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Flow transitions and combined free and forced convective heat transfer
in rotating curved channels: The case of positive rotation

Liqiu Wanga)
School of Mechanical & Production Engineering, Nanyang Technological University, 639798 Singapore

K. C. Cheng
Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2G8, Canada

~Received 11 July 1995; accepted 29 January 1996!

The simultaneous effects of curvature, rotation and heating/cooling in channel flow complicate the
flow and heat transfer characteristics beyond those observed in the channels with simple curvature
or rotation. The phenomena encountered are examined for steady, hydrodynamically and thermally
fully developed flow in square channels. The governing equations are solved numerically by using
a finite-volume method. Certain hitherto unknown flow patterns are found. And the results show
both the nature of the flow transition and the effect of this transition on the distributions of
temperature, friction factor and Nusselt number in a square channel. ©1996 American Institute of
Physics.@S1070-6631~96!00406-X#

I. INTRODUCTION

Fluid flow and heat transfer in rotating curved channels
are encountered in cooling systems for conductors of electric
generators and generator motors for pumped-storage stations.
They are also employed in applications such as separation
processes, heat exchangers and physiological field. The
transport and flow phenomena in the rotating curved chan-
nels have, therefore, challenged engineers and scientists for
some time. A remarkable characteristic of the flow and heat
transfer in a rotating system is the presence of the centrifugal
and Coriolis forces. Under certain conditions, these forces
may induce a secondary flow in a plane perpendicular to the
direction of the main flow. This could significantly affect the
resistance to the fluid flow and convective heat transfer.

According to its inducing condition,1 the secondary flow
could be created by the Coriolis force for a constant property
fluid, while the centrifugal force is purely hydrostatic, analo-
gous to the Earth’s gravitational field. When a temperature-
induced variation of fluid density occurs, both Coriolis and
centrifugal-type buoyancy force could contribute to the gen-
eration of the secondary flow. On the other hand, secondary
flow also arises due to centrifugal force when a channel is
curved.2 Therefore, centrifugal, Coriolis and centrifugal-type
buoyancy forces all contribute to the generation of the sec-
ondary flow if the channel is curved, rotated and heated/
cooled. The nonlinear interaction of these body forces with
the other forces in the flow field may result in a complicated
structure of the secondary flow. We attempt to examine this
structure and its effects on pressure-driven main flow and
temperature field in a square channel by using a finite-
volume method.

The secondary flow under consideration is essentially a
nonlinear combination of the buoyancy force-driven secon-
dary flow in the mixed-convection problem, the centrifugal
force-driven secondary flow in the Dean problem and the
Coriolis force-driven secondary flow in straight channels

with spanwise rotation~hereinafter referred to as the Coriolis
problem!. The similarity among these three problems has
been recognized by a number of investigators. The dynami-
cal parameters for these three problems areDm

(Dm5ReRa, the product of the Reynolds numberRe and
Rayleigh numberRa), square of the Dean numberDe2

(De5ReAs, a combination of the Reynolds numberReand
the curvature ratio of the channels) and DV

(DV5ReReV , the product of the Reynolds numberRe and
rotational Reynolds numberReV), respectively.3,4 Here
Re5Wmdh /n (Wm is the axial mean velocity,dh is the hy-
drodynamic diameter of the channel andn is the kinematic
viscosity!, Ra5bgnTdh

3/(na) (b is the thermal-expansion
coefficient, g is the gravitational acceleration,nT is the
characteristic temperature difference anda is the thermal
diffusivity!, s5dh /Rc (Rc is the curvature radius, Fig. 1!
andReV5Vdh

2/n (V is the angular speed of rotation!. De-
pending on the value of the dynamical parameter, fully-
developed secondary flow exhibits three different structures
for all three problems in the laminar flow region as follows.

At a relatively small value of the dynamical parameter, it
consists of one-pair of counter-rotating vortices in a plane
perpendicular to the axis of the channel. Upon increasing the
value of the dynamical parameters sufficiently~depending on
the value of the Prandtl numberPr, curvature ratios or the
rotational Reynolds numberReV , respectively, for these
three problems!, the centrifugal, Coriolis or buoyancy force
instability may lead this one-pair vortex flow structure to
another form of two-dimensional flow with a two-pair or
roll-cell vortex structure~depending on the geometry of the
channel! in the cross-plane. Such two-pair vortex flows are
found to be unstable to asymmetric perturbations in the Dean
problem,5 in the Coriolis problem6 and in the mixed-
convection problem.7 Upon increasing the dynamical param-
eter further, all two-dimensional flows become unstable, and
there are evidences for the evolution of streamwise periodic
three-dimensional flows in all of the three problems.6–8 The
reference concerning these three problems may be found, for
example, in Nandakumar and Weinitschke7 for the mixed-
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convection problem; Nandakumar and Masliyah9 and Hwang
and Chao10 for the Dean problem; Nandakumaret al.,6 and
Yanget al.11 for the Coriolis problem.

A combination of two or all of these three problems
arises in many engineering fields. This has stimulated the
interest on the flow and heat transfer under the combined
effect of two or all of three body forces. Because of the
complexities of the problem, early works have been con-
strained to some simplified limiting cases in which there ex-
istsonedominated body force. Under the condition that flow
is fully developed and laminar, combined Dean and Coriolis
problem was theoretically examined by Hocking12 and
Ludwieg13 for a rectangular or square channel with strong
spanwise rotation, and Ito and Motai14 for a circular curved
tube with weak spanwise rotation. Miyazaki15,16analyzed the
fully developed laminar flow and heat transfer in a curved
circular/rectangular channel with spanwise rotation and heat-
ing effect by a finite-difference method. Because of the con-
vergence difficulties of the iterative method used, no solu-
tions in the range where three forces are of comparable order
of magnitude could be obtained. Besides, the examination of
the governing equations employed by Miyazaki shows that
some errors existed in the viscous terms.

Since the solution is only for the asymptotic cases of
slow and rapid rotation, the secondary flow revealed by the
works mentioned above consists of one-pair of counter-
rotating vortices in a plane perpendicular to the axis of the
channel. The interaction of the secondary flow with the
pressure-driven main flow shifts the location of the maxi-
mum axial velocity away from the center of the channel and
in the direction of the secondary velocities in the middle of
the channel. When the three forces are of comparable order
of magnitude, a complicated structure of the secondary flow
might be expected since then the nonlinear effects could be
quite strong.

More comprehensive studies have been made by
Thangam and Speziale17 and Matsson and Alfredsson.18

Thangam and Speziale17 numerically examined the effect of
sidewall heating in the pressure-driven laminar flow of an
incompressible viscous fluid through a straight rectangular
channel under a spanwise rotation. The secondary flow was
found to be unicellular or multicellular, depending on the

rate of heating and rotation. The work also clearly shows the
heat transfer enhancement due to the rotation for a straight
rectangular channel with a high aspect ratio for a range of
spanwise rotation rates. Matsson and Alfredsson18 visualized
and measured the flow in a curved air channel with a high
aspect ratio and a spanwise rotation using smoke visualiza-
tion and hot-wire measurements with an emphasis on the
effect of spanwise rotation on the primary and secondary
instabilities in curved channel flow. When the Coriolis force
enhanced the centrifugal force~positive rotation!, the vortex
pairs were observed to split and merge. When the Coriolis
force counteracted the centrifugal force~negative rotation!,
the primary Dean instability in forms of Dean vortices could
be cancelled. As well, a high negative rotation rate could
lead the vortices to appear on the inner convex channel wall.

In this work, we present a relatively comprehensive nu-
merical study on the laminar flow and combined free and
forced convective heat transfer in a rotating curved square
channel at low to relatively rapid rotation rates where both
the convective and diffusive terms play an important role
and, consequently, the full nonlinear equations must be
solved. Attention is focused on the flow transitions of sec-
ondary flow and main flow in the fully developed region and
the effects of the flow transitions on temperature distribution,
friction factors and Nusselt number for a wide range of char-
acteristic parameters. The emphasis is also placed on the
primary instabilities ~centrifugal, Coriolis and buoyancy
force instabilities! arising in the rotating curved channels,
and not their secondary instabilities or the transition to tur-
bulence, although the vortices studied ultimately have an im-
portant influence on the transition. The motivation for the
present study arose from the following observations:~1!
There exists no detailed study of the flow and heat transfer in
a channel with simultaneous effects of curvature, rotation
and heating/cooling. While flow and heat transfer under three
effects resemble those with only two or one factors when one
or two body forces are relatively weak~this is the case con-
sidered by Miyazaki15,16!, they are endowed with some more
complex features due to the nonlinearity of the problem and
the nonuniform interactions of these forces over the flow
domain, especially when three forces are of comparable or-
der of magnitude; and~2! the transitions in flow structure
due to the action of centrifugal, Coriolis and buoyancy forces
have not been fully studied. In particular, the disappearance
and reappearance of Dean-vortices, Coriolis-vortices and
buoyancy-vortices have in general received less attention in
the past.

