cheng

Downloaded-09-Nov-2006-t0-147.8.21.97.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://pof.aip.org/pof/copyright.jsp



the buoyancy force, and has not been extended to the caselocity in the core region of the rotating curved channels is
with a finite channel span in which the base flow is moreof great importance in aerosol centrifuges. It allows aerosol
complex. For a channel with a positive rotation and a smaltentrifuges to function as true particle spectrometefs.
curvature ratiar, the flow was found to be stable in a region

near the inner wall and unstable in a region near the outer

wall when Ro<3 (Ro is the rotation number defined as

Ro=Qa/W,,, a is the gap width of the channelAs well

the unstable region reduces B® increases, and the high 2. The heating case with L ,>0

rotation withRo=3 always stabilizes the flow in the whole

cross section. However, the flow visualization showed that If the fluid is heated, both centrifugal and centrifugal-
such an analysis is only valid when the rotation is very wealyPe buoyancy forces act radially outwards in the plane of
(Ro<<1) 34" The evidence of possible secondary insta-the cross section. The Coriolis force also acts radially out-
bilities revealed in the present work provides an epranatiorY\’ardS in the case of positive rotation. The flow transitions in
that the flows may be controlled by the secondary instabilioth secondary flow and main flow are qualitatively similar
ties rather than the primary instability. to those for the case df,=0. However, the corresponding

Figures 4c),(d)-(iii) show that isotherms and tempera- transitions will occur at lower values df; than those for
ture profile are affected by the Coriolis-vortices. The iso-L2= 0. The difference results from the enhancement effect of
therms are drastically distorted inward near the center of théhe buoyancy force on Coriolis force and centrifugal forces,
outer wall where the Coriolis-vortices occur. Two symmetricand depends on the relative importance of the buoyancy
high temperature corgsvith respect to the horizonal center- force, i.e., the value of .
line) appear in the cross section of the channel. The iso- Figure 6 shows the secondary flow patterns, axial veloc-
therms in the regions near the upper and lower walls ardy isopleths and profiles, and isotherms and temperature pro-
more tightly spaced than those shown in Fig&)4b)-(iii).  files for three typical values df, at 0=0.02,Dk=100 and
Larger temperature gradients are also found between each bp=5. The axial velocity profiles, along the vertical and
the two high temperature cores and the outer wall. Thus &orizontal centerlines, are illustrated in Fig. 7.
higher heat transfer rate is expected in these regions. Shown in Fig. 6a)-(i) is one secondary flow with an

If the Coriolis force is now increased to that with additional pair of vortices occurring in the center part near
L,=10 while maintaining the same values for the other pathe outer wall. A comparison with Figs(a&,(b)-(i) indicates
rameters, the Coriolis vortex pair presented in Figs),&)-  that they result from the buoyancy force instabilibote that
(i) disappears and the secondary flow restabilizes to 80 such vortices can exist in the absence of the buoyancy
slightly asymmetric one-pair vortex configuration, as shownforce, Figs. 4a),(b)-(i)], and are calledbuoyancy-vortices
in [Fig. 4(e)-(i)]. Furthermore, the inflection points in the which are similar to the Dean-vortices due to the centrifugal
axial velocity profiles along the vertical and horizontal cen-instability and Coriolis-vortices due to the Coriolis instabil-
terlines also disappedcurve 4 in Fig. 5. The axial velocity ity. The presence of the buoyancy-vortices leads to a highly
profile assumes a Taylor—Proudman configuration in the cordisturbed main flow fieldFig. 6(a)-(ii)] and temperature
region with a maximum located on the horizontal centerlinefield [Fig. 6(a)-(iii)], with strong inflectional profiles devel-
[Fig. 4(e)-(ii)]. The tightly spaced isovels along the outer oping on both vertical and horizontal centerlinesrve 1 in
wall, upper and lower walls signal the high local friction Fig. 7). This can result in a secondary instability which de-
factors in these regions. The similarity between the axiamand further investigation in the future. The secondary flow,
velocity and temperature profiles still holds although the dif-the main velocity and temperature distributiaifgs. 6a)-
ference between them becomes larger than the previou#),(ii),(iii)] are qualitatively similar to those with the Corio-
cases. lis vortices, as shown in Figs(d-(i),(ii),iii ).

