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Prediction of grout penetration in fractured rocks
by numerical simulation

M.J. Yang, Z.Q. Yue, P.K.K. Lee, B. Su, and L.G. Tham

Abstract: As fractures in rock significantly reduce the strength as well as the stiffness of the rock mass, grouting may
be required to improve the performance of the rock mass in engineering or mining projects. During grouting, mortar of
cement or other materials is injected into the rock mass so that the fractures can be filled up and the rock mass can act
as an integral unit. Unlike water, grouts are usually viscous and behave as non-Newtonian fluids. Therefore, the equa-
tions describing the flow of grout are more complicated and the solutions are quite difficult to obtain. The problem is
further aggravated by the fact that the fractures are mostly randomly distributed, and it is rarely possible to accurately
define the fractures and the distribution patterns. In this paper, a numerical model is proposed for analyzing the grout-
ing process. The model is based on the stochastic approach, and it can provide the depth of penetration and the fluid
pressure due to the flow of grout, which is modeled as a Bingham fluid, in the fractured rock mass. Parametric studies
have been carried out to investigate the effects of various factors on the depth of penetration, and a regression formula
is developed for calculating the penetration depth. Experiments have been carried out and their results are used to vali-
date the present method.

Key words: stochastic fractures, fractured rock mass, grout flow, grout penetration.

Résumé : Comme les fractures dans la roche diminuent de fagon significative la résistance de méme que la rigidité du
massif rocheux, de I'injection peut étre requise pour améliorer la performance du massif rocheux dans les projets
d’ingénieurs ou miniers. Au cours de 'injection, le mortier de ciment ou d’un autre matériau est injecté dans le massif
rocheux pour remplir les fractures et pour que le massif rocheux se comporte comme un tout entier. Contrairement a
I’eau, les matériaux d’injection sont habituellement visqueux et se comportent comme des fluides non-Newtoniens. Par
conséquent, les équations décrivant I’écoulement du matériau d’injection sont plus compliquées et les solutions sont as-
sez difficiles & obtenir. Le probleme est encore plus difficile & cause du fait que les fractures sont surtout distribuées de
fagon aléatoire et qu’il est rarement possible de définir précisément les schémas des fractures et de leur distribution.
Dans cet article, un modele numérique est proposé pour analyser le processus d’injection. Le modele est basé sur
I’approche stochastique et il peut fournir la profondeur de pénétration et la pression du fluide dues a I’écoulement du
matériau d’injection, modélisé somme un fluide de Bingham, dans le massif rocheux fracturé. Des études paramétriques
ont été réalisées pour étudier les effets de divers facteurs sur la profondeur de pénétration, et on a développé une for-
mule de régression pour calculer la profondeur de pénétration. Des expériences ont été réalisées et leurs résultats ont
été utilisés pour valider la présente méthode.

Mots clés . fractures stochastiques, massif rocheux fracturé, écoulement de Iinjection, pénétration du matériau
d’injection.

[Traduit par la Rédaction]