II. FORMULATION OF THE PROBLEM

The geometrical configuration of the physical model for
a rotating curved rectangular channel and its coordinate sys-
tem are illustrated in Fig. 1. A viscous fluid is allowed to
flow through a channel of rectangular cross section with
width3 height5 a3 b under the action of the pressure gra-
dient along the channel axis~streamwise direction!. The
channel is uniformly curved around the axiso8z8, and ro-
tates about the axis with a constant angular velocityV. The
rotation can bepositiveor negativeas shown in Fig. 1 in
terms of angular velocity vector. A positive rotation gives

FIG. 1. Physical problem and rotating toroidal coordinate system.
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rise to a Coriolis force in the cross-plane that is directed
along the positiveX-direction, and vice versa. In addition to
the curvature and rotation, the channel is being uniformly
heated or cooled at the wall with a uniform peripheral tem-
perature. The properties of the fluid, with the exception of
density, are taken to be constant. To facilitate the discussion,
each side of the channel wall is termed the inner, outer, up-
per and lower walls as shown in the figure.

Consider a non-inertial toroidal coordinate system
(O,X,Y,u) fixed to the curved channel rotating with a con-
stant angular velocityV abouto8z8 axis, as shown in Fig. 1.
The radial~normal!, spanwise and streamwise~axial! direc-
tions are (X,Y,u), respectively. The direction of the relative
velocity of the fluid in the channel is chosen in the direction
of increasingu, while the angular velocity of the channel is
taken asV.0 for increasingu ~positive rotation! and
V,0 for decreasingu ~negative rotation!, respectively. In
order to facilitate the numerical programming, the origin of
the coordinate system is located at the center of the inner
wall instead of the center of the cross section.

The flow is assumed to be laminar and steady. Let
U,V andW be the velocity components in the directions of
X,Y andu, respectively, andT, Tw be the temperature of the
fluid and the wall. By using the usual Boussinesq approxi-
mation to deal with the density variation, the continuity,
Navier-Stokes and energy equations governing the fully-
developed laminar flow and heat transfer are given in terms
of the dimensionless variables as3 the following. continuity
equation:

]

]x S S 11s
4x2~11 1/g!

4 DuD
1

]

]y S S 11s
4x2 ~111/g!

4 D v D50; ~1!

momentum equations:

u
]u

]x
1v

]u

]y
2

16Dk2w2

s~11s~x2~11 1/g!/4!!
2
4L1Dk

2w

3s

216DkL2S 11s
4x2~111/g!

4 D t
52

]p

]x
1S ]2u

]x2
1

]2u

]y2
1

s

11s~x2~111/g!/4!

]u

]x

2
s2u
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]y
1S ]2v

]x2
1
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5
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1
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energy equation:

u
]t

]x
1v

]t

]y
2

4Dkw

sPr~11s„x2~111/g!/4…!

5
1

Pr S ]2t

]x2
1

]2t

]y2
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s

11s„x2~111/g!/4…

]t

]xD . ~5!

The dimensionless variables are defined as

x5
X

dh
; y5

Y

dh
;

u5
dhU

n
; v5

dhV

n
; w5

W

W1
;

p5
P

r~n/dh!
2 ; t5

Tw2T

nT
,

wheren andr are the kinematic viscosity and the density of
the fluid, dh is the hydrodynamic diameter defined as
dh52ab/(a1b), P is a pseudo pressure which absorbs any
force residual implied by using the Boussinesq approxima-
tion (P5p82r@X2a/21(X2a)2/(2Rc)#RcV

2 with p8 as
the fluid pressure andRc as the curvature radius!,1,3,16 and
W1 andnT are the representative axial velocity and tem-
perature difference, respectively, which are defined as

W15
dh
2c1
m

; nT5Prdhc2.

Herem is the viscosity of the fluid,Pr is the Prandtl number,
c1 is the axial pressure gradient which is a positive constant
for hydrodynamically fully developed flow
(c15 2 ]p8/Rc]u),3,16 and c2 is the axial temperature gra-
dient which is a constant for the thermally fully developed
flow, but can be positive and negative depending on heating
or cooling of the fluid (c2 5 ]T/Rc]u).3,19,20

It is customary to use the mean axial velocityWm and
the difference between the wall temperature and the bulk
mean temperature (Tw2Tb) for the non-dimensionalization
of the axial velocity and temperature, respectively. However,
the employment of these quantities results unavoidably in the
appearance of two unknown dimensional parameters in the
governing equations which comprise the unknownsWm and
Tb , respectively. Consequently, the iterative procedure
should be applied, assuming some initial estimated values to
them. It requires an additional computation time. In order to
avoid this additional increase in computation time, we follow
Miyazaki15,16 in usingW1 andnT as the representative axial
velocity and the representative temperature difference, re-
spectively. They involve the axial pressure gradientc1 and
the axial temperature gradientc2 , which are usually given as
design parameters so that it does not induce a difficulty in
using the computation results for design. The velocityW1 is
proportional to the pressure drop in the axial direction. For
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the flow in a stationary straight circular tube, the mean axial
velocityWm is related toW1 asWm5W1/8 ~Miyazaki15,16!.
The temperature differencenT is, on the other hand, pro-
portional to the fluid temperature difference between the
channel inlet and outlet.

Six dimensionless parameters are defined as

g5
a

b
; s5

dh
Rc

; Pr5
n

a
;

Dk5
sdhW1

4n
; L15

3ReV

2Dk
; L25

RaV

16Dk
,

in which

ReV5
dh
2V

n
; RaV5

bRcV
2dh

3nT

n2
,

with b as the thermal-expansion coefficient.
The dimensionless groups adopted here are those in

Miyazaki15,16 and Morris.1 The g is a geometry parameter
denoting the aspect ratio of a rectangular cross section. The
curvature ratios is also a geometry parameter, representing
the degree of curvature. The Prandtl numberPr, a thermo-
physical property parameter, represents the ratio of momen-
tum diffusion rate to that of thermal diffusion.Dk is a
pseudo Dean number withW1 as the characteristic
velocity.15,16 The rotational Reynolds numberReV emerges
from the Coriolis term of the momentum equations. It indi-
cates ratio of the Coriolis force to the viscous force. A posi-
tive ReV represents the case of positive rotation. A negative
ReV is for the case of negative rotation. It is noted that in the
literature the rotational Reynolds number is also known as
the Taylor number or the reciprocal of Ekman number. It is
adopted here instead of the Ekman number because the in-
crease inReV implies the growth of the Coriolis force, and
its effects are more readily conceivable~in particular for the
limiting case asV→0). The rotational Rayleigh number
RaV has its origin in the centrifugal buoyancy terms. It is
similar to the Rayleigh numberRa encountered in the study
of gravitational buoyancy due to the Earth’s gravitational
field but with the gravitational acceleration replaced by the
centrifugal acceleration measured at the center line of the
channel. It denotes the ratio of the centrifugal-type buoyancy
force to the viscous force. A positiveRaV represents the
heating case while a negativeRaV is for the case of cooling.
It is noted that the Rayleigh number is being used more and
more instead of the Grashof number.21

Different scaling quantities in the non-
dimensionalization may result in different parameter groups
for the effects of rotation, curvature and heat/cooling. Here
we introduce theL1 andL2 to represent the effects of rota-
tion and heating/cooling, respectively, because they repre-
sent the ratios of the dynamical parametersDV ~in the Cori-
olis problem! andDm ~in the mixed-convection problem! to
the parameterDe2 in the Dean problem.22 They were found
to be two parameters in determining the flow patterns in the
channel with curvature, rotation and heating/cooling,3,14,23

and are introduced in the governing equations~1!–~5! explic-
itly since we are mainly concerned with the transition of the
flow structures in this work. Note that they are related to the

Dean number, the rotational Reynolds number and the rota-
tional Rayleigh number in an explicit way, there should be
no difficulty in application of results. In particular,
Ro52DkL1 /(3Re) andRaV516DkL2 . HereRo is the ro-
tation number defined asRo5Vdh /Wm .

In this work, we attempt to examine the transition of
symmetric secondary flow with respect to the horizontal cen-
terline only. Thus it suffices to consider the upper half region
alone for the analysis. Then the boundary conditions may be
written, in terms of dimensionless variables, as

u5v5w5t50, atx50, 1
2~11 1

g!,

for 0<y< 1
4 ~11g!, ~6!

u5v5w5t50, at y5 1
4~11g!,

for 0<x<
1

2 S 11
1

g D , ~7!

]u

]y
5

]w

]y
5

]t

]y
50, v50, at y50,

for 0<x<
1

2 S 11
1

g D . ~8!