After the Coriolis-vortices disappear, there still exists a  Upon increasing the rotation speedlig=>5, the buoy-
transition in the main flow upon increasing the Coriolis forceancy vortex pair in Fig. @)-(i) disappears, and the secon-
further. If the value ofL, is high enough, as shown in Fig. dary flow reduces to one pair counter-rotating configuration
4(f)-(ii), the Coriolis forces tend to dimple the axial velocity [Fig. 6(b)-(i)]. Also disappeared are the inflection points in
profile in the region near the center and create a dumbbelthe axial velocity profiles along the vertical and horizontal
like profile with two maxima. One is within the Ekman layer centerlines(curve 2 in Fig. J. This is similar to the disap-
along the upper wall. The other is within the Ekman layerpearance of the Coriolis vortices as increasing the rotation
along the lower wall. The shifting of the locations of maxima speed[Fig. 4e)-(i)]. In fact, the secondary flow, the main
results in even more closely spaced isovels near the upp&elocity and temperature distributiofisigs. &b)-(i),(ii),(iii )]
and lower walls. The fluids flow geostrophically in the chan-resemble very much those in Figge@(i), (i), iii ).
nel core and the Stewartson layéwertical double layeps After the buoyancy-vortices disappear, the main flow
However, the secondary flow and temperature profilig.  still experiences a transition from that in Figbg(ii) to that
4(f)-(i),(iii )] remain qualitatively similar as those shown in in Fig. 6(c)-(ii)) upon increasing the rotation speed further.
Fig. 4(e)-(i),(iii). It appears that this is the first numerical This is similar to the transition from Fig.(é-(ii) to Fig.
calculation to illustrate two kinds of flow structures after the 4(f)-(ii). It is noted that the secondary flow, the main flow
Coriolis-vortices disappear. and temperature distributions in Figs(cB(i),(ii),(iii) are

It is worthy to note that near uniformity of the axial qualitatively similar to those in Figs.(8-(i),(ii),(iii ).
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(iii) Isotherms and temperature profiles

(a) L, =01;Re=379;Ro=00176 (b) L =5Re=363;Ro=0918

(c) L, =70;Re=181;Ro=2578
(10.02;0.0312;16.75) (11.62;0.0294;16.88)

(3.749;0.0131;13.45)

FIG. 6. Flow transitions and temperature distributiongatl, o=0.02, Pr=0.7, Dk=100 andL,=5 (Ra,=8x10%). [Three values for each case are the
maxima of the absolute value of the stream functipp {.,), axial velocity W, and temperaturet,,).]

3. The cooling case with L ,<0

ture profiles for several representative values Lof at
If the fluid is cooled, the inward buoyancy force coun- @=0.02,Dk=100 and_,= —5. Shown in Fig. &)-(i) is the

teracts the centrifugal and Coriolis forces in the plane of theéstream function contour of the secondary flow, with an addi-
cross section. The flow situation is more complicated. Thdional pair of vortices shown in the center part near the inner
flows in various regions of the parameter can be different inwall. This additional pair of vortices results from the buoy-
nature. Figure 8 shows the secondary flow patterns, axiancy force instability which is similar to the centrifugal in-
velocity isopleths and profiles, and isotherms and temperastability in the Dean problem or the Coriolis instability in the

1564 Phys. Fluids, Vol. 8, No. 6, June 1996

L. Wang and K. C. Cheng
Downloaded-09-Nov-2006-t0-147.8.21.97.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://pof.aip.org/pof/copyright.jsp



1.0 However, similar results were also found for the case of a
} A circular cross section using the perturbation methtdan
0.8 1 important feature of the axial velocity in this flow region is
the appearance of strong inflectional profi[€sg. 8c)-(ii)
0.6 z ! and curve 3 in Fig. P This suggests a possible secondary
y instability problem. No such analysis appears to have been
0.4 (ofurveoL, made in the past.
] 1 01 When two or more body forces are directed in the oppo-
0.2 i % site direction and almost cancel each other, the principle of
] exchange of stabilities may not be valid, and one can antici-
01 P A .(].)). N pate that a time dependent instability sets in. This has been
001027304 05 00 02 04 06 08 10 studied theoretically for high spanwise aspect ratio Taylor—

