

The HKU Scholars Hub

The University of Hong Kong

Title	Transient resonance Raman spectroscopy and density functional theory investigation of iso-polyhalomethanes containing bromine and/or iodine atoms
Author(s)	Zheng, X; Fang, WH; Phillips, DL
Citation	Journal Of Chemical Physics, 2000, v. 113 n. 24, p. 10934-10946
Issued Date	2000
URL	http://hdl.handle.net/10722/42352
Rights	Creative Commons: Attribution 3.0 Hong Kong License

Transient resonance Raman spectroscopy and density functional theory investigation of iso-polyhalomethanes containing bromine and/or iodine atoms

Xuming Zheng, Wei-Hai Fang,^{a)} and David Lee Phillips^{b)} Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong

(Received 11 August 2000; accepted 26 September 2000)

We report additional transient resonance Raman spectra and density functional theory computations for the products formed following ultraviolet photoexcitation of solution phase polyhalomethanes containing bromine and/or iodine atoms. We show that the iso-polyhalomethane photoproduct is responsible for the intense transient absorption band observed in the 350–470 nm region after ultraviolet excitation of polyhalomethanes in the solution phase. We examine the trends and correlation in the density functional theory optimized geometry and intense electronic absorption transition in the 350–470 nm region for the iso-polyhalomethanes containing bromine and/or iodine atoms. We explore the chemical reactivity of the iso-polyhalomethane species using density functional theory computations for the reaction of iso-CH₂Br–Br with ethylene as an example. Our results and comparison with experimental data in the literature indicate that the iso-polyhalomethane species is most likely the methylene transfer agent in the cyclopropanation reactions of olefins using ultraviolet photoexcitation of polyhalomethanes in the solution phase. We briefly discuss the possibility that the photochemistry and chemistry of the iso-polyhalomethanes may give significant release of reactive halogens to the atmosphere. © 2000 American Institute of Physics. [S0021-9606(00)00148-3]

I. INTRODUCTION

Polyhalomethanes such as CH₂I₂, CH₂BrI, and CH₂Br₂ have been observed in the atmosphere and are potentially significant sources of organoiodine and organobromine compounds emitted into the atmosphere.¹⁻⁶ Thus, polyhalomethane photochemical and chemical reactions as well as their lifetimes are of increasing interest in atmospheric chemistry.¹⁻⁶ CH₂I₂, CH₂BrI, and CH₂Br₂ have recently had their gas phase ultraviolet-visible absorption spectra measured over the 215-390 nm range and their atmospheric photolysis rates were estimated as a function of altitude and solar zenith angle.⁶ Polyhalomethanes are also of interest in a variety of synthetic chemistry reactions such as cyclopropanation reactions of olefins and diiodomethylation of carbonyl compounds.⁷⁻¹⁵ Ultraviolet photolysis of CH₂I₂ in the presence of olefins in the solution phase has found utility to produce cyclopropanated products with high stereospecificity.⁸⁻¹⁰

Ultraviolet excitation of polyhalomethanes in the gas phase appears to typically lead to a direct carbon–halogen bond cleavage reaction(s).^{16–28} Anisotropy measurements from molecular beam experiments indicate these direct photodissociation reactions usually occur on a time scale much less than a rotational period of the parent molecule.^{16,18,19–21} Translational photofragment spectroscopy experiments for CH_2I_2 , ¹⁸ CH_2BrI , ²¹ and CF_2I_2 , ^{22,23} showed that the polyatomic photofragments receive substantial amounts of internal excitation of their vibrational and rotational degrees of

freedom. Resonance Raman investigations showed several polyhalomethanes have multidimensional reaction coordinates and short-time dynamics qualitatively consistent with a semirigid radical impulsive model of the photodissociation in both the gas and solution phases.^{29–38}

Ultraviolet excitation, direct photoionization, and radiolysis of CH₂I₂ in the solution phase all give rise to characteristic absorption bands \sim 385 nm (strong intensity) and \sim 570 nm (moderate intensity)³⁹⁻⁴⁵ which have been attributed to several different possible photoproduct species such as trapped electrons,³⁹ the cation of diiodomethane $(CH_2I_2^+)$,^{43,45} and the isomer of diiodomethane (iso-CH₂I–I).^{41,42} Several femtosecond transient absorption studies examined the photodissociation reaction of CH2I2 in the solution phase^{46–48} using probe wavelengths of 620 nm,⁴⁶ 400 nm,⁴⁷ and 290–1220 nm (Ref. 48) to follow the formation and decay of photoproducts. These transient absorption spectra all exhibited similar qualitative features of a fast rise time followed by a fast decay and then a slow rise but three different interpretations were given depending on the assignment of the photoproduct species responsible for the characteristic \sim 385 nm and \sim 570 nm absorption bands.^{46–48} This uncertainty about the identity of the photoproduct species³⁸⁻⁴⁸ prompted us to use transient resonance Raman experiments and density functional theory computations to better characterize the photoproduct(s).49 We showed conclusively that the iso-diiodomethane (iso-CH₂I-I) species is the photoproduct responsible for the \sim 385 nm transient absorption band observed after ultraviolet excitation of diiodomethane in the solution phase.⁴⁹ Comparison of these results to those found from gas phase experiments as well as solution phase femtosecond transient absorption experiments

^{a)}Permanent address: Department of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China.

^{b)}Author to whom correspondence should be addressed.

suggest that solvation gives rise to noticeable amounts of the iso-diiodomethane photoproduct by interaction of the initially produced CH_2I and I fragments with the solvent cage around the parent molecule.

Many other polyhalomethane molecules exhibit signature transient absorption bands following excitation in condensed phase³⁸⁻⁴⁵ and we have started to characterize the identity of some of these photoproduct species using a combination of transient resonance Raman spectroscopy and density functional theory computations.^{50–52} We found that excitation of either the A-band or B-band absorption transitions of CHI₃ produced the same iso-CHI₂-I photoproduct species and this suggests that production of iso-polyhalomethane species is not specific to a particular transition and likely occurs generally for $n \rightarrow \sigma^*$ transitions localized on C-X bonds. Our recent observation of the iso-CH₂I-Br species following A-band or B-band photoexcitation of CH₂BrI (Ref. 51) and the iso-CH₂Br-Br species after ultraviolet photoexcitation of CH_2Br_2 (Ref. 52) in room temperature solutions provide further support for this hypothesis.

In this paper, we report transient resonance Raman spectra and density functional theory calculations for several additional polyhalomethanes. We compare results for seven different polyhalomethanes containing iodine and/or bromine atoms in order to investigate how the iso-polyhalomethane structures and properties vary with different iodine and bromine substitutions. We discuss trends found for the number of iodine and bromine atom substitutions and the relative stability of the iso-polyhalomethane species. We briefly discuss possible implications for cyclopropanation reactions and the chemistry and photochemistry of organoiodine and organobromine compounds in the atmosphere.

II. EXPERIMENT

CBr₄ (99%), CHI₃ (99%), CHBr₃ (99+%), CH₂I₂ (99%), CH₂Br₂ (99%), CBr₃F (99+%), CH₂BrI (~97%) and spectroscopic grade cyclohexane solvent (99.9+%) were used to prepare samples ($\sim 0.10-0.20$ M) for the transient resonance Raman experiments. The experimental apparatus and methods for the nanosecond transient resonance Raman experiments have been previously given⁴⁹⁻⁵⁶ so only a brief description will be presented here. The pump and probe excitation wavelengths were provided by the hydrogen Raman shifted laser lines and/or harmonics of a Nd:YAG nanosecond pulsed laser. Spectra were acquired using pumpprobe time-delays of 0 ns and 10 ns (spectra at both timedelays were similar to one another). A near collinear geometry was used to lightly focus and overlap the pump and probe beams onto a flowing liquid jet of the sample. The Raman scattering signal was collected using a backscattering geometry and reflective optics and then imaged through a depolarizer and entrance slit of a spectrograph. The grating of the spectrograph dispersed the Raman signal onto a liquid nitrogen cooled CCD detector. The Raman signal was sampled for 300-600 s before being read out to an interfaced PC computer and 10-20 of these readouts were added together to obtain the Raman spectrum (pump only, probeonly, pump-probe resonance Raman spectra, and a background spectrum were acquired for each sample). The known vibrational frequencies of the cyclohexane solvent bands were used to calibrate the resonance Raman spectra. The solvent bands and parent compound Raman bands were removed by subtracting the pump-only and probe-only Raman spectra from the pump-probe resonance Raman spectrum so as to obtain the transient resonance Raman spectrum.

III. CALCULATIONS

The Gaussian program package (G98W) was used for all the density functional theory (DFT) calculations⁵⁷ and complete geometry optimizations were obtained analytically using C_1 symmetry. B3LYP computations^{57,58} were done to find the optimized geometry and vibrational frequencies of the species examined. Time-dependent density functional theory at random phase approximation⁵⁹ [TD(RPA)] was used to estimate the electronic transition energies of the species under investigation. The 6-311G(*d*,*p*), aug-cc-PVTZ,^{60,61} and/or Sadlej-PVTZ (Refs. 62, 63) basis sets were used for the density functional theory computations.

We explored the reactivity of the iso-polyhalomethane species by performing density functional theory (B3LYP with C_1 symmetry) computations for reactions of iso-CH₂Br-Br and CH₂Br radical with ethylene. The complete active space SCF (CASSCF) approach⁶⁴⁻⁶⁶ was employed for investigation of the dissociation of iso-CH₂Br-Br, since the dissociation involves formation of radicals. An active space with ten electrons in eight orbitals, which originates mainly from 4p electrons of two Br atoms, was used in the CASSCF calculations [hereafter referred to as CAS(10,8)]. Analytic frequency calculations were done in order to confirm the optimized structure as a minimum or first-order saddle point, and to carry out the zero-point energy correction. IRC calculations confirmed the transition state connects the related reactants.⁶⁷ The standard 6-31+G* basis set was used for the chemical reaction calculations. We note that relativistic effects may influence the calculated energy of a system that contains heavy atoms, such as Br and I atoms. However, we are concerned about the relative energies (barrier heights and reaction energies) in our chemical reaction computations, and the energy errors originating from relativistic effects will partially cancel out in the calculated relative energies. Thus, we expect that relativistic effects have little influence on the reaction processes investigated here. This is one of the reasons why polarization and diffuse functions were not used for the hydrogen atoms in the chemical reaction computations. Energies of the reactants and products are determined by supermolecule calculations with the intermolecular distance being fixed at 20 Å. In this way, the basis set superposition error is corrected in the computation.