Introduction Therefore, means may be required to improve the quality of

the rock mass so that the strength—stiffness is increased and

Due to the presence of fractures, the strength-stiffness of ~ the permeability is reduced to satisfy the design require-
a rock mass is considerably lower than the parent intact ~ ments. Grouting is one of the commonly adopted methods
rock. On the other hand, the permeability will be higher.  (Baker 1985; Baker et al. 1983). Grout, which is a suspen-
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sion of cement or other materials, is injected into the rock
mass to fill its fractures. Though voids are also present in
the rock matrix, it is believed that their sizes are small and
that they are mostly disconnected. Therefore, it is very un-
likely that the grout can penetrate into them, except in very
porous rocks. As only the volume of rock mass into which
the grout penetrated has its properties modified, it is neces-
sary to compute the depth of penetration in the design or
analysis. The penetration depth depends on various factors,
namely the properties of the grout and the grouting pressure,
as well as the fracture size (width and length) and pattern in
the rock mass. The grout material and grouting pressure can
be controlled in the operation, and therefore, their effects on
the grout depth can be easily taken into account in the de-
sign. However, the fracture characteristics are not so easy to
define. It has been recognized that natural fractures in rock
mass are randomly distributed (Einstein and Baecher 1983;
Hudson and Priest 1979). Therefore, it is aimost impossible
to define the width, length, and orientation of each fracture
accurately. Consequently, the depth of penetration cannot be
determined exactly. Experimental methods were also used to
predict the depth of penetration (Hassler et al. 1992; Wallner
1976). The applications of these results, strictly speaking,
should be limited to the test conditions, and any extrapola-
tion must be done with caution. On the other hand, theoreti-
cal approaches for the analysis of grout penetration had been
developed, and most of them are based on the continuum
theory (Lombardi 1985). These approaches are simple, but it
may be difficult to properly model the randomness in the
distribution and the width of the fractures in fractured rock
mass (Zettler et al. 1995; Gustafson and Stille 1996). As-
suming that the grout behaves as a Newtonian fluid, one can
make use of the relations developed by various researchers
for the prediction of fluid flow in fractures (He 1990; Louis
1974; Tsang 1984; Amadei and Illangasekare 1994; and
Amadei et al. 1995) to predict the penetration of the grout.
Because grout is a viscous fluid, and it behaves as a non-
Newtonian fluid, such approach has limitations. Therefore,
Amadei and Savage (2001) attempted to model the grout as
a Bingham fluid and obtained an analytical solution for pen-
etration in a single fracture. Such solutions can provide a
good means for studying the mechanism of the process, but
there may be difficulties in extending it to model the actual
flow in fractured rock mass with a complex fracture pattern.
One may, therefore, have to resort to numerical approaches
such as the finite element method. Taking into account the
random nature of the fractures, a stochastic approach ap-
pears to be more appropriate than the deterministic one,
which is usually adopted in standard analyses.

The stochastic finite element method is an effective
method for analyzing problems with uncertainties and has
been widely used in mining and geotechnical engineering
(Benaroya and Rehak 1988). This paper presents a stochas-
tic finite element method for predicting the depth of pene-
tration of the grout. Based on the Monte-Carlo method
(Long et al. 1982), a procedure to generate fracture net-
works in rock mass is developed. These networks, although
they are different in appearance, have the same statistical
characteristics (orientation, number of fractures per unit
area, width, etc.). Using the generated stochastic fracture
networks, flow analysis can be conducted for the grout
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Fig. 1. Typical fracture.
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along the fractures (Elsworth 1986; Einstein and Baecher
1983; Crain and Miles 1976), and statistical analysis can be
carried out to determine the probability function for the
depth of grout penetration.

The results obtained by the present approach are com-
pared with the experimental results. In general, the results
are in good agreement with one another. Sensitivity analyses
have been carried out, and an empirical equation, based on
the results of the sensitivity analyses, is established for pre-
dicting the depth of penetration.

Flow of grout along a single fracture

Let us consider a fracture as shown in Fig. 1. The surfaces
of the fracture, which are parallel, are assumed to be
smooth, and the width of the fracture is b. Since the viscos-
ity of the grout is usually high, it is more appropriate to
model it as a Bingham fluid (Wallner 1976; and Amadei and
Savage 2001). In steady state, the average velocity of flow
across a section of the fracture (U,) is

1] T =82, ___%b
' Inbpy?J?  4pm

' !Zn‘
g is the acceleration due to gravity;
T, is the initial shear strength of the grout;
n is the viscosity of the grout; since the viscosity
changes with time, 1 can be expressed in terms of
the initial viscosity n,, that is 1 = 1, exp(o.1); where
o is a material constant;
y is the unit weight of the grout; and
p is the density of the grout.

The grout pressure gradient J is mathematically defined as

where

=%

[2 J
| ox

where p is the grout pressure and x is the distance from the
left hand end of the fracture (Fig. 1).
The flow volume across the section (g) is given by
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Fig. 2. The fractured network model generated using the Monte-Carlo method.

e

Table 1. Parameters adopted for the generation of the simulation models.

Fracture density Orientation (degree) Length (m) Fracture
Group (number/m?) (mean/st dev) (mean/st dev) width (mm)
A 5 80/7 0.4/0.05 1.0
B 5 120/7 0.4/0.05 1.0

Note: st dev, standard deviation,

gb’ % Tb’
12n~  3mpy2/> 4pn

For unsteady flow, one can show that

o, _ op

4 Sx=.

dx ot

where s is the storage coefficient and ¢ is the time.
Equation [4] can be solved analytically (Amadei and Sav-

age 2001) or numerically if the boundary conditions at the

two ends are given. In the next section, this approach will be

extended to solve for rock mass containing multiple fractures.