Dean flow° and rotating curved channel floW,and experi-
FIG. 7. Axial velocity distributions aty=1, o=0.02, Pr=0.7, Dk=100  mentally for rotating curved channel flow at aspect ratios of
andL,=5 (Ray=8x 10%): (a) along the vertical centerline of the channel; 1 and 10°*® The secondary flow was experimentally ob-
(b) along the horizontal centerline of the channel. served as multiple pairs of vortices which are very similar to
that in Fig. &c)-(i), but are oscillating in time. Shown in Fig.
10 are additional secondary flow patterns from such flows for

Coriolis problem. They are called buoyancy-vortices in thisthe other cases, including some cases with negative rotation.
paper. Note that the inward buoyancy forces cause the When the rotation becomes more rapid, two corner vor-
buoyancy-vortices to appear near the inner wall. This is dif{ices shown in Fig. &)-(i) merge together and push the vor-
ferent from the heating case, as shown in Fig)-6i). tices in the center of the cross section to the outer wall. At

The presence of the buoyancy-vortices gives rise to &€ same time, two vortices near the center in Fig)-8)
highly disturbed main flow fieldFig. 8@a)-(ii)] and tempera- Merge together and form one-pair of counter-rotating vorti-
ture field[Fig. 8(a)-(iii )], with strong inflectional profiles de- Ces near the center part of the outer wall. They are called
veloping in bothX andY directions[Fig. 8(a)-(ii) and curve ~ Merging-vorticesn this paper(a more detailed study shows
1 in Fig. 9. This may result in a secondary instability, as that the merging-vortices already formlag = 12; Wang).
discussed previously. The most striking feature of theAlthough the secondary flow in Fig.(®-(i) looks quite
buoyancy-vortices shown in Fig(@-(i) is that they appear Similar to that in Fig. 4d) or Fig. 6a), they are different in
in the low pressure sidénner wall rather than the usual terms of the mechanism responsible for the appearance of an
high pressure sid®uter wal). This is indicated by the isopi- additional pair of vortices.
estic contours which are not shown hér&he secondary A break-up of the Ekman-vortices is associated with the
flow, axial velocity and temperature distributioffsig. 8@a)] Coriolis-vortices due to the Coriolis instability whereas the
are qualitatively similar to those shown in Figdtand Fig. merging together of the vortices appearing in the region
6(a) by interchanging the inner wall with the outer wall. ~ where the centrifugal, Coriolis and buoyancy forces just neu-

Upon increasing the value df; while maintaining the tralize each other, characterizes the formation process of the
same values for the other parameters, the buoyancy vortererging-vortices. Herejtist neutralizing each other means
pair shown in Fig. 83)-(i) disappears, and the secondarythat one of the three forcétermed as A-force, and it repre-
flow reduces to one-pair counter-rotating configurafiiy. ~ sents the buoyancy force for the cases shown in Biga8-
8(b)-(i)] with circulating direction opposite to that shown in cels the other two forcegreferring the resulting force of
Figs. 4a),(b). In fact, the buoyancy-vortices shown in Fig. these two forces as the B-fojcand the A-force and B-force
8(a)-(i) results from the break-up of this one-pair vortex flow have the same order of magnitude. The difference in the
due to buoyancy-force instability. By interchanging the innermechanism results in a smaller size of the merging-vortices
and outer walls, the secondary flow, axial velocity and temthan that of the Coriolis-vortices. Furthermore, the axial ve-
perature distributions may be regarded to be qualitativelyocity and temperature distributions are also qualitatively dif-
similar to those shown in Figs.(®,(b). The flow in the ferent[see Figs. @)-(ii)iii), Fig. 6@)-(ii),(iii), and Figs.
channel core is ageostrophic, i.e. pressure gradients are b&d)-(ii),(iii )].
anced by both convective inertial force and Coriolis force. It is interesting to note that the maximum of the velocity
The reverse direction of the secondary flow indicates that therofile of curves 3 and 4 in Fig.(B) is positioned almost
secondary flow is still dominated by the buoyancy force. symmetric around the vertical centerline=0.5. So we