IV. RESULTS AND DISCUSSION

A. Transient resonance Raman spectra, density functional theory computational results, and assignment of iso-polyhalomethane species to the transient resonance Raman spectra

Figure 1 shows the ultraviolet absorption spectra of CH₂Br₂, CHBr₃, CBr₄, CFBr₃, CH₂I₂, CHI₃, and CH₂BrI in

FIG. 1. Absorption spectra of CH_2Br_2 , $CHBr_3$, CBr_4 , $CFBr_3$, CH_2I_2 , CHI_3 , and CH_2BrI in cyclohexane solution with the pump (solid arrows) and probe (dashed arrows) excitation wavelengths (in nm) for the transient resonance Raman experiments shown above the spectra.

cyclohexane solution. Figure 2 shows a typical pump only spectrum in the probe wavelength region (A), a probe only resonance Raman spectrum (B), a pump-probe resonance Raman spectrum (C), and the transient resonance Raman spectrum of the CHBr₃ photoproduct (D) (obtained after subtraction of the pump only spectrum and the probe only spectrum from the pump–probe resonance Raman spectrum). Figure 3 presents transient resonance Raman spectra of the isomer photoproducts formed from ultraviolet excitation of the seven polyhalomethanes shown in Fig. 1. Since the nanosecond transient absorption spectra in cyclohexane solvent for most of the compounds examined in this study are not known, we did not include any correction of wavelength-

FIG. 2. Example of a pump only 282.4 nm spectrum in the probe wavelength region (A), a probe only 435.7 nm Raman spectrum (B), a pump– probe (282.4 nm/435.7 nm) Raman spectrum (C) and the resulting transient resonance Raman spectrum (D) of the CHBr₃ photoproduct.

FIG. 3. Transient resonance Raman spectra of iso- CH_2Br_2 (from Ref. 52), iso- $CHBr_3$, iso- CBr_4 , iso- $CFBr_3$, iso- CH_2I_2 (from Ref. 49), iso- CHI_3 (from Ref. 50), and iso- CH_2I -Br (from Ref. 51) photoproducts obtained following ultraviolet excitation of the parent compound in cyclohexane solution. The asterisks mark regions where subtraction artifacts are present. The assignments of the larger transient resonance Raman bands are shown above the spectra.

dependent reabsorption in the pump-probe spectra. This could lead to some oversubtraction at large Raman shifts in Figs. 2 and 3. However, most of the resonance Raman bands of interest are found below 1000 cm⁻¹ and any effect of oversubtraction on the bands of interest should be small. All of the spectra display most of their intensity in the fundamentals, overtones and combination bands of several Franck-Condon active modes. Density functional theory computations were done for several species that have been proposed as photoproducts for each polyhalomethane system studied so as to elucidate the species mainly responsible for the transient resonance Raman spectra. The DFT computed parameters for the optimized geometry for the isopolyhalomethane, the polyhalo(or halo)methyl radical fragment and polyhalomethane cation species are given in the supplementary EPAPS material.⁶⁸ Table I list the vibrational frequencies obtained from the optimized geometry for each of the proposed species for each molecular system examined in this study and compares them to available vibrational frequencies from resonance Raman and IR experiments. The transient resonance Raman spectra shown in Fig. 3 have fundamental vibrational frequencies that are in good agreement with those predicted for iso-polyhalomethane species but not

Downloaded 03 Nov 2006 to 147.8.21.97. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

TABLE I. Comparison of experimental vibrational frequencies (in cm⁻¹) found from transient resonance Raman spectra and previously reported infrared absorption experiments (Refs. 41 and 42) to the B3LYP calculated vibrational frequencies for the species whose optimized geometry is given in Table I. The corresponding vibrational frequencies for the fully deuterated compounds are given in parentheses.

Ultraviolet ex	xcitation of CBr ₄									
Resonance										
Raman Experiment	Iso-CBr.		B3LYP Calc. 6-311G(d n)		CBr	÷	B	3LYP Calc. -311G(d n)	CBra	B3LYP Calc. 6-311G(d n)
			0 0110(<i>a</i> , <i>p</i>)		0.512	•		5110(u,p)	chi,	0 5110(<i>a</i> , <i>p</i>)
828	$A' \nu_1$, C–Br Str.		799	$A_1 \nu_1$, Bi	$r_1 - C - Br_2$, $Br_3 - C$	C–Br ₄ sym. str.		585	$A_1 \nu_1$, CBr sym. Str.	313
	ν_2 , Br-C-Br wag		330	ν ₂ , ΒΓ-	C Br band			170	ν_2 , C-Br ₃ bend.	239
170	ν_3 , $Bi_4 Bi_3 C Bi_1$ sylli. So	I. Br. str	175	ν_3 , DI-	C Br band			119	$E \nu_3$, C-BI asylii. su	150
1/9	ν_4 , Br_4CBI_3 $beild + BI_1$ -	-DI ₂ SU. Br. bend	1/5	ν_4, \mathbf{B}_3	$-C-Br_4$ being	-Br. twist		110	ν_4 , BI-C-BI bellu CBr ⁺	139 6-311 $G(d, n)$
155	ν_5 , $BI_1 = BI_2$ su. $+ BI_4 \in I$ ν_5 , $C = Br_5 = Br_5$ bend	JI3 Della	36	$R_2 \nu_5$, DI $R_2 \nu_5$, DI	$C_1 = C = Br_2, Br_3 = C$	str		437	$A_1 v_2$ CBr sym Str	435
	$A'' \nu_7$, Br ₄ CBr ₂ asym. str.		754	ν_7 , Br ₂	$-C-Br_4$ asym	tr. Br ₁ –C–Br ₂ w	ag	155	ν_2 , C-Br ₂ bend.	315
	ν_8 , Br ₃ CBr ₁ , Br ₄ CBr ₁ t	end	182	$B_2 \nu_8$, BI	$-C-Br_2$ asym.	str.	-0	734	$E \nu_3$, C–Br asym. str	863
	ν_9 , torsion		50	ν_9 , Br ₁	-C-Br ₂ rock, B	r ₃ -C-Br ₄ wag		176	ν_4 , Br–C–Br bend	183
Ultraviolet ex	citation of CHBr3									
Resonance										
Raman		B3LYP Calc.			B3LYP Calc.			B3LYP Calc.		B3LYP Calc.
Experiment	Iso-CHBr ₃	6-311G(d,p)	CHBr ₃ ⁺		6-311G(d,p)	CHB	r ₂	6-311 <i>G</i> (<i>d</i> , <i>p</i>)	$CHBr_2^+$	6-311G(d,p)
	$A' \nu_1$, C–H stretch	3202	$A_1 \nu_1$, CH str.		3184	$A' \nu_1$, CH str.		3217	$A_1 \nu_1$, CH Str.	3165
	ν_2 , C–H scissor	1237	ν_2 , Br–C–Br	sym. str.	545	ν_2 , Br–C–B	Br sym. str.	615	$\nu_2,~{\rm Br-C-Br}$ sym. str.	665
834	ν_3 , Br_3CBr_1 asym. str.	848	ν_3 , Br–C–Br	bend	214	ν_3 , CH wag		410	ν_3 , Br–C–Br bend	219
658	$\nu_4,\mathrm{C-H}$ wag	685	$E \nu_4$, Br–C–H s	cissor	1163	ν_4 , Br–C–B	Br bend	185	$B_1 \nu_4$, C–H def., wag	818
566	$\nu_5, \mathrm{Br}_3\mathrm{-C}\mathrm{-Br}_1$ sym. Str.	581	ν_5 , Br–C–Br	asym. str.	585	$A'' \nu_5$, BrCH s	scissor	1190	$B_2 \nu_5$, BrCH scissor	1278
214	ν_6 , Br ₃ –C–Br ₁ bend	212	ν_6 , Br–C–Br	bend	85	ν_6 , Br–C–B	Br asym. str.	757	ν_6 , Br–C–Br asym. str.	900
	ν_7 , C-Br ₁ -Br ₂ bend	180								
169	ν_8 , Br ₁ –Br ₂ str.	159								
	ν_9 , torsion	46								
Ultraviolet ex	xcitation of CFBr ₃									
Resonance			D2I VD Cala			D	2I VD Cala			P2I VD Cala
Exporimont	Iso CEBr		B_{3L} IP Calc.		$CEBr^+$	Б	3LIP Calc. 311G(d n)		CEPr	6.311C(d, n)
	ISO-CFBI ₃		0-3110(<i>a</i> , <i>p</i>)		Сгыз	0-	·3110(<i>a</i> , <i>p</i>)		CFBI ₂	0-5110(<i>a</i> , <i>p</i>)
	$A' \nu_1$, C–F stretch		1193	$A_1 \nu$	1, CF str.		1169	$A' \nu_1$, CF Str.	1153
855	ν_2 , Br ₃ CBr ₁ asym.	str	816	ν_2	, Br–C–Br sym	. Str.	394	ν_2 ,	Br-C-Br sym. Str.	477
419	ν_3 , CF wag		444	ν_3	, Br-C-Br bend	1	206	ν_3 ,	Br-C-F bend	369
362	ν_4 , Br ₃ –C–Br ₁ sym	. Str.	380	$E \nu_4$, Br-C-F asym	. str.	594	$ u_4$,	Br-C-Br bend	170
323	ν_5 , Br ₃ –C–F bend		303	ν_5	, Br-C-Br scis	sor	303	$A'' \nu_5$, Br-C-Br asym. str.	770
204	ν_6 , Br ₃ -C-Br ₁ ben	d	184	ν_6	, Br-C-Br bend	1	72	ν ₆ , Β	r–C–F scissor	306
171	ν_7 , Br ₁ –Br ₂ str		163							
	ν_8 , torsion ν_6 , C-Br ₂ -Br ₂ ben	d	80 41							
T . 1 1 .		u	41							
Resonance	Infrared									
Raman	absorption				B3LY	P Calc.			B3LYP	Calc.
Experiment	Experiment				This work	(from Ref. 52	2)		This work	(from Ref. 52)
(from Ref. 52	2) (from Refs. 41, 42)	Iso-CH ₂ B	r-Br(iso-CD ₂ Br-B	r) 6	-311G(d,p)	aug-cc-PVT2	Z	$\mathrm{CH}_2\mathrm{Br}_2^+$	6-311G(d,p)	aug-cc-PVTZ
	3030 (2213)	$A' \nu_1, C$	H ₂ sym. Str.		3149	3152 (2275)	A ₁	ν_1 , CH sym. st	r. 3131	3132 (2265)
	1334 (1030)	ν_2 , CH	I ₂ scissor		1431	1428 (1078)	1	2, CH2 def.	1427	1424 (1045)
	(732)	ν ₃ , C-	Br str.		858	858 (771)	1	₃ , CBr sym. S	tr. 619	626 (596)
690	684 695	ν_4 , CH	I ₂ wag		737	738 (594)	1	4, BrCBr bend	162	169 (168)
176		ν_5 , Br	-Br str.		176	180 (180)	B_1	ν_5 , CH asym.	str. 3247	3247 (2424)
146		ν_6 , C-	Br-Br bend		130	133 (124)	1	6, CH2 rock	878	873 (668)
	3156 (2384)	$A'' \nu_7$, C	H ₂ asym. str.		3289	3286 (2456)	A 2	ν_7 , CH ₂ twist	1042	1032 (732)
960	•••	ν_8 , CH	I ₂ rock		971	966 (724)	B_2	ν_8 , CH ₂ wag	1191	1172 (877)
480 ?		ν_9 , CH	I ₂ twist		461	468 (337)	1	9, CBr asym. s	str. 527	528 (507)
					This work	(from Ref. 52	2)		This work	
		CH ₂ Br(Cl	D ₂ Br)	6	-311G(d,p)	aug-cc-PVT2	Z CH	$_{2}\mathrm{Br}^{+}$	6-311G(d,p)	
		$A_1 \nu_1$, C	H sym. Str.		3168	3172 (2284)	A_1	ν_1 , CH sym. S	tr. 3097	
		ν_2 , CH	l ₂ def.		1383	1382 (1029)	1	2, CH ₂ def.	1451	
		ν_3, C	-Br str.		696	703 (662)	1	⁷ ₃ , C–Br str.	862	
		$B_1 \nu_4$, C	H aguna Sta		101	152 (118)	<i>B</i> ₁	ν_4 , CH ₂ def. w	ag 1095	
		$B_2 \nu_5, C$	n asym. str. L rock		030	026 (201)	B ₂	ν_5 , CH asym. CH reals	ou. 3239	
		ν_6 , CF	12 10CK		200	920 (091)	1	6, C112 IUCK	903	