Flow of grout in fractured rock mass

Modeling of fractured rock mass

Though rock mass consists of rock matrices, voids in the
rock matrices, and fractures, observations show that grout
mortar mainly passes through fractures in rock mass during
the grouting process. Therefore, the characteristics of the
fractures, including length, width, orientation, and connec-
tivity, are key factors in determining the depth of penetration
of the grout. Due to the fact that fractures are randomly dis-
tributed and their sizes vary considerably even for rock
masses that are believed to be “uniform” and “homogeneous,”
it is almost impossible to accurately define the fracture pat-
terns in a rock mass. A stochastic approach is therefore more
appropriate for defining the fracture characteristics.

In the present study, the Monte-Carlo method (Long et al.
1982) is used to generate the fracture network by adopting the
following assumptions: (i) every fracture is represented by a
line segment; (i) the centers of fractures are randomly and in-
dependently distributed in space; and (iii) the size and distri-
bution of the fractures are independent of spatial location.

Based on the above assumptions, a fractured rock mass
can be generated by the following procedures:

(1) A random seed is generated by using a random gener-
ation program. The seed is the midpoint of a fracture.

(2) The orientation, width, and length of the fracture are
determined by using the distribution function of the respec-
tive parameters measured in the field.

(3) The coordinates of the two ends of the fracture are cal-
culated.

(4) The above steps are repeated until a fracture network
with density similar to that measured in the rock mass is at-
tained.

Figure 2 shows a typical fractured network with two ma-
jor groups of fractures generated by the above algorithm.
The pertinent parameters adopted in the network generation
are tabulated in Table 1, and 37 samples are generated. The
permeability in each direction can be determined by apply-
ing unit head in different directions for each fractured net-
work and carrying out flow analysis. It can be readily shown
that the directional variation of the permeability can be rep-
resented by an ellipse. The minimum and maximum radii
represent the minimum and maximum permeability values,
respectively. The principal permeabilities, as well as the an-

© 2002 NRC Canada

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Yang et al.

1387

Fig. 3. Permeabilities of the simulation models. (¢) Maximum permeability (cm?/s). (b) Minimum permeability (cm%/s). (¢) Angle be-

tween maximum permeability and horizontal direction (°).

0
e
A

270 270

g“.
ST
0“%?‘!:
A

270
U z .
SSSEIRITS e
%‘-.}\? .’ ‘n"" h’)"’. ,.‘
S “t‘.‘“"}m"” \ PO TN
s\, 2 Saael VaS
180( e | |10 180\

NS
R

== i

|
COINGG :
SRR SORIIDNES
XL HIEE X SKLLATEERX
Q..'Im 0% X
B S
90 =
(a) (b) ©

Fig. 4. Fractures and nodes of the numerical simulation model.

k-th fracture

j-th node

gles between the principal permeabilities and the horizontal
axis, are depicted in Fig. 3.

Governing equation for grout penetration

In deriving the flow equation for a fractured rock mass,
one can assume that the volume of grout flowing into a node
minus the volume of grout flowing out from that node is
equal to the change in the volume of grout in the node
(Fig. 4). The mathematical equation thus obtained is

M
[5] [th] +Q:'=_d:'%

k=1 d

(= by 2 ecin N)
where ¢, is the volume of grout flowing through the k-th

fracture; )
Hy; is the pressure at the i-th node;
M

2=
b, and [, are the width and length of the k-th frac-
ture, respectively:

s; is the elastic storage at the i-th node;

Q; is the volume of grout flowing into or out of the
i-th node: and

M is the number of fractures passing through the i-th
node.
Substituting g, from eq. [3] into eq. [5], we have

M
(6] [Zﬁk-’k] +0; :—d,-% (=12 ... N)
k=1 . t

In the above equation,
B, = &)f+ ‘E,‘j{.? - TobP
12n 3npy Ji 4pnJ;
and J; is the pressure gradient of the k-th fracture.