Within the scope of the present study, the equations~1!–
~5! under the boundary conditions~6!–~8! constitute the
mathematical model of the problem under consideration. The
imposition of the symmetry condition about the horizontal
centerline constrains us to consider the symmetric solution
only. However, the instabilities of the physical problem~at
the various orders, secondary and the higher order! would
suggest the existence of the asymmetric solutions in some
region of the parameter space, the region with the high dy-
namical parameters in particular. The flow occurring in an
experiment may, therefore, be non-symmetric in those re-
gions. As found numerically and experimentally by a number
of investigators~see, for example, the works by Nandakumar
and his co-workers and Finlay and his co-workers!, the sym-
metric solution~in particular, the four cell flow! can be stable
in some parameter region but unstable to various perturba-
tions in some other parameter range for the Dean- , Coriolis-,
mixed convection- and combined-problems, leading the flow
to be asymmetric or in the form of travelling waves. A thor-
oughly numerical calculation should allow the flow to be
asymmetric and carry out secondary and higher order insta-
bility analyses w.r.t. various perturbations. Such analyses are
beyond the scope of the present study and are believed to be
difficult for a pressure-driven flow in a channel with finite
span and simultaneous effect of the curvature, the rotation
and the heating/cooling. However, even in the range of the
dynamical parameters where the instabilities could essen-
tially cause the flow to be asymmetric, a symmetric analysis
appears still worthy to carry out in the sense that~1! the flow
from such analyses forms the base flow which one must
know in order to make instability analyses, and that~2! such
an analysis would indicate where in the dynamical parameter
space one should make the higher order instability analyses.
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III. NUMERICAL METHOD OF SOLUTION

The governing equations~1!–~5! are a set of convection-
diffusion equations with velocity-pressure coupling. In order
to obtain solution for this kind of equations by finite-volume
method, two factors are considered to be extremely essential:
~1! using the correct difference scheme for convection term
and~2! decoupling the velocity and pressure properly. After
discretization in the domain, the governing differential equa-
tions become a set of algebraic equations, the so-called dis-
cretization equations. The methods of solving these discreti-
zation equations are also vital to the success. Therefore the
difference scheme, treatment of the velocity-pressure cou-
pling and the method of solving the discretization equations
may be regarded as three major factors for the success of a
finite-volume method. And they are also the major criteria
for distinguishing one scheme from the other.

In the last twenty years, numerous papers were pub-
lished dealing with the three aspects of the finite-volume
method mentioned above. Based on the review and compari-
son among various methods in terms of their transport and
conservative properties, convective numerical stability,
economy and exactitude, we chose the power-law scheme to
discretize the convection term; employ the SIMPLE scheme
to deal with the problem of velocity-pressure coupling; and
use an alternating direction line-by-line iterative method
~ADI ! with block correction technique to solve the discreti-
zation equations. The description of the numerical imple-
mentation can be found, for example, in Patankar.24

The initial calculation for the Dean problem was per-
formed by setting angular velocityV50 to verify the code.
In Fig. 2, the mean friction factor and Nusselt number for
curved square channel obtained by the present analysis are
shown together with the available theoretical, numerical and
experimental results. In the figure, the friction factor and
Nusselt number are shown as a function of the Dean number
on the basis of those for a stationary straight square channel.
The results of the present analysis are in good agreement
with the published results.

In the present computations, four pairs of grid sizes uni-
formly distributed in the flow domain were used to check the
grid dependence. They are 35317, 43321, 51325 and
59329. The results obtained by using these four grid sizes
are shown in Table I for six cases atL15230,25,1,5,8 and
30, respectively, withg51,s50.01,Pr50.7,Dk5100 and
L2525. These six cases are chosen because they cover all
typical secondary flow patterns obtained in the present work.
Four representative properties, namely, the Dean number
(De5ReAs, Re5Wmdh /n with Wm as the axial mean ve-
locity!, the maximum of absolute values of secondary flow
stream function (ucumax), maximum axial velocity (wmax)
and maximum temperature (tmax), as well as the CPU time,
are listed in Table I for comparison.33 The computations
were carried out on the AMDAHL computer. The initial
guesses of the fields foru, v, w, t, and p were all set to
zero. The general trend of these results as the grid size is
decreased tends to indicate that the solutions for the case of
(51325) grids are accurate to within 1% tolerance. We also
checked the detailed variations of the flow and temperature

fields for different grid sizes, and found that 51325 is indeed
a reasonably accurate choice for the grid size for square
channels. It is worth noting that the CPU time increases rap-
idly as the grid spacing decreases. In order to have a balance
between the cost of the computer time and the accuracy of
the solution, we carried out all the computations with a
51325 uniform meshes for square channels.34

Typically, the computations were made for given values
of the aspect ratiog, curvature ratios, Prandtl number
Pr, Pseudo Dean numberDk and the parametersL1 and
L2 . The calculations were performed iteratively using the
alternating direction line-solution~ADI ! with the block cor-
rection technique, and the solution was assumed to be con-
vergent in a numerical sense if the maximum relative error in
each of the primitive variables~i.e., velocity components,
temperature and the pressure! is less than 531025 between
successive iterations.

FIG. 2. Variations of friction factor and Nusselt number with Dean number
for a stationary square channel–a comparison of the present results with
available theoretical, experimental and numerical findings:~a! friction factor
~Baylis 197125: experiments; Cheng and Akiyama 197026: numerical analy-
sis; Chenget al. 197627: numerical analysis; Thangam and Hur 199028:
numerical analysis; Ghia and Sokhey 197729: numerical analysis; Ludwieg
195113: Experiments; Moriet al. 197130: boundary layer correlations!; ~b!
Nusselt number~Mori et al. 197130: experiments; Cheng and Akiyama
197026: numerical analysis; Chenget al. 197531: numerical analysis; Mori
and Uchida 196732: boundary layer correlations!.
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IV. RESULTS AND DISCUSSION

In addition to the usual viscous and inertial forces, the
fluid in the rotating curved channel is subjected to centrifugal
force ~due to the curvature of the channel!, Coriolis force
~due to the rotation and curvature! and the centrifugal-type
buoyancy force~resulting from temperature-induced density
variation of the fluid in the rotating field!. While the centrifu-
gal and buoyancy forces act on the plane of cross section, the
Coriolis forces have bothX andu components for the con-
figuration, as shown in Fig. 1. That due to the curvature is
2UW/(Rc2a/21X) (u-component!. Those due to rotation
are perpendicular to both the axis of rotation and the direc-
tion of the relative velocity of the fluid, i.e.,22VU
(u-component! and 2VW (X-component!. Two
u-components of the Coriolis force may act in the direction
or direction opposite to the main flow depending on the signs
of U andVU. Consequently, they may accelerate or decel-
erate the main flow. Furthermore, these two components ei-
ther enhance or cancel each other depending on the rotation
direction of the channel. If the rotation is positive, they en-
hance each other. Otherwise, they cancel each other.

In the plane of the cross section, the centrifugal force
always acts outwards in the positiveX-direction. However,
the Coriolis force may act in either the positive or negative
X-direction depending on the rotation direction. If the rota-
tion is positive, it will act along the positiveX-direction.
When the rotation is negative, however, it will act in the
negativeX-direction. Similarly, the centrifugal-type buoy-
ancy force may act in the positive or negativeX-direction
depending on the direction of the heat flux. If the fluid is
heated, it will be along the positiveX-direction. If fluid is

cooled, it will act in the negativeX-direction. From this
simple analysis about force directions, it is clear that cen-
trifugal, Coriolis and buoyancy forces enhance each other for
some cases, and cancel each other for other cases. This
would make the flow and heat transfer more complex than
those of channel with simple rotation or curvature.

The flow and heat transfer under consideration are char-
acterized by six dimensionless parameters:g,s,Pr,Dk,L1
andL2 . These parameters are coupled with and affect each
other, so that the effects of the parameters on the flow and
heat transfer are very complex. Extensive computations are
required for a large number of cases to cover the entire ef-
fect, which requires an extremely long computation time.
Fortunately, the introduction ofL1 andL2 , analogous to the
normalization of the problems, enables one to obtain some
insight of the problem from not so large a number of cases.
This results from the fact that they are the dynamical param-
eters for the Coriolis problem and mixed convection problem
based on the dynamical parameter for the Dean
problem.3,14,23Even so, however, it is still a lengthy process
to describe the typical results covering the whole range of
the parameters. The results shown in this paper will be
mainly confined to the case of the positive rotation with
g51,s50.02 andPr50.7 with the exception of those in
Sec. IV B. The readers are referred to Wang3 for the case of
negative rotation.

Some features of the main flow and temperature distri-
butions can be expected and understood through the force
balance and energy balance in the governing equations. It is
the secondary flow that makes the axial velocity and tem-
perature profiles different from the parabolic profile in Poi-
seuille flow. The effect of the secondary flow enters the gov-
erning equation for the main flow@Eq. ~4!# through three
terms: the convection term, and two Coriolis terms due to the
curvature and rotation, respectively. Two Coriolis terms may
be in the same direction or opposite to the main flow depend-
ing on the sign ofU although they are always in the same
direction for the case of positive rotation. The absence of
these three terms leads to the Poiseuille solution which has
an axisymmetric and parabolic profile. IfDk, L1 andL2 are
small enough, then secondary flow would be too weak to
modify the main flow and temperature distributions effec-
tively. Such axial velocity and temperature profiles are es-
sentially axisymmetric and parabolic with the maximum
value occurring along the horizontal centerline at or very
close to the center of the cross section. One case with this
kind of flow and temperature distribution is shown in Fig. 3.
This is a limiting case examined by previous studies.16 In
this flow region, the inertial force in Eq.~4! is very weak as
compared with the viscous force. The driving force for main
flow ~i.e., pressure term! is mainly balanced by the viscous
force in whole flow domain. Other forces~inertial, Coriolis
forces! are very weak. The stability analysis, performed by
Winters5 and Yanase, Goto and Yamamoto,35 showed that
this one-pair vortex flow is stable to an arbitrary perturbation
in the Dean problem.