If the Coriolis force is now increased further such thatmight expect that for some value &f, between 11.5 and
the resulting force of the centrifugal and Coriolis forces is 0f13.5 the profile is almost parabolic, with a maximum at
the same order of magnitude as the buoyancy force, the cok=0.5. At this value olL, the body forces are almost can-
ner vortices occur and grow with circulating direction oppo-celling each other. A more detailed study in Warsiows
site to that of the vortices in the core regifffig. 8(c)-(i)]. that this would appear arourid =11.75(between 11.5 and
The flow in the channel core is neither ageostrophic nor geo1?2).
strophic. The viscosity effect is not confined in a thin layer  Upon increasing the values &f; further, the merging-
along the walls, and exists in the whole cross section of theortices disappear and the secondary flow becomes a slightly
channel. No counter-part exists in the cases Wiz 0.  asymmetric one-pair vortex configuratipfig. 8(e)-(i)]. The
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(iii) Isotherms and temperature profiles

(@) L, =;Re=40;Ro=0166  (b) L, =3;Re=457;Ro=0438  (c) L, =115Re=652;Ro=1176
(9.003;0.0341;18.86) (9.519;0.0414;25.21) (2.716;0.0688;67.66)

FIG. 8. Flow transitions and temperature distributions-atl, 0=0.02,Pr=0.7,Dk=100 andL,=—5 (Ra,=—8%10%. [Three values for each case are the
maxima of the absolute value of the stream functipp {,,), axial velocity @, and temperaturet{,,,)-.]

axial velocity profile assumes a Taylor—Proudman configuever, the dominant Coriolis force causes the main flow to
ration [Fig. 8(e)-(ii)] with a maximum located on the hori- have a bar-convex dumbbell-like profile with three high ve-
zontal centerline. A similar profile is also observed for thelocity regions[Fig. 8(f)-(ii)]. A geostrophic flow is observed
temperaturgFig. 8(e)-(iii)]. in the channel core and Stewartson layers. The temperature

Upon increasing the value af; further, the secondary profile [Fig. 8f)-(iii )], however, remains qualitatively similar
flow remains qualitatively unchangddFig. 8f)-(i)]. How-  to that shown in Fig. &)-(iii).
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(iii) Isotherms and temperature profiles

(d) L, =135Re=415R0=2169 () L, =15Re =406; Ro =2.463

(f) L, =70;Re =213;Ro=2191
(5.053;0.0367;27.20) (5.463;0.0373;29.37)

(3.430:0.0148;17.14)

FIG. 8. (Continued)

B. The disappearance and reappearance of Dean-, Coriolis and mixed convection problems, respectively. Their
Coriolis- and buoyancy-vortices

disappearance and reappearance, however, have in general
The potential sources of instability for flow in rotating Suffered comparative neglect. Very little information can be
curved channels are centrifugal force, Coriolis force andound in the published literature.
buoyancy force. The instability from such body forces is in ~ Dean-vortices, Coriolis-vortices and buoyancy-vortices
the form of streamwise-oriented vortices, i.e., Dean-vorticesperform differently in terms of their characteristics of the
Coriolis-vortices and buoyancy-vortices. The onset of theselisappearance and reappearance although they share some
vortices receives much attention in recent years for the Dearsimilarities as observed by many investigators. Coriolis-
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10 1.0 disappear. The secondary flow restabilizes to one-pair vortex
} 0 configuration[Figs. 11c),(d),(j)-(ii)]. When the buoyancy
0.8 0.8 - / 5 . force is increased further, however, they reappear and remain
in a large portion of the parameter spadéigs.
g 08 yosi [/ ? 11(a),(b), (k),(1)-(ii)]. . .
3 Curve L, s | /A gmeoh By the same argument as that in Sec. IV A 3 for flows in
§04-3 7 §o.4- L Figs. §c),(d)-(i), the streamwise-oriented counter-rotating
R ] 8 1t8 vortex pair might disappear and the flow might be stable in a
2]t 135 02 5 H small region ofL, in betweenL,=—2.5 andL,=0 [Figs.
& 70 11(f),(g)-(ii)] where the body forces are almost cancelling
001 0.0 (b) each other.
°'°°"°'2;'“°‘°5 00 0z 04 06 08 10 Some contradiction exists in the published literature