Non-metal NLVP Cal.	Ultraviolet excitation	n of CHI ₃						
Rame IBAYP Calc. BBAYP Calc. <th< th=""><th>Resonance</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	Resonance							
Experiment Internal L4, 20 Internal L4, 2	Raman		B3LYP Calc.			B3LYP Calc.		B3LYP Calc.
(form Ref. 50) Le-CH1 Sadils PVTZ CH1 Sadils PVTZ CH1 Sadils PVTZ 1* p., CH atom 1153 A, p., CH atom 1153 A' p., CH stor. 3191 726 r., CL atom. stoch 720 720 720 720 720 720 720 720 720 720 720 720 720 720 720 720 720 720 7200	Experiment		(from Ref. 50)			(from Ref. 50)		(from Ref. 50)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(from Ref. 50)	Iso-CHI ₃	Sadlej-PVTZ	C	CHI ₃ ⁺	Sadlej-PVTZ	CHI_2	Sadlej-PVTZ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$A' \nu_1$, CH str.	3153	$A_1 \nu_1$, Ch	I str.	3150	$A' \nu_1$, CH Str.	3191
25 µ, 1 C - 1 ayn, areach 750 µ, 1 - C - 1 ayn 91 µ, 1 - C - 1 ayn 93 <		ν_2 , CH scissor	1142	ν_2 , I–C	C–I sym. str.	450	v2, I-C-I sym. Str.	496
99 n, LC-1 ayns, troch ay	726	ν_3 , I–C–I asym.	stretch 750	ν_3 , I-C	C-I bend	151	ν_3 , I-C-I bend	131
47 p., 1.C.1.aya	579	ν_4 , CH wag	610	$E \nu_4$, I–C	C–H scissor	1075	ν_4 , CH wag	69
$ \begin{array}{ c c c c c } & if $	477	ν_5 , I–C–I asym.	stretch 478	ν_5 , I-C	C–I asym. str.	580	$A'' \nu_5$, ICH scissor	1114
$\begin{array}{c c c c c c c } 14 & p, \ 1c-1 \ local & 146 & p, \ 1c-1 \ local & 190 & p, \ taxio & 29 & 29 & 29 & 29 & 29 & 29 & 29 & 2$		ν_6 , I–C–I bend	155	ν_6 , I-C	C-I bend	58	ν_6 , I–C–I asym. str.	708
$ \begin{array}{c c c c c } 112 & r, 1, 1 sende & 10 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & $	144	ν_7 , C–I–I bend	145	0.				
$ \begin{array}{ c c c } & & & & & & & & & & & & & & & & & & &$	117	ν_8 , I–I stretch	119					
$\begin{tabular}{ $		ν_9 , torsion	29					
Ramar aborgino Form Ref. 90 RitUP Cak. RitUP Cak.<	Ultraviolet excitation	n of CH ₂ I ₂						
Rama E periment B3 LYP Calc. CH J Sadlej-PVTZ Sadlej-PVTZ CH J Sadlej-PVTZ CH J Sadlej-PVTZ CH J Sadlej-PVTZ Sadlej-PVTZ Sadlej-PVTZ	Resonance	Infrared						
Experiment (from Ref. 4) Experiment (from Ref. 4), 42 (from Ref. 4), bo CH_1-1 (iso CD_1-0) (from Ref. 4), Sadlej PVTZ (from Ref. 5), Sadlej PVTZ (from Ref. 4), Sadlej PVTZ From Ref. 51	Raman	absorption		B3LYP Calc.		B3LYP Cal	с.	B3LYP Calc.
$\begin{array}{ $	Experiment	Experiment		(from Ref. 49)		(from Ref. 4	9)	(from Ref. 49)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(from Ref. 49)	(from Refs. 41, 42)	Iso-CH ₂ I–I (iso-CD ₂ I–I)	Sadlej-PVTZ	$\mathrm{CH}_{2}\mathrm{I}_{2}^{+}$	Sadlej-PVT	Z CH ₂ I(CD ₂ I)	Sadlej-PVTZ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		3028 (2213)	$A' \nu_1$, CH ₂ sym. Str.	3131 (2260)	$A_1 \nu_1$, CH sym. str	. 3103 (2246) $A_1 \nu_1$, CH sym. Str.	3126 (2252)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1373 (1041-1033)	ν_2 , CH ₂ scissor	1340 (1011)	ν_2 , CH ₂ def.	1365 (1003) ν ₂ , CH ₂ def.	1309 (974)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	701 (640)	714/705 (645)	ν_3 , C–I str.	755 (645)	ν_3 , CI sym. Str.	551 (522)	ν_3 , C–I str.	614 (576)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	619 (496)	622-611 (498-486)	ν_4 , CH ₂ wag	619 (476)	ν_4 , ICI bend	114 (114)	$B_1 \nu_4$, CH ₂ wag	234 (180)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	128 (128)		ν_5 , I–I str.	128 (128)	$B_1 \nu_5$, CH asym. st	tr. 3220 (2401) $B_2 \nu_5$, CH asym. Str.	3288 (2457)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$? (~110)		ν_6 , C–I–I bend	99 (93)	ν_6 , CH ₂ rock	755 (576)	ν_6 , CH ₂ rock	832 (619)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3151 (2378)	$A'' \nu_7$, CH ₂ asym. str.	3281 (2451)	$A_2 \nu_7$, CH ₂ twist	983 (696)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			ν_8 , CH ₂ rock	865 (697)	$B_2 \nu_8$, CH ₂ wag	1080 (813)		
Utraviolet excitation of CH ₃ Br Resonance Raman B B3LYP Calc. B3LYP Calc. B3LYP Calc. B3LYP Calc. Cfrom Ref. 51) (from Ref	487 ?(352 ?)		ν_9 , CH ₂ twist	447 (318)	ν_9 , CI asym. str.	517 (490)		
Reman BJYP Calc. BJYP Calc. BJYP Calc. (from Ref. 51) (from Ref. 51) (from Ref. 51) (from Ref. 51) Iso-CH ₂ I-Br (iso-CD ₂ I-Br) Sadlej-PYTZ CH ₂ Brl ⁺ (CD ₂ Brl ⁺) Sadlej-PYTZ A' ν_1 , CH ₂ sym. str. 3115 (2251) A' ν_1 , CH ₂ sym. Str. 2995 (2172) ν_2 , CH ₂ def. 1357 (1024) ν_2 , CH ₂ def. 1283 (937) 730 ν_1 , C-1 str. 782 (646) ν_3 , CH ₂ wag. 1056 (781) μ_4 , CH ₂ wag 671 (541) ν_4 , C-B rstr. 464 (448) 118 ν_6 , C-1-Br bend 106 (99) ν_6 , L-C-Br bend 153 (152) μ_7 , CH ₂ asym. str. 3257 (2430) $A'' \nu_7$, CH ₂ sym. str. 3027 (225) μ_9 , CH ₂ twist 469 (337) ν_9 , CH ₂ rock 433 (342) Infrared Iso-CH ₂ Br-1 (so-CD ₂ Br-1) Sadlej-PVTZ 5adlej-PVTZ ~3036 (~2222) A' ν_1 , CH ₂ sym. Str. 3115 (224) (~105) ν_2 , CH ₂ def. 1377 (1042) (~105) ν_2 , CH ₂ def. 1377 (1042) (~10	Ultraviolet excitation	n of CH ₂ IBr						