The effect of the secondary flow enters the energy equa-
tion through one term only, i.e., convection term. When the
secondary flow is sufficiently weak such that the Coriolis

TABLE I. Variations ofDe, ucumax , wmax , tmax , and CPU time in seconds
with different grids.

g51 Dk5100 s50.01 Pr50.7 L2525
L1 Grids De ucumax wmax tmax CPU ~s!

230 35317 46.93 12.86 0.0177 16.79
43321 47.94 12.88 0.0182 17.22 86.5
51325 48.66 12.88 0.0184 17.54 184.4
59329 49.04 12.88 0.0185 17.66 465.7

25 35317 63.33 13.47 0.0252 23.35
43321 64.02 13.38 0.0273 26.75 125.7
51325 68.22 13.51 0.0286 28.61 492.7
59329 68.50 13.47 0.0286 28.85 1300.8

1 35317 72.30 11.13 0.0299 29.85
43321 72.75 11.07 0.0301 30.19 170.5
51325 73.01 11.03 0.0302 30.38 370.4
59329 73.17 11.04 0.0302 30.49 750.9

5 35317 90.11 10.57 0.0405 49.37
43321 90.45 10.64 0.0407 49.79 106.5
51325 90.63 10.63 0.0407 49.95 214.0
59329 90.74 10.65 0.0408 50.03 369.0

8 35317 101.29 9.32 0.0464 66.76
43321 101.45 9.43 0.0465 66.71 162.0
51325 101.54 9.51 0.0464 66.83 282.5
59329 101.60 9.54 0.0464 66.81 1540.3

30 35317 51.83 10.37 0.0194 21.24
43321 52.81 10.33 0.0198 21.80 79.6
51325 53.50 10.29 0.0201 22.13 180.0
59329 53.97 10.26 0.0202 22.28 427.1
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terms in the momentum equation in theu-direction are too
weak to modify the main flow effectively, the main flow and
temperature distributions should be qualitatively similar.
However, they might have qualitatively different distribu-
tions if the secondary flow is strong enough.

A. Flow transitions and temperature distributions

1. The case without the effect of buoyancy force
(L 250)

Figure 4 illustrates the secondary flow patterns, axial
velocity isopleths and profiles, and isotherms and tempera-
ture profiles for several representative values ofL1 at
s50.02, Dk5100 andL250. Because of the symmetry
about the horizontal centerline, they are shown in the upper
half of the cross section only. In the figure, the stream func-
tion, axial velocity and temperature are normalized by their
corresponding maximum absolute valuesucumax, wmax and
tmax. A star is used to denote the position at which they
reach the maximum values. A vortex with a positive~nega-
tive! value of the stream function indicates a counter-
clockwise~clockwise! circulation.

With zero value ofL2 , centrifugal-type buoyancy force
disappears. Heat transfer is purely forced convection. In the
plane of cross section, both centrifugal~due to curvature! and
Coriolis forces~due to the rotation! act radially outwards
(1X) for the case of positive rotation. IfL1 is also set to
zero, the Coriolis force then disappears and the problem re-
duces to the classical Dean problem which has been well
examined by many investigators. The secondary flow con-
sists of one-pair of counter-rotating vortices as shown in Fig.
4~a!-~i! for the case of low Dean number. The fluid in the
core region is driven in the positiveX-direction by the cen-
trifugal force. The outward flow in the core region forces the
fluid near the upper and lower walls to flow in the negative
X-direction and one-pair of counter-rotating vortices is gen-
erated. These are the so-called Ekman-vortices. The strong

inward flow near the upper and lower wall is observed and
this induces the Ekman layer36 @Fig. 4~a!-~ii !#. A uniform
outward secondary flow in the core region has two effects on
the main flow. One is pushing the axial velocity peak out-
ward, thereby increasing the local shear stress and heat trans-
fer near the outer wall. Another is inducing an upstream
Coriolis force, which flattens the axial velocity profile@Fig.
3~a!-~ii !#.

As L1 increases from zero, the secondary flow becomes
stronger since the outward Coriolis force enhances the cen-
trifugal force. However, it consists of the same type of one
pair of counter-rotating vortices, as shown in Fig. 4~b!-~i!.
There exists a weak secondary flow region in triangular form
@Fig. 4~b!-~i!# near the central part of the outer wall. This
foreshadows the onset of an Coriolis instability to be de-
scribed later.

Shown in Figs. 4~a!, ~b!-~ii ! are the axial velocity isop-
leths and profiles corresponding to the secondary flow pat-
terns in Figs. 4~a!, ~b!-~i!. It is observed that the isovels are
more sparsely spaced in the region near the inner wall than
near the outer wall. Consequently, pronounced peripheral
variations are expected in the local friction factors. The
densely distributed isovels near the center part of the outer
wall results in a high pressure region, since centrifugal force
and Coriolis force are proportional toW2 andW, respec-
tively. The flow in the channel core is not geostrophic; it is
ageostrophic, i.e., pressure gradients are balanced by both
Coriolis force and convective inertial force. Two axial veloc-
ity peaks are observed with one on the upper half of the cross
section and the other on the lower half. The regions of maxi-
mum velocity are moved toward the upper and lower walls
while they are shifted toward the outer wall by the curvature
and rotation in the positive direction. There is an indication
of peaking of the axial velocity near the boundary layer re-

FIG. 3. Weak curvature and rotation (g51, s50.02,Pr50.7,Dk55, L150.01,L250,Re535,Ro50.000952,RaV50. Maxima of stream function, axial
velocity and temperature are 0.0592,0.0737 and 4.064, respectively!.
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gions at the upper and lower walls. The peaking results be-
cause the boundary layer is being fed by high velocity fluid
from the outer wall; the core, however, is being fed by lower
velocity fluid from the inner wall. A depression in the axial
velocity profile near the outer wall shown in Fig. 4~b!-~ii !
foreshadows the onset of the instability to be described later.

A striking feature of this ageostrophic one-pair vortex

structure can be seen from the profiles of the axial velocity
along the vertical centerline and the horizontal centerline by
curves 0 and 1 in Fig. 5. The axial velocityw changes lin-
early across the core and slightly from the lower to the upper
wall. Then the vorticity is nearly constant. Slow-moving
fluid from the inner wall is accelerated across the core axially
at a constant rate until the outer wall is approached. Coriolis

FIG. 4. Flow transitions and temperature distributions atg51, s50.02,Pr50.7,Dk5100 andL250 ~RaV50!. @Three values for each case are the maxima
of the absolute value of the stream function~ucumax!, axial velocity~wmax! and temperature~tmax!.#
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and convective inertial forces dominate the ageostrophic
core. Axial velocity falls to zero in the viscous layers on the
inner and outer walls. The constant-vorticity, inviscid core
flow structure suggests a possible analysis by the asymptotic
method. It appears that no such attempt was made so far in
the literature.

Qualitatively similar results are observed for the tem-
perature distribution@Figs. 4~a!,~b!-~iii !#. The pronounced

peripheral variations in the local Nusselt number will result
from the more sparsely spaced isotherms in the region near
the inner wall than near the outer wall. The reason for this is
that the larger axial velocity gradients exist in the region near
the outer wall. Two symmetric~with respect to the horizontal
centerline! high temperature regions are observed. The
physical mechanism can be explained by recalling the sec-
ondary flow patterns in Figs. 4~a!,~b!-~i!. The larger inward

FIG. 4. ~Continued.!
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secondary flow near the upper and lower walls brings the
relatively cold ~i.e., non-dimensional temperature close to
zero! fluid to the inner wall; the colder fluid near the inner
wall returns to the core region of the channel, flows outward
and isolates the warmer fluid in the upper and lower sides of
the channel. And the fairly uniform outward secondary flow
in the core region leads to a flattened isotherm distribution in
that region.

When the rotation becomes more rapid, the ageostrophic
one-pair vortex breaks down into a configuration of two-pair
of counter-rotating vortices that is asymmetric with respect
to the vertical centerline of the channel@Figs. 4~c!,~d!-~i!#.
The additional pair of counter-rotating vortices located in the
center of the outer wall are calledCoriolis-vortices. They
result from the Coriolis instability and are similar to the
Dean-vorticesdue to the centrifugal instability. A strong in-
ward secondary flow exists between these two vortices and a
strong outward secondary flow appears between the original
larger vortices~Ekman-type-vortices! and the smaller vorti-
ces~Coriolis-vortices!.

The onset of theCoriolis-vorticesis consistent with the
instability explanation given by Chenget al.27 for the Dean
problem. In the region near the central outer wall, the pres-
sure gradient across the channel in theX-direction is posi-
tive, but the centrifugal force and Coriolis force decrease
from a maximum value to zero at the outer wall. The insta-
bility due to the imbalance between the pressure gradient
inwards and the Coriolis and centrifugal forces outwards re-
sults in an unstable region. If the rotation speed becomes
large enough, viscous effects can no longer hold the one-pair
vortex structure in place, thus additional vortices may ap-
pear. The resulting secondary flow is similar to those ob-
tained by Chenget al.27 for the Dean problem and Speziale37

for the Coriolis problem. However, the instability here is
caused by both the Coriolis and centrifugal forces rather than
by centrifugal force~Coriolis force! alone as in the Dean
problem ~Coriolis problem!. Since no such instability can
exist in the absence of the Coriolis force@Fig. 4~a!-~i!#, we
may still call this instability the Coriolis instability, and the
resulting additional pair of vortices as the Coriolis-vortices.