about whether the Dean-vortices change size and shape with
FIG. 9. Axial velocity distributions aty=1, #=0.02, Pr=0.7, Dk=100  Dean number in fully developed flow region. Experiments by
and L,= -5 (Rag=—8x10%): () along the vertical centerline of the Baraet al®? show that the size is about the same at all Dean
channel;(b) along the horizontal centerline of the channel. numbers when the flows are fully developed. Such changes,

however, are observed by Ligrani and NiVé€henget al>®

and Sugiyamaet al>* The present numerical calculations
vortices[Fig. 4(d)-(i)] disappear upon increasing the Coriolis show that the Dean-vortices, Coriolis-vortices and buoyancy-
fOI’CG. The Secondary ﬂOW I’estabi”zes to a One-pair Vorte)(lortices Change size and Shape as the parameter Changes'
flow [Fig. 4(e)-(i)], as discussed in the last section. If the even in the fully developed flow region. This may be seen by
Coriolis force is increased further, this one-pair vortex struc-comparing Figs. 1(b),(c)-(i) for the Dean-vortices, Figs.
ture changes to another one-pair vortex fitvg. 4)-()].  4(c),(d)-G) for the Coriolis-vortices and  Figs.
However, no reappearance of the Coriolis-vortices is Ob‘ll(a),(b),(e),(i),(k),(l)-(ii) for the buoyancy-vortices.
served.

Figure 11 shows the disappearance and reappearance &f the gistributions of friction factor and Nusselt

the Dean-vorticegFig. 11(i)] and buoyancy-vortice§Fig.  number
11(ii)]. For the stationary curved channel, one-pair vortex . . o )
flow [Fig. 11(@)-(i)] becomes unstable with respect to the For engineering applications, the most |mportaqt results
centrifugal instability upon increasing the centrifugal force@'€ the friction factor and the Nusselt number. Since the

sufficiently. The Dean-vortices are being set up in the regioqn@n flow and temperature fields determine the friction fac-
near the center of the outer wdfig. 11(b)-(i)]. Upon in- tor and Nusselt number, the flow transitions discussed in the

creasing the centrifugal force further up to that with last section will strongly affect the distributions of the fric-

Re=5583, no disappearance or reappearance is observed §qn factor and Nusselt number. _
the present calculatiofFig. 11(c)-(i)]. Following the usual definitions, the expression for the

Figure 11ii) shows the manner in which the buoyancy product of the friction factor and Reynolds numiieR e and

force affects the disappearance and reappearance of thi/Sselt numbeNu can be written based on the local axial
buoyancy-vortices. Upon increasing the buoyancy-force, thyelocity gradient or the temperature gradient at the wall as

buoyancy instability induces the buoyancy-vortices in the 2 [ ow

center part near the inner wall or outer wddlg. 11(e)-(ii) or f Rezw— %) ' 9

Fig. 11()-(ii)] depending on whether the fluid is cooled or m wall

heated. The secondary flow changes from the original one- 1/ at

pair vortex flow[Figs. 11f),(g),(h)-(ii)] to two-pair vortex Nu= & (9_n) : (10
wall

flow [Figs. 11e),(i)-(ii)] [note that the circulation direction
of the vortex in(f) is opposite to those irig),(h)]. Upon  wherew,, andt, are mean axial velocity and bulk mean
increasing the buoyancy force further, the buoyancy-vorticesemperature, respectively.

FIG. 10. Secondary flows when body forces just neutralize each other=dt, 4=0.02 andPr=0.7: (a) Dk=100; L,=10; L,=—5; Re=606;
R0o=1.100; Rag=—8X1C% |¢)|max=4.416; (b)) Dk=500; L,;=—0.7; L,=0; Re=2612; Ro=—0.0893; Rag=0; |#|max=8.846; (c) Dk=500;
L,=-2.0;L,=1; Re=2147;R0o=—0.311;Ra,=1.6X 10% | )| max= 14.55.
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Dk =50;Re =576; ( Dk =1000;Re =5583;
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(i) Buoyancy-vortices (y = 1,6 = 0.02,Pr = 0.7, Dk =100, L, = 1)

FIG. 11. Disappearance and reappearance of Dean-vortices and buoyancy-vortices.