As flow can only occur between fractures that are con-
nected, we can show readily that

3 3 2
(7] G{&+ % .. 0 )J,:‘GT+Q,-
2n 3mpy /i 4pnd;

94{HFJ_H;})

=85xGx0;x
2At

where G is the connection matrix, and G is the transpose ma-
trix of G. If the i-th node is connected to the j-th node by the
k-th fracture, then G(i, j) = | when the flow direction is from i
to j. When the flow direction is from j to i, G(i. j) = —1. If the
i-th and j-th nodes are not connected, G(i, j) = 0. The elastic
storage matrix of all nodes, S, is equal to (s, 5, ..., 5,); A7 is
the time step; and 6; and 6, are the vectors containing the
width and length of each fracture, respectively.

Furthermore, it is not difficult to show that

3
(8] G—“l—cuci”*%ctcrff‘cu@
N

2 =

04 ny® 6;°

=pS xG x0y X0, T
As the spacing and orientation of the fractures, N, 65, and 0,
: N Y83 ot W05 A1 T3 T
are random variables, |G —-G"' | GG, G—=2G ',
12n0, ny- 4n
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Fig. 5. The experimental setup.
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Fig. 6. Grout intake for the single fracture models. Grouting pressure was 0.2 MPa in all cases.

—&— w/c = 1:2, (Experimental Result)

45000 —8— wjc = 1:2, (Calculated Result)
40000 —A— wjc = 1:1, (Experimental Result)
- 35000 —¥— wjc = 1:1, (Calculated result)
== 30000 —%— w/c = 2:1, (Experimental Result)
E :
S 25000 —6—w/c = 2:1, (Calculated Result)
E 20000
% 15000
= 10000+
5000 +
0+

Fig. 7. The fracture patterns of multiple fracture models.

2 3

Aperture (mm)

2

6 9

G

—b—F

5
4 17

2
h
7 1

Cross angle = 30°

Table 2. Schedule of the experimental study for multiple fracture
model.

Cross angle = 60°

Case Width (mm) Cross angle (%) Water—cement ratio

1 1~1 30 2:1
2 1~1 60 1:1
3 1~1 50 1:2
4 1~2 30 1:1
3 1~2 60 12
6 1~2 90 2:1
7 1~-4 30 2
8 1~4 60 231
9 1~4 90 1:1

Cross angle = 90°

and § x G x 04 x 0, are random matrices. Therefore, it is
necessary to determine the sample size to get statistically
representative results. The sample size will depend on the
mean values and the deviations of the random variables, and
it can be determined by using the limited distribution theo-
rem (Speigel 1992). A detailed discussion on the determina-
tion of the sample size is given in Appendix A.

Having the simulated models generated, the distribution
of the pressure can be computed accordingly. The penetra-
tion depth can be determined by comparing Hy; and Hf; (Hf;
is the initial pressure head). One can assume that the grout
has reached the i-th node if Hy; is greater than Hf; of that
node. From the results, the probability function for the depth
of grout penetration can be determined accordingly.

© 2002 NRC Canada

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Yang et al.

=)
p_
22
2 Rlo D VNN SOONADOSO OO X
P ottt inn TN NN TN TN
PR = I — o 1 Y G e N - - - T
o2
e
= o
28
Z Rl onOCco0 0N LO
i e - - R i e BT e e L A i LS
P il [Pl e e S ol S e e e G et e I e
Al Sl S S oo (= =R = = = T (=
-
L —
= =
3 g
Y dleo T n oo~ O
Pl ITEITTVnnn<d VS nnnin
A oloScdocc oo ooec
O
==
s 3
4 B0 " CoO NN NS
SR = =T - - = R =T == - - = =]
A C|O — 00O CCO— O —~00COC —m™—m—
wry
S
==
z G
n al—me oo oL o oS
PrrloCconw oo cadoC
o= [N e o N i B ==
=Pl Il I T = c S o
<+
L o=
Z '3
A Q8oL NS DU
s locod xS adadaanda
e~ = R I " i P - =
— ' et T T e e e e
(an
b
= =
) = - o~
QOO TOOD DO~ =S~
A T i S B R T e S T A s B o B o e S TS
&, o e g | | pd g gl g gt
o
LV I
= =
» © = e — =
» Al NOTOoOCcCOoOCcCooo NS oS
‘-J._ T )= = NN NN
o vl e S e S T T S O O O T - S,
i
¥}
? —_
- El
E |z =
u 7 S
2 waAalncvocooco—~onono—~ocooc oo
= 2o o = Nl = — = F WS W W
D I O = e S v v pmd e o e v e T e v Py
[}
e
=
2
= = = = = = = = = =
= Bt B e B o B it e O B e B e e
& s g§s3s325¢2323:2828¢28
E Q2 & = (= 2 2 4 ) 2
ke~ ,::.:‘E.E'C.:':.Eh.gp.':-:L.,gt-.En_
= SO Tl I T O S T T T N
z 2ESEEE8ESEEESERERE
— w D o 3D N I = It — I —
b HZUZOZuZuZmsdsmZmZ
LVl
os
o]
v
L—] L
&= ”
= &
o |- (] o =t u L= b o0 =]