Figures 4~c!,~d!-~ii ! demonstrates the way in which the

Coriolis-vortices affect the isovels and the profile of the axial
velocity. Significantly distorted isovels are observed in the
region with the Coriolis-vortices. Corresponding to the
strong inward secondary flow, the isovels in that region are
moved inwards by the Coriolis-vortices. Two symmetric
high velocity cores are found. The position of the maximum
axial velocity, at which the centrifugal and Coriolis forces
are maximum, is located on the boundary line between the
Ekman and Coriolis-vortices. It is clear that the centrifugal
and Coriolis forces due to the main flow become the driving
forces for the secondary flow. Comparing with those in Figs.
4~a!,~b!-~ii !, the isovels in the region near the upper and
lower wall are more tightly spaced. The large velocity gra-
dients are also found between each of the two high velocity
cores and the outer wall. Thus the higher local friction fac-
tors are expected there.

The axial velocity distributions along the vertical and
horizontal centerlines are shown by curves 2 and 3 in Figs.
5~a!,~b!. Again, the axial velocity is substantially distorted,
with its maximum velocity shifting toward the low-pressure
side of the channel@Fig. 5~b!#. The axial velocity profile
along the vertical centerline is symmetric and flat with peaks
located near the boundary of the boundary layers at the upper
and lower walls. The most striking feature is that the axial
velocity has inflection points on both the vertical and hori-
zontal centerlines. Similar features were found in the Dean
problem27 and Coriolis problem.37 From inviscid reasoning,
such profiles may be unstable in accordance with Rayleigh’s
inflection point criterion. Assuming the channel with infinite
span, the linear stabilities of Dean-vortices~in Dean prob-
lem! and Coriolis-vortices~in Coriolis problem! were exam-
ined by Finlay, Keller and Ferziger38 and Finlay.39 Two dif-
ferent wavy travelling vortex flows, namelyundulating
vortex flow andtwisting vortex flow, are developed due to
the instability of the Dean-vortices and Coriolis-vortices sub-
jected to the streamwise wavy perturbations. These two
kinds of vortex flows are confirmed experimentally by Lig-
rani et al.40 and Ligrani and Niver41 for the Dean problem
with large aspect ratio.

The stability of Dean-vortices and Coriolis-vortices sub-
jected to two-dimensional, spanwise-periodic perturbations
~i.e., Eckhaus stability! was examined numerically by Guo
and Finlay42 for infinite-span cross section. They found that
Eckhaus stability boundary is a small closed loop. Within the
boundary, Dean-vortices or Coriolis-vortices are stable to
spanwise perturbations. Outside the boundary, Eckhaus in-
stability causes the vortex pairs to split apart or merge to-
gether. Experimental observations of splitting and merging
of vortex pairs were made by Ligrani and Niver,41 Alfreds-
son and Persson43 and Matsson and Alfredsson.44 However,
this type of hydrodynamic stability analysis has not been
extended to the geometries with finite cross sections. It is
also noted that such an analysis has not been made for
buoyancy-vortices which will be discussed later.

Based on a displaced particle argument,45 a stability cri-
terion was derived in Wang3 and Wang and Cheng46,47 to
analyze stable and unstable regions of flows with respect to
the primary instability in a rotating curved channel of an
infinite span. Such an analysis did not include the effect of

FIG. 5. Axial velocity distributions atg51, s50.02, Pr50.7, Dk5100
andL250 (RaV50): ~a! along the vertical centerline of the channel;~b!
along the horizontal centerline of the channel.

1562 Phys. Fluids, Vol. 8, No. 6, June 1996 L. Wang and K. C. Cheng

Downloaded¬09¬Nov¬2006¬to¬147.8.21.97.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://pof.aip.org/pof/copyright.jsp



the buoyancy force, and has not been extended to the case
with a finite channel span in which the base flow is more
complex. For a channel with a positive rotation and a small
curvature ratios, the flow was found to be stable in a region
near the inner wall and unstable in a region near the outer
wall when Ro<3 (Ro is the rotation number defined as
Ro5Va/Wm , a is the gap width of the channel!. As well
the unstable region reduces asRo increases, and the high
rotation withRo>3 always stabilizes the flow in the whole
cross section. However, the flow visualization showed that
such an analysis is only valid when the rotation is very weak
(Ro,,1).3,46,47The evidence of possible secondary insta-
bilities revealed in the present work provides an explanation
that the flows may be controlled by the secondary instabili-
ties rather than the primary instability.

Figures 4~c!,~d!-~iii ! show that isotherms and tempera-
ture profile are affected by the Coriolis-vortices. The iso-
therms are drastically distorted inward near the center of the
outer wall where the Coriolis-vortices occur. Two symmetric
high temperature cores~with respect to the horizonal center-
line! appear in the cross section of the channel. The iso-
therms in the regions near the upper and lower walls are
more tightly spaced than those shown in Figs. 4~a!,~b!-~iii !.
Larger temperature gradients are also found between each of
the two high temperature cores and the outer wall. Thus a
higher heat transfer rate is expected in these regions.

If the Coriolis force is now increased to that with
L1510 while maintaining the same values for the other pa-
rameters, the Coriolis vortex pair presented in Figs. 4~c!,~d!-
~i! disappears and the secondary flow restabilizes to a
slightly asymmetric one-pair vortex configuration, as shown
in @Fig. 4~e!-~i!#. Furthermore, the inflection points in the
axial velocity profiles along the vertical and horizontal cen-
terlines also disappear~curve 4 in Fig. 5!. The axial velocity
profile assumes a Taylor–Proudman configuration in the core
region with a maximum located on the horizontal centerline
@Fig. 4~e!-~ii !#. The tightly spaced isovels along the outer
wall, upper and lower walls signal the high local friction
factors in these regions. The similarity between the axial
velocity and temperature profiles still holds although the dif-
ference between them becomes larger than the previous
cases.

After the Coriolis-vortices disappear, there still exists a
transition in the main flow upon increasing the Coriolis force
further. If the value ofL1 is high enough, as shown in Fig.
4~f!-~ii !, the Coriolis forces tend to dimple the axial velocity
profile in the region near the center and create a dumbbell-
like profile with two maxima. One is within the Ekman layer
along the upper wall. The other is within the Ekman layer
along the lower wall. The shifting of the locations of maxima
results in even more closely spaced isovels near the upper
and lower walls. The fluids flow geostrophically in the chan-
nel core and the Stewartson layers~vertical double layers!.
However, the secondary flow and temperature profile@Fig.
4~f!-~i!,~iii !# remain qualitatively similar as those shown in
Fig. 4~e!-~i!,~iii !. It appears that this is the first numerical
calculation to illustrate two kinds of flow structures after the
Coriolis-vortices disappear.

It is worthy to note that near uniformity of the axial

velocity in the core region of the rotating curved channels is
of great importance in aerosol centrifuges. It allows aerosol
centrifuges to function as true particle spectrometers.48,49

2. The heating case with L 2>0

If the fluid is heated, both centrifugal and centrifugal-
type buoyancy forces act radially outwards in the plane of
the cross section. The Coriolis force also acts radially out-
wards in the case of positive rotation. The flow transitions in
both secondary flow and main flow are qualitatively similar
to those for the case ofL250. However, the corresponding
transitions will occur at lower values ofL1 than those for
L250. The difference results from the enhancement effect of
the buoyancy force on Coriolis force and centrifugal forces,
and depends on the relative importance of the buoyancy
force, i.e., the value ofL2 .

Figure 6 shows the secondary flow patterns, axial veloc-
ity isopleths and profiles, and isotherms and temperature pro-
files for three typical values ofL1 at s50.02,Dk5100 and
L255. The axial velocity profiles, along the vertical and
horizontal centerlines, are illustrated in Fig. 7.

Shown in Fig. 6~a!-~i! is one secondary flow with an
additional pair of vortices occurring in the center part near
the outer wall. A comparison with Figs. 4~a!,~b!-~i! indicates
that they result from the buoyancy force instability@note that
no such vortices can exist in the absence of the buoyancy
force, Figs. 4~a!,~b!-~i!#, and are calledbuoyancy-vortices
which are similar to the Dean-vortices due to the centrifugal
instability and Coriolis-vortices due to the Coriolis instabil-
ity. The presence of the buoyancy-vortices leads to a highly
disturbed main flow field@Fig. 6~a!-~ii !# and temperature
field @Fig. 6~a!-~iii !#, with strong inflectional profiles devel-
oping on both vertical and horizontal centerlines~curve 1 in
Fig. 7!. This can result in a secondary instability which de-
mand further investigation in the future. The secondary flow,
the main velocity and temperature distributions~Figs. 6~a!-
~i!,~ii !,~iii !# are qualitatively similar to those with the Corio-
lis vortices, as shown in Figs. 4~d!-~i!,~ii !,~iii !.