Rama B3LYP Calc. B3LYP Calc. B3LYP Calc. Experiment (from Ref. 51) Sadlej-PVTZ CH_2Brl^+ (CD_2Brl^+) Sadlej-PVTZ A' ν_1 , CH ₂ sym. str. 3115 (2251) A' ν_1 , CH_2 sym. Str. 2995 (217) ν_2 , CH ₂ def. 1357 (1024) ν_2 , CH ₂ def. 1283 (937) ν_4 , CH ₂ wag. 671 (541) ν_4 , CH ₂ wag. 1056 (781) ν_4 , CH ₂ wag. 671 (541) ν_4 , CH ₂ wag. 659 (629) 173 ν_5 , I-B rstr. 105 (164) ν_5 , C-1 str. 659 (629) ν_6 , C-1-B rbend 106 (99) ν_6 , I-C -B rbend 153 (152) μ^*_6 , CH ₂ orck 867 (693) ν_8 , CH ₂ twist 3027 (225) μ_6 , CH ₂ rock 867 (6937) ν_8 , CH ₂ twist 3027 (225) μ_6 , CH ₂ rock 867 (6937) ν_8 , CH ₂ twist 3027 (224) Ifrared Iso-CH ₂ Br-I (so-CD ₂ Br-I) Sadlej-PVTZ Sadlej-PVTZ $(from Ref. 51)$ Iso-CH ₂ Br-I (so-CD ₂ Br-I) Sadlej-PVTZ	Resonance							
$ \begin{array}{ c c c c c c } \mbox{Expriment} & (from Ref. 51) & (from Ref. 51) \\ \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Raman			B3L	YP Calc.			B3LYP Calc.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Experiment			(fron	n Ref. 51)			(from Ref. 51)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(from Ref. 51)	Iso-C	H ₂ I-Br (iso-CD ₂ I-Br)	Sad	lej-PVTZ	CH_2BrI^+	(CD_2BrI^+)	Sadlej-PVTZ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$A' \nu_1$, CH ₂ sym. str.	311	5 (2251)	$A' \nu_1$ CH	2 sym. Str.	2995 (2172)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ν_2 ,	, CH ₂ def.	135	7 (1024)	ν_2 , CH	2 def.	1283 (937)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	730	ν_3 ,	, C–I str.	78	2 (646)	ν_3 , CH	2 wag.	1056 (781)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ u_4$,	, CH ₂ wag	67	1 (541)	ν_4 , C–	Br str.	659 (629)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	173	ν_5 ,	, I–Br str.	16	5 (164)	ν_5 , C-	I str.	464 (448)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	118	ν_6 ,	, C-I-Br bend	106 (99)		ν_6 , I-0	ν_6 , I–C–Br bend	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$A'' \nu_7$, CH ₂ asym. str.	325	7 (2430)	$A'' \nu_7$, Cl	H ₂ asym. str.	3027 (2235)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ u_8$,	, CH ₂ rock	86	7 (693)	ν_8 , CH	2 twist	994 (708)
Infrared B3LYP Calc. Absorption B3LYP Calc. Experiment (from Ref. 51) (from Refs. 41, 42) Iso-CH ₂ Br–I (iso-CD ₂ Br–I) \sim 3036 (~2222) A' ν_1 , CH ₂ sym. Str. 3115 (2248) (~1055) ν_2 , CH ₂ def. 1377 (1042) (~708) ν_3 , C–Br str. 840 (707) 631 (~505) ν_4 , CH ₂ wag 698 (560) ν_5 , I–Br str. 148 (147) ν_6 , C–I–Br bend 120 (112) ~3165 (~2390) A" ν_7 , CH ₂ asym. str. 3271 (2445) ν_8 , CH ₂ rock 945 (755) ν_9 , CH ₂ twist 429 (309)		ν_9 ,	, CH ₂ twist	46	9 (337)	ν ₉ , CH	2 rock	433 (342)
Absorption B3LYP Calc. Experiment (from Ref. 51) (from Refs. 41, 42) Iso-CH ₂ Br–I (iso-CD ₂ Br–I) Sadlej-PVTZ \sim 3036 (~2222) A' ν_1 , CH ₂ sym. Str. 3115 (2248) (~1055) ν_2 , CH ₂ def. 1377 (1042) (~708) ν_3 , C–Br str. 840 (707) 631 (~505) ν_4 , CH ₂ wag 698 (560) ν_5 , I–Br str. 148 (147) ν_6 , C–I–Br bend 120 (112) ~3165 (~2390) A" ν_7 , CH ₂ asym. str. 3271 (2445) ν_8 , CH ₂ rock 945 (755) ν_9 , CH ₂ twist 429 (309)	Infrared							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Absorption							B3LYP Calc.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Experiment							(from Ref. 51)
$\begin{array}{cccc} & A' \nu_1, \mathrm{CH}_2 \mathrm{syn. Str.} & 3115 (2248) \\ & \cdots (\sim 1055) & \nu_2, \mathrm{CH}_2 \mathrm{def.} & 1377 (1042) \\ & \cdots (\sim 708) & \nu_3, \mathrm{C}-\mathrm{Br} \mathrm{str.} & 840 (707) \\ & 631 (\sim 505) & \nu_4, \mathrm{CH}_2 \mathrm{wag} & 698 (560) \\ & \nu_5, \mathrm{I}-\mathrm{Br} \mathrm{str.} & 148 (147) \\ & & \nu_6, \mathrm{C}-\mathrm{I}-\mathrm{Br} \mathrm{bend} & 120 (112) \\ & & \sim 3165 (\sim 2390) & A'' \nu_7, \mathrm{CH}_2 \mathrm{asym. str.} & 3271 (2445) \\ & & \nu_8, \mathrm{CH}_2 \mathrm{rock} & 945 (755) \\ & & \nu_9, \mathrm{CH}_2 \mathrm{tvist} & 429 (309) \end{array}$	(from Refs. 41, 42)			Iso-CH2Br-	I (iso-CD ₂ Br–I)			Sadlej-PVTZ
$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	~3036 (~2222)			$A' \nu_1$, CH_2	sym. Str.			3115 (2248)
$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	(~1055)			ν_2 , CH ₂	def.			1377 (1042)
	(~708)			ν_3 , C–B	r str.			840 (707)
$\begin{array}{ccc} & & & & & & & & & & & & & & & & & &$	631 (~505)			ν_4 , CH ₂	wag			698 (560)
$\begin{array}{c} \nu_{6}, {\rm C-I-Br \ bend} & 120 \ (112) \\ \\ \sim 3165 \ (\sim 2390) & A'' \nu_{7}, {\rm CH}_{2} \ {\rm asym. \ str.} & 3271 \ (2445) \\ \\ \nu_{8}, {\rm CH}_{2} \ {\rm rock} & 945 \ (755) \\ \\ \nu_{9}, {\rm CH}_{2} \ {\rm twist} & 429 \ (309) \end{array}$				ν_5 , I–Br	str.			148 (147)
~3165 (~2390) $A'' \nu_7$, CH ₂ asym. str. 3271 (2445) ν_8 , CH ₂ rock 945 (755) ν_9 , CH ₂ twist 429 (309)				ν_6 , C–I–	-Br bend			120 (112)
	~3165 (~2390)			$A'' \nu_7$, CH_2	asym. str.			3271 (2445)
$\nu_9, \mathrm{CH}_2 \mathrm{twist} $ 429 (309)				$\nu_8,{\rm CH}_2$	rock			945 (755)
				ν_9 , CH ₂	twist			429 (309)