1389
Fig. 8. A simulation model generated using the parameters given
in Table 1.
0.0
Grout = ——
S ey

It must be pointed out that Q,, which is the source strength,
is assumed to be a determinate variable in the analysis.

Validation of the numerical model

To assess the accuracy of the numerical model, a number
of tests were carried out in the laboratory using cement mod-
els to study the flow of grout in a single fracture. Figure 5
shows the setup of the tests. By varying the width, the grout
pressure, and the water—cement (w/c) content of the grouts, a
series of tests were carried out, and the results were com-
pared with the numerical model. The comparison between
the experimental and numerical flow volume, as shown in
Fig. 6, indicates that the results of the present approach
agree fairly well with the experimental ones.

Further tests were carried out to validate the model in the
cases of multiple fractures arranged in different patterns.
Three different patterns of fractures (Fig. 7) were simulated.
The widths of the fractures varied from 1 to 4 mm so that
fractures of different widths were simulated. The size of the
models was 500 mm x 300 mm. The fractures were formed
by placing the steel plates into the mould according to the
required spacings and orientations. The steel plates were re-
moved carefully after the setting of the cement. As the grout
was injected into the model, the pressure along the grouting
penetration path was measured. A series of tests (Table 2)
were conducted and the results are tabulated in Table 3.

The results obtained by using the present numerical model
are also given in Table 3. The parameters used in the analy-
sis are given as the following, Mg = 34 mPa-s, 1, = 14 Pa,
p=1.4x 10" kg/m%, and 5; = 0.3, (i = 1,2,...n). In general,
the numerical results are in good agreement with the exper-
imental ones.

Grout penetration in fractured rock mass

Based on the parameters given in Table 1, numerical simu-
lations were conducted for fractured rock masses. A typical
model is depicted in Fig. 8. The grout was injected from the
top surface (Fig. 8). The grouting pressure was 2.0 MPa. The

© 2002 NRC Canada
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Fig. 9. Depth of grout penetration at different times for the sample shown in Fig. 8.

t1 =100 s

Fig. 10. Variation of grout intake (cm’/s) with time.

3
Grout Intake (cm™/s)

4

0 400 80O 1200 1600 2000 2400 2800 3200

Time (s)

w/c ratio of the grout was 0.5. The viscosity and initial shear
strength of the grout were 3.4 mPa-s and 56 Pa, respectively.

Figure 9 shows the depth of grout penetration at different
times. The results indicate that the depth of grout penetration
along a particular fracture depends very much on its connec-
tivity. Furthermore, the grout intake tends to reduce gradu-
ally during the grouting process (Fig. 10). Such results are
not unexpected because the number of unfilled cracks will
be reduced as the cracks are being filled up.

Figure 11 shows the results for two different simulation
models. It must be pointed out that the characteristics of the
cracks are statistically similar. However, the penetration pat-
terns are different. The results further confirm the non-
deterministic nature of the process.

To demonstrate the effects of the various parameters on
the depth of penetration, sensitivity studies were carried out.
The parameters include (i) the characteristics of the fracture
(density, width, orientation, and length); (ii) the grout pres-
sure; and (iif) the material properties of the grout (initial
shear strength and viscosity).