Upon increasing the rotation speed toL155, the buoy-
ancy vortex pair in Fig. 6~a!-~i! disappears, and the secon-
dary flow reduces to one pair counter-rotating configuration
@Fig. 6~b!-~i!#. Also disappeared are the inflection points in
the axial velocity profiles along the vertical and horizontal
centerlines~curve 2 in Fig. 7!. This is similar to the disap-
pearance of the Coriolis vortices as increasing the rotation
speed@Fig. 4~e!-~i!#. In fact, the secondary flow, the main
velocity and temperature distributions@Figs. 6~b!-~i!,~ii !,~iii !#
resemble very much those in Figs. 4~e!-~i!,~ii !,~iii !.

After the buoyancy-vortices disappear, the main flow
still experiences a transition from that in Fig. 6~b!-~ii ! to that
in Fig. 6~c!-~ii ! upon increasing the rotation speed further.
This is similar to the transition from Fig. 4~e!-~ii ! to Fig.
4~f!-~ii !. It is noted that the secondary flow, the main flow
and temperature distributions in Figs. 6~c!-~i!,~ii !,~iii ! are
qualitatively similar to those in Figs. 4~f!-~i!,~ii !,~iii !.
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3. The cooling case with L 2<0

If the fluid is cooled, the inward buoyancy force coun-
teracts the centrifugal and Coriolis forces in the plane of the
cross section. The flow situation is more complicated. The
flows in various regions of the parameter can be different in
nature. Figure 8 shows the secondary flow patterns, axial
velocity isopleths and profiles, and isotherms and tempera-

ture profiles for several representative values ofL1 at
s50.02,Dk5100 andL2525. Shown in Fig. 8~a!-~i! is the
stream function contour of the secondary flow, with an addi-
tional pair of vortices shown in the center part near the inner
wall. This additional pair of vortices results from the buoy-
ancy force instability which is similar to the centrifugal in-
stability in the Dean problem or the Coriolis instability in the

FIG. 6. Flow transitions and temperature distributions atg51, s50.02,Pr50.7,Dk5100 andL255 (RaV583103). @Three values for each case are the
maxima of the absolute value of the stream function (ucumax), axial velocity (wmax) and temperature (tmax).]
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Coriolis problem. They are called buoyancy-vortices in this
paper. Note that the inward buoyancy forces cause the
buoyancy-vortices to appear near the inner wall. This is dif-
ferent from the heating case, as shown in Fig. 6~a!-~i!.

The presence of the buoyancy-vortices gives rise to a
highly disturbed main flow field@Fig. 8~a!-~ii !# and tempera-
ture field@Fig. 8~a!-~iii !#, with strong inflectional profiles de-
veloping in bothX andY directions@Fig. 8~a!-~ii ! and curve
1 in Fig. 9#. This may result in a secondary instability, as
discussed previously. The most striking feature of the
buoyancy-vortices shown in Fig. 8~a!-~i! is that they appear
in the low pressure side~inner wall! rather than the usual
high pressure side~outer wall!. This is indicated by the isopi-
estic contours which are not shown here.3 The secondary
flow, axial velocity and temperature distributions@Fig. 8~a!#
are qualitatively similar to those shown in Fig. 4~d! and Fig.
6~a! by interchanging the inner wall with the outer wall.

Upon increasing the value ofL1 while maintaining the
same values for the other parameters, the buoyancy vortex
pair shown in Fig. 8~a!-~i! disappears, and the secondary
flow reduces to one-pair counter-rotating configuration@Fig.
8~b!-~i!# with circulating direction opposite to that shown in
Figs. 4~a!,~b!. In fact, the buoyancy-vortices shown in Fig.
8~a!-~i! results from the break-up of this one-pair vortex flow
due to buoyancy-force instability. By interchanging the inner
and outer walls, the secondary flow, axial velocity and tem-
perature distributions may be regarded to be qualitatively
similar to those shown in Figs. 4~a!,~b!. The flow in the
channel core is ageostrophic, i.e. pressure gradients are bal-
anced by both convective inertial force and Coriolis force.
The reverse direction of the secondary flow indicates that the
secondary flow is still dominated by the buoyancy force.

If the Coriolis force is now increased further such that
the resulting force of the centrifugal and Coriolis forces is of
the same order of magnitude as the buoyancy force, the cor-
ner vortices occur and grow with circulating direction oppo-
site to that of the vortices in the core region@Fig. 8~c!-~i!#.
The flow in the channel core is neither ageostrophic nor geo-
strophic. The viscosity effect is not confined in a thin layer
along the walls, and exists in the whole cross section of the
channel. No counter-part exists in the cases withL2>0.

However, similar results were also found for the case of a
circular cross section using the perturbation method.3,23 An
important feature of the axial velocity in this flow region is
the appearance of strong inflectional profiles@Fig. 8~c!-~ii !
and curve 3 in Fig. 9#. This suggests a possible secondary
instability problem. No such analysis appears to have been
made in the past.

When two or more body forces are directed in the oppo-
site direction and almost cancel each other, the principle of
exchange of stabilities may not be valid, and one can antici-
pate that a time dependent instability sets in. This has been
studied theoretically for high spanwise aspect ratio Taylor–
Dean flow50 and rotating curved channel flow,51 and experi-
mentally for rotating curved channel flow at aspect ratios of
1 and 10.3,46 The secondary flow was experimentally ob-
served as multiple pairs of vortices which are very similar to
that in Fig. 8~c!-~i!, but are oscillating in time. Shown in Fig.
10 are additional secondary flow patterns from such flows for
the other cases, including some cases with negative rotation.

When the rotation becomes more rapid, two corner vor-
tices shown in Fig. 8~c!-~i! merge together and push the vor-
tices in the center of the cross section to the outer wall. At
the same time, two vortices near the center in Fig. 8~c!-~i!
merge together and form one-pair of counter-rotating vorti-
ces near the center part of the outer wall. They are called
merging-vorticesin this paper~a more detailed study shows
that the merging-vortices already form atL1 5 12; Wang3!.
Although the secondary flow in Fig. 8~d!-~i! looks quite
similar to that in Fig. 4~d! or Fig. 6~a!, they are different in
terms of the mechanism responsible for the appearance of an
additional pair of vortices.

A break-up of the Ekman-vortices is associated with the
Coriolis-vortices due to the Coriolis instability whereas the
merging together of the vortices appearing in the region
where the centrifugal, Coriolis and buoyancy forces just neu-
tralize each other, characterizes the formation process of the
merging-vortices. Here ‘‘just neutralizing’’ each other means
that one of the three forces~termed as A-force, and it repre-
sents the buoyancy force for the cases shown in Fig. 8! can-
cels the other two forces~referring the resulting force of
these two forces as the B-force!, and the A-force and B-force
have the same order of magnitude. The difference in the
mechanism results in a smaller size of the merging-vortices
than that of the Coriolis-vortices. Furthermore, the axial ve-
locity and temperature distributions are also qualitatively dif-
ferent @see Figs. 4~d!-~ii !,~iii !, Fig. 6~a!-~ii !,~iii !, and Figs.
8~d!-~ii !,~iii !#.

It is interesting to note that the maximum of the velocity
profile of curves 3 and 4 in Fig. 9~b! is positioned almost
symmetric around the vertical centerlinex50.5. So we
might expect that for some value ofL1 between 11.5 and
13.5 the profile is almost parabolic, with a maximum at
x50.5. At this value ofL1 , the body forces are almost can-
celling each other. A more detailed study in Wang3 shows
that this would appear aroundL1511.75~between 11.5 and
12!.

Upon increasing the values ofL1 further, the merging-
vortices disappear and the secondary flow becomes a slightly
asymmetric one-pair vortex configuration@Fig. 8~e!-~i!#. The

FIG. 7. Axial velocity distributions atg51, s50.02, Pr50.7, Dk5100
andL255 (RaV583103): ~a! along the vertical centerline of the channel;
~b! along the horizontal centerline of the channel.
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axial velocity profile assumes a Taylor–Proudman configu-
ration @Fig. 8~e!-~ii !# with a maximum located on the hori-
zontal centerline. A similar profile is also observed for the
temperature@Fig. 8~e!-~iii !#.

Upon increasing the value ofL1 further, the secondary
flow remains qualitatively unchanged@Fig. 8~f!-~i!#. How-

ever, the dominant Coriolis force causes the main flow to
have a bar-convex dumbbell-like profile with three high ve-
locity regions@Fig. 8~f!-~ii !#. A geostrophic flow is observed
in the channel core and Stewartson layers. The temperature
profile @Fig. 8~f!-~iii !#, however, remains qualitatively similar
to that shown in Fig. 8~e!-~iii !.

FIG. 8. Flow transitions and temperature distributions atg51, s50.02,Pr50.7,Dk5100 andL2525 ~RaV5283103!. @Three values for each case are the
maxima of the absolute value of the stream function (ucumax!, axial velocity (wmax) and temperature (tmax).#
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B. The disappearance and reappearance of Dean-,
Coriolis- and buoyancy-vortices

The potential sources of instability for flow in rotating
curved channels are centrifugal force, Coriolis force and
buoyancy force. The instability from such body forces is in
the form of streamwise-oriented vortices, i.e., Dean-vortices,
Coriolis-vortices and buoyancy-vortices. The onset of these
vortices receives much attention in recent years for the Dean,

Coriolis and mixed convection problems, respectively. Their
disappearance and reappearance, however, have in general
suffered comparative neglect. Very little information can be
found in the published literature.