the cation or radical fragment species. For example, the transient resonance Raman spectrum for the CHBr₃ photoproduct displays fundamental Raman bands at 834 cm⁻¹, 658 cm⁻¹, 566 cm⁻¹, 214 cm⁻¹, and 169 cm⁻¹. These vibrational frequencies are in reasonable agreement with those computed for the iso-CHBr₃ species but not for the CHBr₃⁺ cation or CHBr₂ radical fragment species (see Table I). The cation CHBr₃⁺ has only one A_1 vibrational mode below 250 cm⁻¹ (at 214 cm⁻¹) while the experimental spectrum in Fig. 3 clearly shows two fundamentals at 214 cm⁻¹ and 169 cm⁻¹

(which also display a combination band with one another). In addition, the cation $CHBr_3^+$ has only one A_1 vibrational mode in the 500–850 cm⁻¹ region (at 545 cm⁻¹) while the experimental spectrum in Fig. 3 clearly shows three fundamentals at 566 cm⁻¹, 658 cm⁻¹, and 834 cm⁻¹. Thus, we can rule out the $CHBr_3^+$ cation as the species responsible for the transient resonance Raman spectrum of the CHBr₃ photoproduct. The CHBr₂ radical fragment also displays only one A_1 fundamental in the 500–850 cm⁻¹ region (at 615 cm⁻¹) and one fundamental in the $100-250 \text{ cm}^{-1}$ region (at 185 cm^{-1}). The CHBr₂ radical fragment can also be ruled out as the species responsible for the transient resonance Raman spectrum of the bromoform photoproduct which clearly has fundamental bands at 169 cm⁻¹, 214 cm⁻¹, 566 cm⁻¹, 658 cm^{-1} , and 834 cm^{-1} . The CHBr₂⁺ cation exhibits computed vibrational frequencies (see Table I) similar to those for the CHBr₂ radical and can likewise be ruled out as the photoproduct species. The radical fragment species (like CH₂X, CHX_2 , and CX_3) have structures and vibrational frequencies similar to those for the corresponding cation fragment species (like CH_2X^+ , CHX_2^+ , and CX_3^+). This and the fact that none of the radical fragment species can be assigned to the observed photoproduct species makes it highly unlikely the cation fragment is responsible for the transient resonance Raman spectra observed in Fig. 3. Thus, we only computed optimized structures and vibrational frequencies for selected cation fragment species (CHBr $_2^+$, CH $_2$ Br $^+$, and CBr $_3^+$) for comparison purposes. Similar arguments to those given above for possible CHBr₃ photoproduct species indicate that all of the transient resonance Raman spectra for polyhalomethane photoproducts shown in Fig. 3 belong to isopolyhalomethane species and not the parent molecule cation species or the radical (or cation) fragment species. Figure 4 shows schematic diagrams of the structures of the eight isopolyhalomethane species investigated in this paper. Inspection of Table I shows that the iso-polyhalomethane species containing iodine and/or bromine atoms generally have two or more vibrational modes with A_1 or A' symmetry in the 100-200 cm⁻¹ region associated with the halogen-halogen (X-X) stretch and carbon-halogen-halogen (C-X-X) bend motions. The Br-C-Br bend is involved sometimes in the case of the more highly substituted iso-CBr₄ and iso-CFBr₃ species. The presence of two or more A_1 or A' vibrational fundamentals in the $100-200 \text{ cm}^{-1}$ region of the resonance Raman spectra appears indicative of the polyhalomethane isomer species that contain a carbon-halogen-halogen (C-X-X) structure. These modes generally display strong overtones and/or combination bands with other Franck-Condon active modes in the resonance Raman spectra of Fig. 3. This indicates the strong transient absorption bands in the 350-470 nm region for the isomer photoproducts are associated with the C–X–X chromophore (where X=Br and/or I).

B3LYP/3-21G* time-dependent random phase approximation (TD/RPA) computations to estimate the electronic transition energies have been done previously for CH₂I₂ and reasonable agreement was obtained between the computed and experimental values.⁶⁹ Results for similar computations are shown in Table II for the isomer, cation, and radical fragment species that have been proposed as photoproducts

FIG. 4. Schematic diagram showing the computed optimized geometry for the iso-CH₂Br–Br, iso-CHBr₃, iso-CBr₄, iso-CFBr₃, iso-CH₂I–I, iso–iso-CHI₃, and iso-CH₂I–Br photoproduct species observed experimentally in room temperature solutions (cyclohexane solvent). The B3LYP/6-311G(d, p) computed values for the C–Br bond length, Br–Br bond length, and C–Br–Br angle are 1.774 Å, 2.699 Å, and 123.2° for iso-CH₂Br–Br, 1.791 Å, 2.720 Å, and 128.4° for iso-CHBr₃, 1.837 Å, 2.706 Å, and 139.3° for iso-CBr₄, and 1.888 Å, 2.651 Å, and 149.1° for iso-CFBr₃. The B3LYP/Sadlej-PVTZ computed values for the C–I bond length, I–I (or I–Br) bond length and C–I–I (or C–I–Br) angle are 1.957 Å, 3.042 Å, and 118.2° for iso-CH₂I–I, 2.000 Å, 3.036 Å, and 128.8° for iso-CHI₃, and 1.960 Å, 2.790 Å, and 121.0° for iso-CH₂I–Br.

from ultraviolet photoexcitation of polyhalomethanes in condensed phase environments. The polyhalomethane isomer species have computed singlet transitions in the 350-470 nm region with strong oscillator strengths (iso-CBr₄ at 454 nm with 0.4511 oscillator strength, iso-CHBr₃ at 395 nm with 0.5952 oscillator strength, iso-CFBr₃ at 400 nm with 0.4070 oscillator strength, iso-CH₂Br₂ at 358 nm with 0.5883 oscillator strength, iso-CHI₃ at 465 nm with 0.5096 oscillator strength, iso- CH_2I_2 at 425 nm with 0.4023 oscillator strength, iso-CH₂I-Br at 358 nm with 0.4582 oscillator strength, and iso-CH₂Br-I at 422 nm with 0.5317 oscillator strength). These strong electronic transitions show a reasonable correlation with the strong experimental transient absorption bands reported earlier for photoproducts formed after photoexcitation of polyhalomethanes in low temperature solids.³⁹⁻⁴⁵ For example, Simon and Tatham³⁹ observed intense experimental absorption bands at \sim 504 nm for CBr₄ photoproduct, \sim 446 nm for the CHBr₃ photoproduct, \sim 390

TABLE II. Electronic absorption transition energies (singlet transitions) obtained from density functional theory calculations for the species whose optimized geometry is listed in the EPAPS and whose computed vibrational frequencies are given in Table I. The calculated oscillator strengths are given in parentheses.

Intense absorption band

in the 350–550 nm region				
Experiment λ_{max}		URPA	A//UB3LYP/	
504 nm (from Ref. 39)	Iso-CBr ₄ 6-311 <i>G</i> (<i>d</i> , <i>p</i>) 454 nm (0.4511) 434 nm (0.0001) 413 nm (0.0187) 272 nm (0.2247) 259 nm (0.0003) 230 nm (0.0002)	CBr ₄ ⁺ 6-311 <i>G</i> (<i>d</i> , <i>p</i>) 1985 nm (0.1078) 926 nm (0.0001) 618 nm (0.0000) 519 nm (0.0011) 314 nm (0.0002) 306 nm (0.121)	CBr ₃ 6-311 <i>G</i> (<i>d</i> , <i>p</i>) 330 nm (0.0000) 250 nm (0.0000) 243 nm (0.0004) 227 nm (0.0035)	CBr ₃ ⁺ 6-311 <i>G</i> (<i>d</i> , <i>p</i>) 290 nm (0.0000) 254 nm (0.0000) 228 nm (0.1723)
446 nm (from Ref. 39)	Iso-CHBr ₃ 6-311G(d,p) 427 nm (0.0005) 407 nm (0.0307) 395 nm (0.5952) 251 nm (0.0003) 239 nm (0.1073) 220 nm (0.0475)	CHBr ₃ ⁺ 6-311 <i>G</i> (<i>d</i> , <i>p</i>) 1296 nm (0.0000) 1260 nm (0.0100) 288 nm (0.0336)	CHBr ₂ 6-311 <i>G</i> (<i>d</i> , <i>p</i>) 289 nm (0.0006) 223 nm (0.0010) 217 nm (0.0021) 205 nm (0.0001) 184 nm (0.0281) 183 nm (0.0006)	CHBr ₂ ⁺ 6-311 $G(d,p)$ 303 nm (0.0000) 280.3 nm (0.0000) 279.6 nm (0.0002) 230 nm (0.2449)
	Is 6-311G(d,p) 400 nm (0.4070) 378 nm (0.0188) 364 nm (0.0044) 240 nm (0.2555) 235 nm (0.1249) 225 nm (0.0451)	so-CFBr ₃ aug-cc-PVTZ 398 nm (0.4318) 362 nm (0.0082) 345 nm (0.0031) 241 nm (0.2197) 232 nm (0.0503) 212 nm (0.0200)	CFBr ₃ ⁺ 6-311 <i>G</i> (<i>d</i> , <i>p</i>) 1447 nm (0.0069) 654 nm (0.0000) 349 nm (0.0336)	CFBr ₂ 6-311 <i>G</i> (<i>d</i> , <i>p</i>) 276 nm (0.0038) 235 nm (0.0000) 227 nm (0.0009) 209 nm (0.0000) 203 nm (0.0249) 183 nm (0.0382)
	Is	o-CH-Br-	CL	J Br ⁺
390 nm (from Ref. 39) 360 nm (from Ref. 42)	6-311G(d,p) (this work) 410 nm (0.0001) 386 nm (0.0248) 358 nm (0.5883) 252 nm (0.0000) 203 nm (0.0600) 172 nm (0.0744) 6-311G(d,p)	aug-cc-PVTZ (from Ref. 52) 390 nm (0.0002) 374 nm (0.3380) 356 nm (0.1919) 249 nm (0.0001) 219 nm (0.0033) 201 nm (0.1005) CH ₂ Br aug-cc-PVTZ	$\begin{array}{c} \text{6-311}G(d,p)\\ (\text{this work})\\ 2333 \text{ nm} (0.1296)\\ 894 \text{ nm} (0.0003)\\ 706 \text{ nm} (0.0000)\\ 305 \text{ nm} (0.0004)\\ 219 \text{ nm} (0.0625)\\ \\ \\ C\text{H}_2\text{Br}^+\\ 6\text{-311}G(d,p) \end{array}$	aug-cc-PVTZ (from Ref. 52) 1941 nm (0.1150) 814 nm (0.0003) 644 nm (0.0000) 298 nm (0.0001) 216 nm (0.0462)
445 nm (from Ref. 39)	(this work) 252 nm (0.0001) 193 nm (0.0000) 181 nm (0.0000) Iso-CHI ₃ Sadlej-PVTZ (from Ref. 50) 465 nm (0.5096) 452 nm (0.0134) 414 nm (0.0045) 324 nm (0.1408) 293 nm (0.0064)	(from Ref. 52)) 255 nm (0.0011) 198 nm (0.0001) 194 nm (0.0000) CHI ₃ ⁺ Sadlej-PVTZ (from Ref. 50) 1264 nm (0.0096) 405 nm (0.0006) 322 nm (0.0002) 1190 nm (0.0000) 327 nm (0.0001)	316 nm (0.0000) 197 nm (0.1713) 180 nm (0.0009) CHI ₂ Sadlej-PVTZ (from Ref. 50) 398 nm (0.0000) 308 nm (0.0000) 298 nm (0.0000) 232 nm (0.0068) 218 nm (0.0010) 212 nm (0.0381)); 301 nm (0.0000);); 236 nm (0.0006);); 227 nm (0.0006);); 214 nm (0.0131);
380 nm (from Ref. 39) 385 nm (from Refs. 41, 42)	Iso-CH ₂ I ₂ Sadlej-PVTZ (from Ref. 49) 443 nm (0.0002) 425 nm (0.4023) 404 nm (0.0772) 284 nm (0.0002) 280 nm (0.0230) 208 nm (0.0671)	CH ₂ I ₂ ⁺ Sadlej-PVTZ (from Ref. 49) 2648 nm (0.1250) 1004 nm (0.0003) 753 nm (0.0000) 341 nm (0.0003)	CH ₂ I Sadlej-PVTZ (from Ref. 49) 316 nm (0.0001) 262 nm (0.0009)	