Fracture density

In the analysis, three cases with different fracture densi-
ties were considered, that is, 1.5, 2.0, and 2.5 fractures/m-.
Other parameters remained unchanged. The probabilities of
the depth of penetration are plotted in Fig. 12a. The results

t,=200s

t3 =500 s

indicate that the mean depth (depth of penetration) increases
as the density increases.

Fracture width

Another study was conducted by varying the width of the
fractures (1.0, 2.0, and 3.0 mm). The results are plotted in
Fig. 12b. As expected, the depth of penetration increases as
the width increases. Furthermore, analyses were also carried
out by varying the standard deviation of the width from 0.33
to 0.75 mm. The results (Fig. 12¢) show that the depth of
penetration increases as the standard deviation increases.

Fracture orientation

As grout will be flowing along the fractures, the direction
of the fractures is also an important parameter. Varying the
mean value of fracture direction from 40 to 80°, a series of
analyses was carried out to determine the depth of penetra-
tion. The standard deviation was 10°. The results are de-
picted in Fig. 12d. Increasing the standard deviation is
equivalent to increasing the randomness of the orientation.
Therefore, another analysis was carried out by assuming the
standard deviation to be 90° to obtain the upper bound solu-
tion for random orientated fractures. The results are given in
Fig. 12e. One can note that the depth of penetration in-
creases as the standard deviation increases.

Fracture length

Figure 12f shows the results of the analyses carried out by
varying the length of the fractures. Three different lengths
(1.0, 2.0, and 3.0 m) were studied. The results indicate that
it will be easier for the grout to penetrate if the fracture
length is longer. Furthermore, the depth of penetration is
also more uniform. By varying the standard deviation (0.1 to
0.5, then 1.0), one can study the effect of the standard devia-
tion of the fracture length. The results given in Fig. 12g are
for the case with mean length equal to 2.0 m. It is obvious
that the depth of penetration will become less uniform as the
standard deviation increases.

Grout pressure

Grout pressure is another factor that will affect the depth
of penetration. Considering three different cases with grout
pressures 2.0, 3.0, and 4.0 MPa, analyses were carried out
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Fig. 11. Comparison of depth of grout penetration for two different simulation models (time is equal to 500 s).

Table 4. Regression relationships for the depth of grout penetration.

00 02 04 06 o8 1.0 12 14 16 1‘8 20

Table 5. Degree of sensitivity.

Factor Regression relationship Factor Sensitivity degree
Density y=022+ 1.3x - 1.2 Density 1.714
Mean value of aperture y = -0.045x% + 0.255x + 0.59 Mean aperture 0.167
Deviation of aperture y = 0.0123x% - 0.3704x + 0.9209 Deviation of aperture distribution 0.448
Mean value of orientation y = 0.08375x — 1.75 Mean orientation 1.35
Deviation of orientation y = 0.0063x + 0.16 Deviation of orientation distribution 0.42
Mean value of trace length y = 0.04x% = 0.05x + 0.09 Mean fracture length 1.245
Deviation of trace length v=0017 + 0.015x + 0.1483 Deviation of fracture distribution 0.11
Grouting presstre v = 0.005+7 — 0.005x + 0.29 Grouting pressure 0.25
Viscosity v = 0.0175x* = 0.0719x + 0.018 Viscosity 0.10
Initial shear strength vy =-~0.00107x + 0.1933 Initial shear strength 0.06

and the results are shown in Fig. 12h. As expected, the depth
of penetration increases as the pressure increases.

Properties of the grout

The flow of the grout will also be affected by the initial
shear strength and the viscosity of the grout. To study their
effect, two series of analyses were carried out. In the first se-
ries, three different coefficients of viscosity (0.034, 0.34 and
3.4 mPa-s) were considered and in the second series the ini-
tial shear strengths were varied (14, 28, and 56 Pa). The re-
sults are given in Figs. 12i and 12j, respectively. It appears
that the effect of viscosity is more significant than the effect
of the initial shear strength, which was anticipated.

Semi-empirical relation for the prediction of
depth of penetration

Based on the results obtained in the previous section, re-
gression relationships between the various factors and the
depth of grout penetration can be derived. The relationships
are given in Table 4. It must be pointed out that the relation-
ships are determined for the curnulative probability of 85%.