The mean friction factor and Nusselt number can be obof the values for a stationary straight channel
tained either by peripherally averaging the local values or by (f R€)y=14.23 andNuy=3.608] to facilitate the under-
making the overall force and energy balance along the axistanding of the variations. The distributions are plotted for
of the channel. The calculated values by these two methodsix values ofl; ranging from 1(curve 1) to 70 (curve 6) at
were found to be in good agreement . The result presented im=0.02Dk=100 andL,= —5. The corresponding flow pat-
this paper is the average of the values obtained by these twerns are illustrated in Fig. 8. Also shown in the figure are the

methods. friction factor and Nusselt number for a curved channel with-
The distributions of the friction factoi Re and Nusselt out rotation, i.e.L;=L,=0, denoted by the curve 0.
numberNu along the upper half of the inner wall, upper wall The Dean-vortices, Coriolis-vortices and buoyancy-

and the upper half of the outer wall, are illustrated in Figs.vortices are of importance in the fundamental research of
12(a), (b) and(c), respectively. They are shown on the basisroll-cell instabilities. They also change the flow resistance
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FIG. 12. Distributions of friction factor and Nusselt numbenat 1, ¢=0.02, Pr=0.7, Dk=100 andL,= —5 (Ra,=—8X 10°). (Curves -6 correspond
toL,=1,3,11.5,13.5,15 and 70; curve O is for the casé pfL,=0.) (a) Along the inner wall;(b) along the upper wall{c) along the outer wall.

and heat transfer characteristics significantly. Curve 1 show&emperaturgcore and the upper wall as shown in Fig&)8
the friction factor and Nusselt number ratios with the (ii),(iii).
buoyancy-vortices in secondary floyig. 8@a)-(i)]. The Curve 2 illustrates the friction factor and Nusselt number
similarity between the main flow and temperature distribu-ratio corresponding to one-pair vortex flow in Fighg The
tions [Figs. §a)-(ii),(iii )] results in a similarity between the distribution along the outer wall is qualitatively similar to
friction factor and the Nusselt number distributions. Thethat with the buoyancy-vortice&curve 1) but with lower
asymmetry of the buoyancy-vortices, with respect to the vervalues in general. The similarity also holds for those along
tical centerline, leads to different distributions of friction fac- the upper wall with peaks shifted toward the outer wall. The
tor and Nusselt number at the inner wall from those at thelistribution of the friction factofNusselt numberalong the
outer wall. inner wall, however, experiences a dramatic change in re-
The large velocity(temperature gradient between high sponse to the disappearance of the buoyancy-vortices. The
velocity (temperaturg core and the inner wallFigs. §a)- peak region in curve 1 is flattened by increasing the values in
(i), (iii )] results in a peak of the local friction fact@dusselt the region near the center of the inner wall and decreasing
numbeyj in that region along the inner wall. A low friction those in the other regiofcurve 2). Curve 3 shows the fric-
factor (Nusselt numberregion is observed in the center of tion factor and Nusselt number distribution in the flow region
the inner wall. This is induced by the outerwash isoeds-  where the centrifugal, Coriolis and buoyancy forces just neu-
therms in that region. The quite uniform axial velocitiem-  tralize each othefFig. 8c)]. The friction factor(Nusselt
perature along the outer wall leads to a nearly constant locainumbey, along the inner wall, decreases monotonously from
friction factor (Nusselt numberover a wide region of the the center to the upper wdlkrig. 12a)]. The corner vortex in
outer wall. The friction factorNusselt numbegralong the the upper-outer corner increases the local friction factor
upper wall reaches a peak near the inner wall because a largdusselt numberalong the upper wall in the portion near the
velocity (temperaturggradient exists between high velocity outer wall, resulting in a local peak in that regi¢Rig.
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4.5 and Nusselt number represented by the solid and dotted

1 2 3 4 s lines, respectively. They are plotted in the form of
Secondary Flow pectively. They are p ~

4.0 A A A f Re/(f Re)g and Nu/Nu, against L; at 0=0.02,
E @ Jé J&@ Main Flow Pr=0.7, Dk=100 andL,= —5. The characteristic flow re-

3.5 AIATAA imes for the secondary flow, the main flow and the tempera-
@ @ Jé ) ﬁ Jé ) Temperature g y p

ture are also shown for reference. It is noted that the flow
transitions significantly affect the mean friction factor and
Nusselt number. The appearance of the buoyancy-vortices
substantially increases the friction factor and Nusselt num-
ber. And the increase iNu is more appreciable.