Downloaded 03 Nov 2006 to 147.8.21.97. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

TABLE II.	(Continued.)
-----------	--------------

Intense absorption band in the 350–550 nm region Experiment λ_{max}		URPA//UB3LYP/		
403 nm (Refs. 41, 42 for iso-CH ₂ Br–I)	Iso-CH ₂ I–Br Sadlej-PVTZ (from Ref. 51) 373.14 nm (0.0005) 358.45 nm (0.4582) 320.19 nm (0.0166) 318.91 nm (0.0000) 280.54 nm (0.0000) 260.51 nm (0.0002) 250.04 nm (0.0240) 210.52 nm (0.0770)	Iso-CH ₂ Br–I Sadlej-PVTZ (from Ref. 51) 493.72 nm (0.0000) 473.45 nm (0.0308) 422.43 nm (0.5317) 304.59 nm (0.0000) 302.00 nm (0.0000) 264.94 nm (0.0000) 262.18 nm (0.0006) 238.95 nm (0.0009) 213.48 nm (0.1242)	$\begin{array}{c} CH_2BrI^+\\ Sadlej-PVTZ\\ (from Ref. 51)\\ 486 nm (0.0017)\\ 314 nm (0.0021)\\ 276 nm (0.0003)\\ 254 nm (0.0000)\\ 246 nm (0.0001)\\ \end{array}$	

nm for the CH₂Br₂ photoproduct, ~445 nm for the CHI₃ photoproduct, and ~380 nm for the CH₂I₂ photoproduct in a 77 K isopentane–methylcyclohexane glass. However, the cation and radical fragment species generally do not exhibit computed strong electronic transitions in the 350–470 nm region. This provides further support for our assignment of the iso-polyhalomethane species as the photoproducts responsible for the intense transient absorption bands^{39–45} and the transient resonance Raman spectra of Fig. 3.

B. Trends observed in iso-polyhalomethanes containing bromine and/or iodine

The optimized geometry for the iso-CH₂Br-Br, iso-CHBr₃, iso-CBr₄, and iso-CFBr₃ species [using the same 6-311G(d,p) computations across this series of compounds] and the iso-CH₂I–I and iso-CHI₃ species (using the sadlej-PVTZ basis set) shows some interesting trends. As the number of Br atoms increases, the C-Br₁-Br₂ angle and the C-Br₁ bond length increase noticeably from 123.2° and 1.774 Å in iso-CH₂Br–Br to 139.3° and 1.837 Å in iso-CBr₄. However, the $Br_1 - Br_2$ bond length stays in a narrow range for the iso-CH₂Br-Br, iso-CHBr₃ and iso-CBr₄ species (2.699 Å, 2.720 Å, and 2.706 Å, respectively). This suggests that replacement of the hydrogen atoms by bromine atoms results in somewhat weaker C-Br bonds and some crowding of the terminal Br₂ atom so that the C-Br₁-Br₂ angle increases without affecting the Br₁-Br₂ bond very much. This also appears to be the situation for replacement of a hydrogen atom by an iodine atom in the iodine containing polyhalomethanes: the $C-I_1-I_2$ angle and the $C-I_1$ bond length increase noticeably from 118.2° and 1.957 Å in iso-CH₂I-I to 128.8° and 2.000 Å in iso-CHI₃, while the $I_1 - I_2$ bond length stays in a narrow range (3.042 Å and 3.036 Å, respectively). Upon going from the dihalomethane to the haloform, there is a larger change in the $C-X_1-X_2$ angle and $C-X_1$ bond length for the iodine compounds $(+10.6^{\circ} \text{ and } +0.043 \text{ Å})$ compared to the bromine compounds $(+5.2^{\circ} \text{ and } +0.017 \text{ Å})$. This suggests that steric effects and the polarizability of the replacement atom are mostly responsible for this substituent effect (at least in bromine and iodine containing polyhalomethanes). These trends in the $C-X_1-X_2$ angle and $C-X_1$ bond length for the iodine and bromine containing compounds exhibit some correlation with the transition energy of the intense transitions in the 350-470 nm region computed for these compounds in Table II. For example, as the number of Br atoms increases the most intense electronic transition shifts from 358 nm for iso-CH₂Br-Br to 395 nm for iso-CHBr₃ to 454 nm for iso-CBr₄. This also occurs for iodine containing polyhalomethanes: 425 nm for iso-CH₂I-I and 465 nm for iso-CHI₃. Each additional bromine or iodine atom appears to red shift the most intense electronic transition \sim 40 to 60 nm. The isomer species containing Br atoms have transitions that are blue shifted ~ 60 nm or so compared to the corresponding iodine containing polyhalomethanes. This appears to be due to the influence of the C-Br vs the C-I part of the C-X-X chromophore. The bromoiodomethane isomers, iso-CH₂I-Br and iso-CH₂Br-I, do not follow the expected trend for their absorption band position: one may expect that the isomer containing the C-I bond should be at a longer the wavelength compared to the isomer containing the C-Br bond. To better understand this paradox, it is useful to consider the halogen-halogen bond lengths in comparison to the isomer species containing only bromine or iodine atoms. The I-Br bond length is computed to be 2.790 Å in iso-CH₂I-Br. This value is closer to a Br-Br bond length (~ 2.70 Å) found in the iso-polyhalomethanes containing bromine atoms while the Br-I bond length is computed to be 2.926 Å in iso-CH₂Br–I which is closer to a I–I bond length (\sim 3.04 Å) found in the iso-polyhalomethanes containing iodine atoms. Since the I-Br bond length is close to that for the Br-Br bond length then the energy of the intense electronic transition for iso-CH₂I-Br should be similar to that found for iso-CH₂Br-Br. Since the Br-I bond length is close to that for the I–I bond length then the intense electronic transition for iso-CH₂Br-I should be similar to that found for iso-CH₂I-I. This is indeed the case, the 358 nm strong transition of iso-CH₂I-Br is similar in energy to the \sim 358 nm strong transition of iso-CH₂Br–Br and the 422 nm strong transition of iso-CH₂Br-I is close to that of the 425 nm strong transition of iso-CH₂I-I. Thus, it appears that halogen-halogen part of the C-X-X chromophore is more important in determining the electronic transition energy than the C-X bond length and the C-X-X bend angle although these are also important. This is consistent with the intensity pattern of the Franck–Condon active modes found in the transient resonance Raman spectra of Fig. 3. The transient resonance Raman spectra show that the halogen–halogen stretch vibrational modes are generally the most intense progression and usually form combination bands with the Franck–Condon active modes associated with the C–X–X bend and C–X motions.

Replacement of a hydrogen atom in iso-CHBr₃ to give iso-CFBr3 results in intriguing changes in the computed geometry. First, the C–Br₁ bond in iso-CFBr₃ (\sim 1.888 Å) is weakened further than in iso-CBr₄ (~ 1.837 Å) and the $C-Br_1-Br_2$ bend angle increases further in iso-CFBr₃ (to \sim 149.1°) than in iso-CBr₄ (to \sim 139.3°). In addition, the $Br_1 - Br_2$ bond becomes noticeably stronger in iso-CFBr₃ (to \sim 2.651 Å) while the Br₁-Br₂ bond remains almost the same in iso-CBr₄, iso-CHBr₃, and iso-CH₂Br-Br (2.706 Å, 2.720 Å, and 2.699 Å, respectively). This indicates that replacement of a hydrogen atom by a fluorine atom results in somewhat different behavior than replacement of a hydrogen atom by a bromine atom or an iodine atom in the isopolyhalomethanes. The smaller and substantially more electronegative fluorine atom appears to perturb the isopolyhalomethane structure more through the bonds (i.e., the C-X and X-X bonds and hence the C-X-X angle as well). However, the larger and less electronegative but more polarizable bromine and iodine atoms perturb the isopolyhalomethane structure more through steric and dispersion effects (i.e., mainly affects the C-X bond and C-X-X angle but not very much effect on the X-X bond).

It is also intriguing that the computed intense electronic transition energy only shifts to ~ 400 nm for iso-CFBr₃ compared to \sim 454 nm for iso-CBr₄ and \sim 395 nm for iso-CHBr₃. As one goes from iso-CH₂Br–Br to iso-CHBr₃ to iso-CBr₄ the C-Br bond becomes longer and the C-Br-Br angle larger while the Br-Br bond length is about the same and the intense electronic transition energy shifts from 358 nm to 395 nm to 454 nm (see Table II). Since the C-Br bond length and the C–Br–Br bond angles are even larger for the iso-CFBr₃ species compared to the iso-CBr₄ species, one might expect that the transition energy of the intense absorption band for iso-CFBr₃ should be even more red shifted compared to the iso-CBr₄ species. Why is this not the case? It is important to remember that there is a very strong correlation of the halogen-halogen bond length with the position of the strong electronic absorption band associated with the C-X-X chromophore (see our preceding discussion of the two iso-bromoiodomethane species). The iso-CFBr₃ species has a noticeably stronger Br-Br bond (~2.651 Å) compared to iso-CBr₄ (~ 2.706 Å) and this probably blue shifts the intense electronic absorption associated with the C-X-X chromophore. This appears to illustrate competition between the C–X bond length, the C–X–X bond angle and the X–X bond length in determining the position of the intense electronic transition associated with the C-X-X chromophore in the iso-polyhalomethane species. Our preliminary results indicate that fluorine containing iso-polyhalomethane species will likely have a stronger halogen-halogen bond than the corresponding iso-polyhalomethane species that does not

TABLE III. Energies for iso-polyhalomethanes shown in Table I relative to parent molecules found from the BLYP density functional theory computations. ΔE = energy difference between isomer molecule and corresponding parent molecule.