The above relationships can be used to predict the effect
on the depth of penetration for each factor. However, these
factors will be influencing the depth interactively in the real
situation. To predict the penetration depth, it is necessary to
combine the effects of these factors. A method for combin-
ing the effects of the various factors was developed. One can
first compute the weight of each factor to quantify the rela-

tive effect of the factor. This can be achieved by considering
the degree of sensitivity, which can be defined as follows :

m |

| AP
[9] Si(Ap) = — —L
R m Z AAg

i
FP.

1

i=

where Sg(Ay) is the degree of sensitivity; Ag is the factor
under consideration; A A is the relative deviation of the fac-
tors; AP is the system response deviation due to the change
of factors; P is the system response; and m is the level num-
ber of factors.

Based on the above formula and the results reported in the
previous section, the degrees of sensitivity for the various
factors can be derived, and they are given in Table 5.

Combining the degree of sensitivity and the regression re-
lation, one can obtain the relationship for the prediction of
the depth of grout penetration

[10] R = 6.834 x 10-3D1.20130.524 § B-0.969
X §0-196 §§0.2721 1.489 §7 0.101 0 hn.t'—ili.*lﬁ n‘—}umq

where R is the depth of penetration;

D is the fracture density;

B is the mean width of the fractures;

OB is the standard deviation of the width of the frac-
tures;

0 is the mean angle of inclination of the fractures to
the horizontal axis:

80 is the standard deviation of the angle of inclina-
tion of the fractures to the horizontal axis:
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Fig. 12. Results of the parametric study.
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fractures;
p is the grouting pressure; Summary and conclusions
T, is the initial shear strength of the grout; and
N is the inital viscosity of the grout. Assuming that the grout behaves as a Bingham fluid, a
[t must be pointed out that the above equation should only numerical model is developed to predict the flow of grout in
be applied to rock mass with the fracture characteristics de- fractured rock masses. Experimental studies were carried out

fined in Table 1. However, such an approach can be applied to validate the model, and the results show that the numeri-
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Fig. 12. concluded.

cal model can fairly well predict the depth of grout penetra-
tion. Taking into account the fact that the fracture patterns
cannot be easily defined. the Monte-Carlo approach is used
to generate simulated models with statistically similar frac-
tured patterns. Based on the numerical results, a method for
computing the depth of the grout penetration is developed. It
must be pointed out that the present method has considered
only smooth fractures, and therefore, rugosity and tortuosity
were not considered.
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Appendix A

Since the spacing, orientation, length, and width of the
fractures are random variables, it is necessary to generate a
sufficient number of simulation models so that statistical
representative results can be obtained.

We can note that four matrices of eq. [8]. namely

3 302 2
G I8 G7) 6T 6T G I GT and § x G x 0, x 6,

12n0, Iny- 4n '
depend on random variables. Let us define

- Y03 _ Aol
Al (x) = 423 = A@%
[A1]  f(x) 128, 9,

Can. Geotech. J. Vol. 39, 2002

where A = i i
12n
Expanding f (x) and assuming that the deviation of the
random variable is small, we can show that

[A2] flx) = AB30;' = AB36;" + A(3030; - 6,)0;"
- 676,°0, -6,
We can define the mean value of f(x)
[A3]  E(f(x) = E(A836;') = A8.6;"
and its variance is
[A4] D(f(x)) = D(AB36,') = D(A36{56,6,"' - 6,6, °80,))
= A%((3676;")* D(®;) - (876, %)> D(8,))

In the above formula, D(8;) and D(8,) are the variance of 8,
and 6,, respectively.

Based on the limited distribution theorem (Speigel 1992),
we can show that

~ N(O.1)
D(f(x))/ «n

For a confidence level of 95%, the minimum sample size
required is

(A6] n > 1.96% D( f(x))
=T 0.05°

where n, is the number of models. As the variance of f (x)
can be computed using eq. [A4], one can easily calculate n,.
A similar approach can be used to determine the mini-
mum sample size required for the remaining three terms,
) 2
that is GﬂGT. GT"{&GT. and S x G x 05 x 6,. For the

=
ny: | n w
parameters given in Table 1, one can show that the minimum

sample size required for the four terms are 1783, 1168,
1634, and 1430, respectively. Therefore, one will require at
least 1783 simulation models. In the analysis, 1800 simula-
tion models were generated.
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