When the flow is in the region where centrifugal, Cori-
olis and buoyancy forces just neutralize each other, both fric-

3.0

2.5

2.0

JRe/(fRe)o Nu/Nug

|
:
1.5 ! |
! : . tion factor and Nusselt number approach those values for
1.0 i : forced convection in a stationary straight channel. This is
: - : because the secondary flow becomes weaker due to the im-
05 Ji 2 ER ! 5 paired interaction among the forces. The friction factor and
| :J: ! Nusselt number, however, increase significantly once again
0.0 L A N A A once th_e flow moves to the region with merging-vortices. An
I interesting feature about the friction factor and Nusselt num-

ber in this flow region is that their ratios, with respect to
FIG. 13. Mean friction factor and Nusselt number a1, 0=0.02,  those for the stationary straight channel, are nearly identical.
Pr=0.7, Dk=100 andL,= 5 (Ray,=—8x10). After the disappearance of the merging-vortices, the friction
factor ratio increases proportionally with as shown in Fig.
§3. The Nusselt number ratio, however, increases at first, but

12(b)]. And a decrease in peak value is observed in curve X . . )
[Fig. 12b)]. Near the boundary between the upper-outer Vor_then decreases with; slightly. The different profiles of the
ial velocity and temperature contribute to the different

tex and that located at the center part of the outer wall, th&XI€ i £ the friction fact 4N it ber in thi
current impinges on the outer wall so that the local friction\clzar'_a ll_onfs 0 de ric 'fr:j f?c or and INUSSelt number in this
factor (Nusselt number along the outer wall, is increased in orionis force dominated Tlow region.

that region. This results in a peak near the vortex boundar% IL'S wetl_l to COFmpa{(; tfhe friction _fatct?cr ratio afnd Nuise:t
[curve 3 in Fig. 120)]. umber ratio in Fig. rom a point of view of practica

Oncemerging-vorticesappear near the center part of the engin_egring. The Nusselt number rat.io i; higher than that of
outer wall, the isoveldisotherm$ along the inner wall be- the friction fgctor_for the flows shqwh n Flgs(a)_—(c). T_hey
come more sparsely spacd@igs. &d)-(ii)(iii)]. Conse- are Qearly |Qentlcal if the flow is in the region with thg
guently, a dramatic drop in the friction fact@lusselt num- mergmg-vomces. When the flow is in the region as ;hown in
ben occurs for curve 4Fig. 12a)]. The more tightly spaced Figs. &e),(f), hoyveyer, the Nus;elt number ratio is much
isovels(isotherm$ along the upper wall, however, result in a lower than the friction factor ratio.
high local friction factor(Nusselt numberalong the upper
wall, as shown by curve 4 in Fig. #®. The most significant
effect of the merging-vortices on the friction factor and Nus-yy cONCLUDING REMARKS
selt number occurs along the outer wall, as shown by curve 4
in Fig. 12c). The striking feature is that the peaks for both Flow transition phenomena and combined free and
friction factor and Nusselt number are located at the boundforced laminar convective heat transfer were studied numeri-
ary between Ekman-type-vortices and merging-vortices. Thigsally for fully developed flow in the square channels with
results from a current impinging on the outer wall in thatboth curvature and rotation, using the finite-volume method.
region[see Fig. &)-(i)]. Curvature and rotation, in conjunction with heating or cool-

After the merging-vortices disappear upon increasing théng, introduce the centrifugal force, Coriolis force and buoy-
value of L, friction factor and Nusselt humber along the ancy force in the momentum equations, which describe the
inner and upper walls are qualitatively similar to those withrelative motion of fluids with respect to the channel. Such
the presence of the merging-vortices. And they are quantitasody forces cause similar instabilitiesentrifugal instability,
tively increased as compared with those with the presence @oriolis instability and buoyancy instabilityin forms of
the merging-vortices. This may be seen by comparing curvestreamwise oriented vortices. In addition, these forces may
5 and 6 with curve 4 in Figs. 18 and(b). The distributions  either enhance or impede each other in the cross-plane de-
of the friction factor and Nusselt number along the outerpending on the directions of the rotation and heat flux. This
wall, however, experience a qualitative change due to th@roduces a rich transition structure for both secondary flow
disappearance of the merging-vortices, as shown by curveand pressure-driven main flow. The present investigation is
5 and 6 in Fig. 1&). It is observed that the peak region in confined to examine this structure in the hydrodynamically
curve 4 is flattened through increasing local friction factorand thermally fully developed laminar flow region. The work
and Nusselt number in the center part of the outer wall. is also limited to the symmetric flow with respect to the