Species	ΔE
Iodine containing polyhalomethanes	(from B3LYP/sadlej-PVTZ
computations)	-
iso-CHI ₃	30.8 kcal/mol
iso-CH ₂ I–I	40.3 kcal/mol
iso-CH ₂ I–Br	43.0 kcal/mol
iso-CH ₂ Br-I	47.1 kcal/mol
Bromine containing polyhalomethan computations]	es [from B3LYP/6-311G (d,p)
iso-CBr ₄	32.8 kcal/mol
iso-CHBr ₃	42.7 kcal/mol
iso-CFBr ₃	39.6 kcal/mol
iso-CH ₂ Br–Br	51.3 kcal/mol

contain fluorine. This may cause the position of the intense electronic transition associated with the C-X-X chromophore to be blue shifted from the position expected based only on the changes in the C-X bond length and C-X-X angle upon iodine and/or bromine atom substitution.

We have performed density functional theory computations to explore the stability of the iso-polyhalomethane relative to the parent polyhalomethane and these results are shown in Table III. When the number of iodine or bromine atoms increase, the energy of the iso-polyhalomethane species decreases and becomes closer to that of the parent compound. For example as one goes from iso-CH₂I₂ to iso-CHI₃, the ΔE relative to the parent molecule goes from 40.3 kcal/ mol for iso-CH₂I-I to 30.8 kcal for iso-CHI₃. There is a similar trend for the bromine species ΔE : 51.3 kcal/mol for iso-CH₂Br-Br, 42.7 kcal/mol for iso-CHBr₃ and 32.8 kcal/ mol for iso-CBr₄. As the halogen atom species changes from iodine to bromine, the energy of the isomer becomes larger (for example changing from iso-diiodomethane with ΔE =40.3 kcal/mol to iso-dibromomethane with ΔE = 51.3 kcal/mol). Addition of fluorine appears to only moderately lower ΔE (compare iso-CFBr₃ to iso-CHBr₃ in Table III). The number and identity of the halogen atoms in isopolyhalomethanes significantly changes their stability relative to the parent polyhalomethane species. We note the caveat that the computed values are for isolated molecules and it is unclear how much solvent effects will change these valnes

C. Implications for cyclopropanation reactions of olefins via ultraviolet photoexcitation of polyhalomethanes in the presence of olefins

There is some evidence in the literature⁷⁰ that isopolyhalomethanes react with olefins. Brown and Simons⁷⁰ noted that ultraviolet excitation of polyhalomethanes produced "color centers" that had characteristic intense transient absorption bands in the 350–470 nm region. When trace amounts of olefins were added and the 77 K matrix allowed to warm up then new transient absorption bands \sim 310–320 nm appeared with clean isobestic points from the

"color centers" transient absorption bands (see Figs. 4 and 5 in Ref. 70). These new transient absorption bands \sim 310 to 320 nm were convincingly assigned to halogen moleculeolefin species (such as I2-olefin and Br2-olefin complexes).⁷⁰ The new transient absorption bands \sim 310– 320 nm also do not appear when the olefins are not present. No Br₂ was produced from ultraviolet excitation of polybromomethanes in the absence of olefins.⁷⁰ We have shown that these "color center" intense transient absorption bands in the 350-470 nm region are really due to the isopolyhalomethane species (this work and Refs. 49-52) for many of the polyhalomethanes examined including CHBr₃ (this work), CH_2Br_2 ,⁵² and CH_2I_2 .⁴⁹ This combined with the previous experiments of Brown and Simons⁷⁰ indicates that iso-polyhalomethanes readily react with olefins to give a halogen molecule product which then forms a halogen molecule-olefin complex. The following reaction scheme (using CH_2I_2 and CH_2Br_2 as an example) is consistent with these observations:

Initiation step $CH_2X_2 + h\nu \rightarrow CH_2X + X$, (1)

Recombination to produce isomer

$$CH_2X + X \rightarrow iso-CH_2X - X.$$
 (2)

Reaction of iso-CH₂X-X with olefin iso-CH₂X-X

+olefin
$$\rightarrow$$
cyclopropanated product+X₂, (3)

Formation of X_2 -olefin complex

$$X_2$$
+olefin \Leftrightarrow X_2 -olefin complex. (4)

We have performed additional density functional theory computations to investigate the reaction of iso-CH2Br-Br and ethylene as described in the Sec. III. The iso-CH₂Br-Br system was chosen since it is the smallest polyhalomethane we examined and therefore the most computationally tractable reaction to study. Figure 5 shows a simple schematic diagram outlining the reaction pathway for the iso-CH₂Br-Br with ethylene and CH₂Br with ethylene reactions with the transition state, intermediate, and product energies given relative to the separated reactants. The iso-CH₂Br-Br molecule approaches ethylene in an asymmetric way, preferentially attacking the CH₂ groups of ethylene from above the molecular plane. The chemical reaction computations indicate a complex is formed with the two intermolecular C-C distances of 3.258 Å and 3.772 Å and a binding energy of only 0.6 kcal/mol. A transition state (TS) is found on the way from this complex to the products of cyclopropane (C_3H_6) and Br₂. The C–C and C–Br bonds are lengthened by 0.023 Å and 0.086 Å and the Br–Br bond is shortened by 0.024 Å in the TS with respect to the reactant complex. The Br-Br-C angle changes from 126.7° in the reactant complex to 142.2° in TS. The structural changes are consistent with the fact that intermolecular interaction is much stronger in TS than in the complex, which results in the intramolecular C-C and C-Br bonds being weakened.

An imaginary frequency of 244.6(i) cm⁻¹ was found for the TS structure by vibrational analysis. The eigenvector corresponding to the negative eigenvalue of the force constant

FIG. 5. Schematic diagram showing the UB3LYP/6-31+G* computed relative energies (in kcal/mol) for the reactants, transition state(s), intermediate, and reaction products for the reactions of iso-CH₂Br–Br with ethylene (a) and CH₂Br with ethylene (b). See text and EPAPS (Ref. 68) for more details. Selected computed structural parameters for the iso-CH₂Br–Br reaction with ethylene for TS: Br–Br=2.712 Å, C₃–Br=1.864 Å, C₁–C₂ = 1.359 Å, C₃–C₂=2.226 Å, C₃–C₁=2.748 Å, Br–C₃–C₂=115.1°, Br–Br–C₃=142.2°, C₃–C₂–C₁=97.1°. Selected computed structural parameters for CH₂Br reaction with ethylene in (b): for TS1, C₃–Br = 1.899 Å, C₁–C₂=1.359 Å, C₃–C₂=112.1°, C₃–Br=1.981 Å, C₁–C₂=1.494 Å, C₃–C₂=1.535 Å, Br–C₃–C₂=112.1°, C₃–Br=1.981 Å, C₁–C₂=1.494 Å, C₃–C₂=1.535 Å, Br–C₃–C₂=1.498 Å, Br–C₃–C₂=106.7° and C₃–C₂–C₁=77.0°.

matrix indicates that the internal coordinate reaction vector is mainly composed of changes in the C–C intermolecular bond length and the Br–Br–C bond angle. The reaction vector has been identified as $0.41 R_{C1-C3}+0.56 R_{C1-C2}$ $-0.22 A_{Br-Br-C3}$. IRC calculations at the UB3LYP level confirm the transition state to connect the reactants of CH₂CH₂+iso-Br–Br–CH₂ and the products of C₃H₆+Br₂.

Relative to the separated reactants, the barrier height is calculated to be 3.2 kcal/mol with the zero-point correction. As pointed out before, an intermolecular complex is formed that has a stabilization energy of 0.6 kcal/mol. With respect to the zero-point level of the complex, the barrier becomes 3.8 kcal/mol. It is evident that the addition reaction between CH_2CH_2 and iso-Br-Br-CH₂ proceeds very easily, due to a

very small barrier on the way to products. Iso-Br–Br–CH₂ is an energetic molecule, and decomposition and isomerization of iso-Br-Br-CH₂ molecules may be in competition with the addition reaction. The CAS $(10,8)/6-31+G^*$ calculations show that the iso-Br-Br-CH2 dissociation to BrCH2+Br and CH₂+Br₂ are endothermic of 6.0 and 43.0 kcal/mol, respectively. Previous calculations⁵² gave a barrier of about 10.0 kcal/mol for isomerization to CH₂Br₂. Therefore, we come to the conclusion that the cyclopropanation reaction is the dominant channel for iso-Br-Br-CH₂ in the presence of ethylene. Results for similar calculations for the CH₂Br radical with olefins have substantially larger barriers to reaction to give the cyclopropanated product. CH₂Br forms a very weak complex with ethylene and this complex has a barrier of 7.6 kcal/mol to form an intermediate Br-CH₂-CH₂-CH₂ which has a barrier of 19.6 kcal/mol to go on to the cyclopropanated product (C₃H₆) plus Br atom. These computational results show that the CH₂Br species has a very difficult route to give a cyclopropanated product while the iso-CH₂Br-Br species readily reacts with olefins to produce a cyclopropanated product (see Fig. 5). These preliminary computational results suggest that the iso-polyhalomethane species is most likely the methylene transfer agent (i.e., carbenoid species) responsible for cyclopropanation reactions via ultraviolet photoexcitation of polyhalomethanes in condensed phase environments in the presence of olefins. Further work is needed to better elucidate the chemical reactivity of the polyalomethane isomer in cyclopropanation reactions of olefins via ultraviolet photolysis of polyhalomethanes in solutions. We are currently using both experimental and theoretical methods to investigate these cyclopropanation reactions for olefins (via photoexcitation of polyhalomethanes in condensed phase environments) and results will be reported in due course.