Dean-vortices, Coriolis-vortices and buoyancy-vortices
perform differently in terms of their characteristics of the
disappearance and reappearance although they share some
similarities as observed by many investigators. Coriolis-

FIG. 8. ~Continued.!
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vortices@Fig. 4~d!-~i!# disappear upon increasing the Coriolis
force. The secondary flow restabilizes to a one-pair vortex
flow @Fig. 4~e!-~i!#, as discussed in the last section. If the
Coriolis force is increased further, this one-pair vortex struc-
ture changes to another one-pair vortex flow@Fig. 4~f!-~i!#.
However, no reappearance of the Coriolis-vortices is ob-
served.

Figure 11 shows the disappearance and reappearance of
the Dean-vortices@Fig. 11~i!# and buoyancy-vortices@Fig.
11~ii !#. For the stationary curved channel, one-pair vortex
flow @Fig. 11~a!-~i!# becomes unstable with respect to the
centrifugal instability upon increasing the centrifugal force
sufficiently. The Dean-vortices are being set up in the region
near the center of the outer wall@Fig. 11~b!-~i!#. Upon in-
creasing the centrifugal force further up to that with
Re55583, no disappearance or reappearance is observed in
the present calculation@Fig. 11~c!-~i!#.

Figure 11~ii ! shows the manner in which the buoyancy
force affects the disappearance and reappearance of the
buoyancy-vortices. Upon increasing the buoyancy-force, the
buoyancy instability induces the buoyancy-vortices in the
center part near the inner wall or outer wall@Fig. 11~e!-~ii ! or
Fig. 11~i!-~ii !# depending on whether the fluid is cooled or
heated. The secondary flow changes from the original one-
pair vortex flow @Figs. 11~f!,~g!,~h!-~ii !# to two-pair vortex
flow @Figs. 11~e!,~i!-~ii !# @note that the circulation direction
of the vortex in ~f! is opposite to those in~g!,~h!#. Upon
increasing the buoyancy force further, the buoyancy-vortices

disappear. The secondary flow restabilizes to one-pair vortex
configuration @Figs. 11~c!,~d!,~j!-~ii !#. When the buoyancy
force is increased further, however, they reappear and remain
in a large portion of the parameter space@Figs.
11~a!,~b!,~k!,~l!-~ii !#.

By the same argument as that in Sec. IV A 3 for flows in
Figs. 8~c!,~d!-~i!, the streamwise-oriented counter-rotating
vortex pair might disappear and the flow might be stable in a
small region ofL2 in betweenL2522.5 andL250 @Figs.
11~f!,~g!-~ii !# where the body forces are almost cancelling
each other.

Some contradiction exists in the published literature
about whether the Dean-vortices change size and shape with
Dean number in fully developed flow region. Experiments by
Baraet al.52 show that the size is about the same at all Dean
numbers when the flows are fully developed. Such changes,
however, are observed by Ligrani and Niver,41 Chenget al.53

and Sugiyamaet al.54 The present numerical calculations
show that the Dean-vortices, Coriolis-vortices and buoyancy-
vortices change size and shape as the parameter changes,
even in the fully developed flow region. This may be seen by
comparing Figs. 11~b!,~c!-~i! for the Dean-vortices, Figs.
4~c!,~d!-~i! for the Coriolis-vortices and Figs.
11~a!,~b!,~e!,~i!,~k!,~l!-~ii ! for the buoyancy-vortices.

C. The distributions of friction factor and Nusselt
number

For engineering applications, the most important results
are the friction factor and the Nusselt number. Since the
main flow and temperature fields determine the friction fac-
tor and Nusselt number, the flow transitions discussed in the
last section will strongly affect the distributions of the fric-
tion factor and Nusselt number.

Following the usual definitions, the expression for the
product of the friction factor and Reynolds numberf Reand
Nusselt numberNu can be written based on the local axial
velocity gradient or the temperature gradient at the wall as

f Re5
2

wm
S ]w

]n D
wall

, ~9!

Nu5
1

tb
S ]t

]nD
wall

, ~10!

wherewm and tb are mean axial velocity and bulk mean
temperature, respectively.

FIG. 9. Axial velocity distributions atg51, s50.02, Pr50.7, Dk5100
and L2525 (RaV5283103): ~a! along the vertical centerline of the
channel;~b! along the horizontal centerline of the channel.

FIG. 10. Secondary flows when body forces just neutralize each other atg51, s50.02 andPr50.7: ~a! Dk5100; L1510; L2525; Re5606;
Ro51.100; RaV5283103; ucumax54.416; ~b! Dk5500; L1520.7; L250; Re52612; Ro520.0893; RaV50; ucumax58.846; ~c! Dk5500;
L1522.0; L251; Re52147;Ro520.311;RaV51.63104; ucumax514.55.
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The mean friction factor and Nusselt number can be ob-
tained either by peripherally averaging the local values or by
making the overall force and energy balance along the axis
of the channel. The calculated values by these two methods
were found to be in good agreement . The result presented in
this paper is the average of the values obtained by these two
methods.

The distributions of the friction factorf Re and Nusselt
numberNu along the upper half of the inner wall, upper wall
and the upper half of the outer wall, are illustrated in Figs.
12~a!, ~b! and~c!, respectively. They are shown on the basis

of the values for a stationary straight channel
@( f Re)0514.23 andNu053.608] to facilitate the under-
standing of the variations. The distributions are plotted for
six values ofL1 ranging from 1~curve 1! to 70 ~curve 6) at
s50.02,Dk5100 andL2525. The corresponding flow pat-
terns are illustrated in Fig. 8. Also shown in the figure are the
friction factor and Nusselt number for a curved channel with-
out rotation, i.e.,L15L250, denoted by the curve 0.

The Dean-vortices, Coriolis-vortices and buoyancy-
vortices are of importance in the fundamental research of
roll-cell instabilities. They also change the flow resistance

FIG. 11. Disappearance and reappearance of Dean-vortices and buoyancy-vortices.
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and heat transfer characteristics significantly. Curve 1 shows
the friction factor and Nusselt number ratios with the
buoyancy-vortices in secondary flow@Fig. 8~a!-~i!#. The
similarity between the main flow and temperature distribu-
tions @Figs. 8~a!-~ii !,~iii !# results in a similarity between the
friction factor and the Nusselt number distributions. The
asymmetry of the buoyancy-vortices, with respect to the ver-
tical centerline, leads to different distributions of friction fac-
tor and Nusselt number at the inner wall from those at the
outer wall.

The large velocity~temperature! gradient between high
velocity ~temperature! core and the inner wall@Figs. 8~a!-
~ii !,~iii !# results in a peak of the local friction factor~Nusselt
number! in that region along the inner wall. A low friction
factor ~Nusselt number! region is observed in the center of
the inner wall. This is induced by the outerwash isovels~iso-
therms! in that region. The quite uniform axial velocity~tem-
perature! along the outer wall leads to a nearly constant local
friction factor ~Nusselt number! over a wide region of the
outer wall. The friction factor~Nusselt number! along the
upper wall reaches a peak near the inner wall because a large
velocity ~temperature! gradient exists between high velocity

~temperature! core and the upper wall as shown in Figs. 8~a!-
~ii !,~iii !.

Curve 2 illustrates the friction factor and Nusselt number
ratio corresponding to one-pair vortex flow in Fig. 8~b!. The
distribution along the outer wall is qualitatively similar to
that with the buoyancy-vortices~curve 1) but with lower
values in general. The similarity also holds for those along
the upper wall with peaks shifted toward the outer wall. The
distribution of the friction factor~Nusselt number! along the
inner wall, however, experiences a dramatic change in re-
sponse to the disappearance of the buoyancy-vortices. The
peak region in curve 1 is flattened by increasing the values in
the region near the center of the inner wall and decreasing
those in the other region~curve 2). Curve 3 shows the fric-
tion factor and Nusselt number distribution in the flow region
where the centrifugal, Coriolis and buoyancy forces just neu-
tralize each other@Fig. 8~c!#. The friction factor ~Nusselt
number!, along the inner wall, decreases monotonously from
the center to the upper wall@Fig. 12~a!#. The corner vortex in
the upper-outer corner increases the local friction factor
~Nusselt number! along the upper wall in the portion near the
outer wall, resulting in a local peak in that region@Fig.

FIG. 12. Distributions of friction factor and Nusselt number atg51, s50.02,Pr50.7,Dk5100 andL2525 (RaV5283103). ~Curves 126 correspond
to L151,3,11.5,13.5,15 and 70; curve 0 is for the case ofL15L250.) ~a! Along the inner wall;~b! along the upper wall;~c! along the outer wall.
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12~b!#. And a decrease in peak value is observed in curve 3
@Fig. 12~b!#. Near the boundary between the upper-outer vor-
tex and that located at the center part of the outer wall, the
current impinges on the outer wall so that the local friction
factor ~Nusselt number!, along the outer wall, is increased in
that region. This results in a peak near the vortex boundary
@curve 3 in Fig. 12~c!#.