Figure 13 shows the result for the mean friction factorhorizontal centerline of the cross section by imposing a sym-
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metric condition on that line. The results presented in thighe buoyancy force further, is also found in this study. An-
paper are for the case of the square cross section of theher important difference is the locations of the vortices.
channel with positive rotation only. Although the Dean-vortices and Coriolis-vortices always ap-
Despite the assumptions made in the present investiggeear on the high pressure si@iter wal) in the case of the
tion, the calculations cover a rather wide range of the parampositive rotation, the buoyancy-vortices may appear in the
eters. In particular, the Reynolds number reached up to abohigh pressure sidéouter wal) or low pressure sid¢inner
six thousands. The rotation rates approached previously stutiall) depending on whether the fluid is heated or cooled. If
ied asymptotic limits of weak rotation and strong rotationthe fluid is heated, they show up near the center of the outer
where viscous force or Coriolis force dominates. SeveraWvall with the same direction of circulation as those of the
flow patterns, hitherto unknown, are revealed in the preserfdean-vortices and Coriolis-vortices. When the fluid is
study. A one-pair vortex flow with an ageostrophic, virtually cooled, however, the inward buoyancy forces cause them to
inviscid core occurs between a viscous force dominated onedppear near the center of the inner wall with an opposite
pair vortex flow and two-pair vortex flow with the presence direction of circulation. The most striking feature is that the
of the Dean-vortices, Coriolis-vortices or buoyancy-vortices fluid near the inner wall still remains low pressure, even with
Another two kinds of one-pair vortex flows exist after the the existence of the buoyancy-vortices.
disappearance of the Coriolis-vortices upon increasing the When the fluid is cooled, the inward buoyancy forces
Coriolis forces further. The axial velocity profile for the first cause the direction of the secondary flow to reverse by over-
one assumes a Taylor-Proudman configuration in the coreoming the outward centrifugal and Coriolis forces in the
region, with one maximum located on the horizontal centerplane of the cross section. The flow reversal occurs by pass-
line. That for the second one is dumbbell-like with two ing through a multi-pair vortex flow region where overall the
maxima or bar-convex dumbbell-like with three high veloc- effect of the buoyancy force just neutralizes those of the
ity regions. The flow in the core region is also geostrophiccentrifugal and Coriolis forces.
for the second kind of one-pair vortex flow. The friction factors and Nusselt numbers are signifi-
When the fluid is cooled, there exists a parametric regiorfantly affected by the flow transitions. In particular, the
where, overall, the effect of the inward buoyancy force justbean-vortices, the Coriolis-vortices, the buoyancy-vortices
neutralizes those of the outward centrifugal and Coriolisand the merging-vortices substantially change the distribu-
forces. In this region, new vortices appear and grow aroun8ons of the local friction factor and Nusselt number with a
the corners, squeezing the circulation due to the centrifugdemarkable increase in their mean values.
and Coriolis forces to the central portion of the cross section  1he new vortex flows, revealed in the present study, sug-
of the channel. The flow thus exhibits a two-pair, three-pairdest possible further research concerning their instability
or four-pair structure. Here, the two-pair vortex structure isSince usually an inflectional profile of the main flow is asso-
qualitatively different from the two-pair vortex families en- ciated with them. Such a study is considered to be complex
countered in the Dean problem or Coriolis problem. bgcause of the fu_II three-d|men3|onal form of the resulting
The remaining domain of the two-pair vortex families disturbance equations, and is beyond the scope of the present

may still be divided into two different regions. The distinc- StUdy-
tion is based on the mechanisms responsible for the appear-
ance of an additional pair of vortices. A break-up of theACKNOWLEDGMENTS
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