Oncemerging-vorticesappear near the center part of the
outer wall, the isovels~isotherms! along the inner wall be-
come more sparsely spaced@Figs. 8~d!-~ii !,~iii !#. Conse-
quently, a dramatic drop in the friction factor~Nusselt num-
ber! occurs for curve 4@Fig. 12~a!#. The more tightly spaced
isovels~isotherms! along the upper wall, however, result in a
high local friction factor~Nusselt number! along the upper
wall, as shown by curve 4 in Fig. 12~b!. The most significant
effect of the merging-vortices on the friction factor and Nus-
selt number occurs along the outer wall, as shown by curve 4
in Fig. 12~c!. The striking feature is that the peaks for both
friction factor and Nusselt number are located at the bound-
ary between Ekman-type-vortices and merging-vortices. This
results from a current impinging on the outer wall in that
region @see Fig. 8~d!-~i!#.

After the merging-vortices disappear upon increasing the
value of L1 , friction factor and Nusselt number along the
inner and upper walls are qualitatively similar to those with
the presence of the merging-vortices. And they are quantita-
tively increased as compared with those with the presence of
the merging-vortices. This may be seen by comparing curves
5 and 6 with curve 4 in Figs. 12~a! and~b!. The distributions
of the friction factor and Nusselt number along the outer
wall, however, experience a qualitative change due to the
disappearance of the merging-vortices, as shown by curves
5 and 6 in Fig. 12~c!. It is observed that the peak region in
curve 4 is flattened through increasing local friction factor
and Nusselt number in the center part of the outer wall.

Figure 13 shows the result for the mean friction factor

and Nusselt number represented by the solid and dotted
lines, respectively. They are plotted in the form of
f Re/( f Re)0 and Nu/Nu0 against L1 at s50.02,
Pr50.7, Dk5100 andL2525. The characteristic flow re-
gimes for the secondary flow, the main flow and the tempera-
ture are also shown for reference. It is noted that the flow
transitions significantly affect the mean friction factor and
Nusselt number. The appearance of the buoyancy-vortices
substantially increases the friction factor and Nusselt num-
ber. And the increase inNu is more appreciable.

When the flow is in the region where centrifugal, Cori-
olis and buoyancy forces just neutralize each other, both fric-
tion factor and Nusselt number approach those values for
forced convection in a stationary straight channel. This is
because the secondary flow becomes weaker due to the im-
paired interaction among the forces. The friction factor and
Nusselt number, however, increase significantly once again
once the flow moves to the region with merging-vortices. An
interesting feature about the friction factor and Nusselt num-
ber in this flow region is that their ratios, with respect to
those for the stationary straight channel, are nearly identical.
After the disappearance of the merging-vortices, the friction
factor ratio increases proportionally withL1 as shown in Fig.
13. The Nusselt number ratio, however, increases at first, but
then decreases withL1 slightly. The different profiles of the
axial velocity and temperature contribute to the different
variations of the friction factor and Nusselt number in this
Coriolis force dominated flow region.

It is well to compare the friction factor ratio and Nusselt
number ratio in Fig. 13 from a point of view of practical
engineering. The Nusselt number ratio is higher than that of
the friction factor for the flows shown in Figs. 8~a!–~c!. They
are nearly identical if the flow is in the region with the
merging-vortices. When the flow is in the region as shown in
Figs. 8~e!,~f!, however, the Nusselt number ratio is much
lower than the friction factor ratio.

V. CONCLUDING REMARKS

Flow transition phenomena and combined free and
forced laminar convective heat transfer were studied numeri-
cally for fully developed flow in the square channels with
both curvature and rotation, using the finite-volume method.
Curvature and rotation, in conjunction with heating or cool-
ing, introduce the centrifugal force, Coriolis force and buoy-
ancy force in the momentum equations, which describe the
relativemotion of fluids with respect to the channel. Such
body forces cause similar instabilities~centrifugal instability,
Coriolis instability and buoyancy instability! in forms of
streamwise oriented vortices. In addition, these forces may
either enhance or impede each other in the cross-plane de-
pending on the directions of the rotation and heat flux. This
produces a rich transition structure for both secondary flow
and pressure-driven main flow. The present investigation is
confined to examine this structure in the hydrodynamically
and thermally fully developed laminar flow region. The work
is also limited to the symmetric flow with respect to the
horizontal centerline of the cross section by imposing a sym-

FIG. 13. Mean friction factor and Nusselt number atg51, s50.02,
Pr50.7, Dk5100 andL2525 (RaV5283103).
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metric condition on that line. The results presented in this
paper are for the case of the square cross section of the
channel with positive rotation only.

Despite the assumptions made in the present investiga-
tion, the calculations cover a rather wide range of the param-
eters. In particular, the Reynolds number reached up to about
six thousands. The rotation rates approached previously stud-
ied asymptotic limits of weak rotation and strong rotation
where viscous force or Coriolis force dominates. Several
flow patterns, hitherto unknown, are revealed in the present
study. A one-pair vortex flow with an ageostrophic, virtually
inviscid core occurs between a viscous force dominated one-
pair vortex flow and two-pair vortex flow with the presence
of the Dean-vortices, Coriolis-vortices or buoyancy-vortices.
Another two kinds of one-pair vortex flows exist after the
disappearance of the Coriolis-vortices upon increasing the
Coriolis forces further. The axial velocity profile for the first
one assumes a Taylor-Proudman configuration in the core
region, with one maximum located on the horizontal center-
line. That for the second one is dumbbell-like with two
maxima or bar-convex dumbbell-like with three high veloc-
ity regions. The flow in the core region is also geostrophic
for the second kind of one-pair vortex flow.

When the fluid is cooled, there exists a parametric region
where, overall, the effect of the inward buoyancy force just
neutralizes those of the outward centrifugal and Coriolis
forces. In this region, new vortices appear and grow around
the corners, squeezing the circulation due to the centrifugal
and Coriolis forces to the central portion of the cross section
of the channel. The flow thus exhibits a two-pair, three-pair
or four-pair structure. Here, the two-pair vortex structure is
qualitatively different from the two-pair vortex families en-
countered in the Dean problem or Coriolis problem.

The remaining domain of the two-pair vortex families
may still be divided into two different regions. The distinc-
tion is based on the mechanisms responsible for the appear-
ance of an additional pair of vortices. A break-up of the
Ekman-vortices~due to the centrifugal, Coriolis or buoyancy
force instabilities! is associated with one case, whereas in the
other case the merging together represents the forming pro-
cess of the vortices appearing in the region where the cen-
trifugal, Coriolis and buoyancy forces just neutralize each
other. The additional pair of vortices formed in the second
mechanism is called merging-vortices in this paper. They
appear in the region near the center of the outer wall~high
pressure side! in the case with positive rotation. The circula-
tion direction is the same as that of the Dean-vortices. The
size, however, is smaller than that of the Dean-vortices.

The vortices formed in the first mechanism include the
Dean-vortices, Coriolis-vortices and buoyancy-vortices.
Their shape and size change with the dynamical parameters
even in the fully developed flow region. In addition, the
Dean-vortices, Coriolis-vortices and buoyancy-vortices be-
have differently in some aspects although they share some
similarities, as noted by many investigators. The disappear-
ance of the Coriolis-vortices or buoyancy-vortices is ob-
served with increasing Coriolis or buoyancy force. No such
phenomenon is observed for the Dean-vortices. Furthermore,
the reappearance of the buoyancy-vortices, upon increasing

the buoyancy force further, is also found in this study. An-
other important difference is the locations of the vortices.
Although the Dean-vortices and Coriolis-vortices always ap-
pear on the high pressure side~outer wall! in the case of the
positive rotation, the buoyancy-vortices may appear in the
high pressure side~outer wall! or low pressure side~inner
wall! depending on whether the fluid is heated or cooled. If
the fluid is heated, they show up near the center of the outer
wall with the same direction of circulation as those of the
Dean-vortices and Coriolis-vortices. When the fluid is
cooled, however, the inward buoyancy forces cause them to
appear near the center of the inner wall with an opposite
direction of circulation. The most striking feature is that the
fluid near the inner wall still remains low pressure, even with
the existence of the buoyancy-vortices.

When the fluid is cooled, the inward buoyancy forces
cause the direction of the secondary flow to reverse by over-
coming the outward centrifugal and Coriolis forces in the
plane of the cross section. The flow reversal occurs by pass-
ing through a multi-pair vortex flow region where overall the
effect of the buoyancy force just neutralizes those of the
centrifugal and Coriolis forces.

The friction factors and Nusselt numbers are signifi-
cantly affected by the flow transitions. In particular, the
Dean-vortices, the Coriolis-vortices, the buoyancy-vortices
and the merging-vortices substantially change the distribu-
tions of the local friction factor and Nusselt number with a
remarkable increase in their mean values.

The new vortex flows, revealed in the present study, sug-
gest possible further research concerning their instability
since usually an inflectional profile of the main flow is asso-
ciated with them. Such a study is considered to be complex
because of the full three-dimensional form of the resulting
disturbance equations, and is beyond the scope of the present
study.
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