D. Possible implications for release of reactive halogens in the troposphere and stratosphere

The iso-polyhalomethane species have an intense electronic absorption band in the 350-470 nm region that have much larger absorption coefficients in the ultraviolet-visible region than their parent polyhalomethanes. The isopolyhalomethane absorption transitions are also significantly red-shifted compared to their parent polyhalomethane molecule. These two properties indicate that the isopolyhalomethanes may be able to undergo further photochemical reactions in condensed phase environments in the atmosphere even though the iso-polyhalomethanes are transient species. It is known that ozone's (O_3) ultraviolet absorption spectrum is red-shifted in water and will photodissociate much more rapidly in water than in the gas phase.⁷¹ The fact that the iso-polyhalomethane species readily reforms the parent molecule following visible light photoexcitation^{41,42} in low temperature solids indicates that the X-X bond is broken following photoexcitation of the intense absorption band in the 350-470 nm region with release of a halogen atom. Whether or not these isopolyhalomethane photochemical reactions are important in the atmosphere remains unknown at this time, but the increasing importance of multiphase and/or heterogeneous reactions in better understanding atmospheric chemistry⁷²⁻⁹⁹ suggests that it would be worthwhile to explore the photochemistry of these iso-polyhalomethane species. We note that the lifetimes of these iso-polyhalomethanes would be expected to increase significantly as the temperature decreases and as the phase changes from liquid to solid.

In addition, the very reactive isomer-polyhalomethane species may undergo chemical reactions with olefins (such as alkenes, terpenes, and other volatile organic compounds found in the lower atmosphere)¹⁰⁰⁻¹⁰⁹ and release a halogen molecule (X-X) as a product in cyclopropanation and/or other reactions (see Sec. IV C). Thus, formation of isomerpolyhalomethanes in condensed environments (such as water droplets and aerosol particles) may release reactive halogens into the atmosphere by both photochemical reactions and chemical reactions. Since so little is known about the photochemistry and chemistry of these intriguing isopolyhalomethane species, it is not clear whether they will have any noticeable impact on the chemistry of the atmosphere. However, there are some recent observations that indicate the photochemistry of polyhalomethanes containing iodine and bromine does cause noticeable changes in the troposphere.¹¹⁰ Iodine oxide (IO) was recently detected by long-path differential optical absorption spectroscopy (LP-DOAS) during the period of April 21 to May 30, 1997 in Mace Head, Ireland and the increased concentration of IO observed was linked to an increase in the concentration of CH₂I₂ and CH₂BrI and their photochemical reactions.¹¹⁰ This suggests that it would be worthwhile to investigate whether the photochemistry of polyhalomethanes in condensed phase (i.e., multiphase and/or heterogeneous reactions) environments plays a role in the release of reactive halogens in the atmosphere. We are currently continuing our exploration of the identity, properties, photochemistry, and chemistry of these interesting iso-polyhalomethane species in different solvents (including water) and phases (both liquids and solids) using a variety of experimental and theoretical methods.

ACKNOWLEDGMENTS

This work was supported by grants from the Research Grants Council (RGC) of Hong Kong, the Committee on Research and Conference Grants (CRCG), and the Large Items of Equipment Allocation 1993–94 from the University of Hong Kong.

- ¹Th. Class and K. Ballschmiter, J. Atmos. Chem. 6, 35 (1988).
- ²S. Klick and K. Abrahamsson, J. Geophys. Res., [Oceans] **97**, 12683 (1992).
- ³K. G. Heumann, Anal. Chim. Acta 283, 230 (1993).
- ⁴R. M. Moore, M. Webb, R. Tokarczyk, and R. Wever, J. Geophys. Res., [Oceans] **101**, 20899 (1996).
- ⁵L. Carpenter, East Atlantic Spring Experiment (EASE) 1997 campaign.
- ⁶J. C. Mössigner, D. E. Shallcross, and R. A. Cox, J. Chem. Soc., Faraday Trans. **94**, 1391 (1998).
- ⁷H. E. Simmons and R. D. Smith, J. Am. Chem. Soc. **81**, 4256 (1959).
- ⁸D. C. Blomstrom, K. Herbig, and H. E. Simmons, J. Org. Chem. **30**, 959 (1965).
- ⁹N. J. Pienta and P. J. Kropp, J. Am. Chem. Soc. 100, 655 (1978).
- ¹⁰ P. J. Kropp, N. J. Pienta, J. A. Sawyer, and R. P. Polniaszek, Tetrahedron 37, 3229 (1981).
- ¹¹P. J. Kropp, Acc. Chem. Res. 17, 131 (1984).

- ¹³E. C. Freidrich, S. E. Lunetta, and E. J. Lewis, J. Org. Chem. 54, 2388 (1989).
- ¹⁴S. Durandetti, S. Sibille, and J. Pérchon, J. Org. Chem. 56, 3255 (1991).
- ¹⁵ J. M. Concellón, P. L. Bernad, and J. A. Pérez-Andrés, Tetrahedron Lett. 39, 1409 (1998).
- ¹⁶M. Kawasaki, S. J. Lee, and R. Bersohn, J. Chem. Phys. 63, 809 (1975).
- ¹⁷G. Schmitt and F. J. Comes, J. Photochem. 14, 107 (1980).
- ¹⁸P. M. Kroger, P. C. Demou, and S. J. Riley, J. Chem. Phys. 65, 1823 (1976).
- ¹⁹S. J. Lee and R. Bersohn, J. Phys. Chem. **86**, 728 (1982).
- ²⁰L. J. Butler, E. J. Hintsa, and Y. T. Lee, J. Chem. Phys. 84, 4104 (1986).
- ²¹L. J. Butler, E. J. Hintsa, and Y. T. Lee, J. Chem. Phys. 86, 2051 (1987).
- ²²G. Baum, P. Felder, and J. R. Huber, J. Chem. Phys. 98, 1999 (1993).
- ²³ E. A. J. Wannenmacher, P. Felder, and J. R. Huber, J. Chem. Phys. 95, 986 (1991).
- ²⁴ W. Radloff, P. Farmanara, V. Stert, E. Schreiber, and J. R. Huber, Chem. Phys. Lett. **291**, 173 (1998).
- ²⁵S. R. Cain, R. Hoffman, and R. Grant, J. Phys. Chem. 85, 4046 (1981).
- ²⁶K.-W. Jung, T. S. Ahmadi, and M. A. El-Sayed, Bull. Korean Chem. Soc. **18**, 1274 (1997).
- ²⁷S. L. Baughcum, H. Hafmann, S. R. Leone, and D. Nesbitt, Faraday Discuss. Chem. Soc. 67, 306 (1979).
- ²⁸S. L. Baughcum and S. R. Leone, J. Chem. Phys. 72, 6531 (1980).
- ²⁹J. Zhang and D. G. Imre, J. Chem. Phys. **89**, 309 (1988).
- ³⁰ J. Zhang, E. J. Heller, D. Huber, D. G. Imre, and D. Tannor, J. Chem. Phys. 89, 3602 (1988).
- ³¹W. M. Kwok and D. L. Phillips, Chem. Phys. Lett. 235, 260 (1995).
- ³²W. M. Kwok and D. L. Phillips, J. Chem. Phys. **104**, 2529 (1996).
- ³³W. M. Kwok and D. L. Phillips, J. Chem. Phys. **104**, 9816 (1996).
- ³⁴S. Q. Man, W. M. Kwok, and D. L. Phillips, J. Phys. Chem. **99**, 15705 (1995).
- ³⁵S. Q. Man, W. M. Kwok, A. E. Johnson, and D. L. Phillips, J. Chem. Phys. **105**, 5842 (1996).
- ³⁶F. Duschek, M. Schmitt, P. Vogt, A. Materny, and W. Kiefer, J. Raman Spectrosc. 28, 445 (1997).
- ³⁷M. Braun, A. Materny, M. Schmitt, W. Kiefer, and V. Engel, Chem. Phys. Lett. **284**, 39 (1998).
- ³⁸X. Zheng and D. L. Phillips, Chem. Phys. Lett. **313**, 467 (1999).
- ³⁹J. P. Simons and P. E. R. Tatham, J. Chem. Soc. A **1966**, 854.
- ⁴⁰ H. Mohan, K. N. Rao, and R. M. Iyer, Radiat. Phys. Chem. 23, 505 (1984).
- ⁴¹G. Maier and H. P. Reisenauer, Angew. Chem. Int. Ed. Engl. 25, 819 (1986).
- ⁴²G. Maier, H. P. Reisenauer, J. Lu, L. J. Scaad, and B. A. Hess, Jr., J. Am. Chem. Soc. **112**, 5117 (1990).
- ⁴³L. Andrews, F. T. Prochaska, and B. S. Ault, J. Am. Chem. Soc. **101**, 9 (1979).
- ⁴⁴H. Mohan and R. M. Iyer, Radiat. Eff. **39**, 97 (1978).
- ⁴⁵ H. Mohan and P. N. Moorthy, J. Chem. Soc., Perkin Trans. 2, 277 (1990).
- ⁴⁶B. J. Schwartz, J. C. King, J. Z. Zhang, and C. B. Harris, Chem. Phys. Lett. **203**, 503 (1993).
- ⁴⁷ K. Saitow, Y. Naitoh, K. Tominaga, and Y. Yoshihara, Chem. Phys. Lett. 262, 621 (1996).
- ⁴⁸ A. N. Tarnovsky, J.-L. Alvarez, A. P. Yartsev, V. Sündstrom, and E. Åkesson, Chem. Phys. Lett. **312**, 121 (1999).
- ⁴⁹X. Zheng and D. L. Phillips, J. Phys. Chem. A **104**, 6880 (2000).
- ⁵⁰X. Zheng and D. L. Phillips, Chem. Phys. Lett. **324**, 175 (2000).
- ⁵¹X. Zheng and D. L. Phillips, J. Chem. Phys. **113**, 3194 (2000).
- ⁵²X. Zheng, W. M. Kwok, and D. L. Phillips, J. Phys. Chem. A **104** (2000, in press).
- ⁵³ D. Pan, L. C. T. Shoute, and D. L. Phillips, Chem. Phys. Lett. **303**, 629 (1999).
- ⁵⁴D. Pan and D. L. Phillips, J. Phys. Chem. A **103**, 4737 (1999).
- ⁵⁵ D. Pan, L. C. T. Shoute, and D. L. Phillips, J. Phys. Chem. A **103**, 6851 (1999).
- ⁵⁶D. Pan, L. C. T. Shoute, and D. L. Phillips, Chem. Phys. Lett. **316**, 395 (2000).
- ⁵⁷ M. J. Frisch, G. W. Trucks, H. B. Schlegel *et al.*, GAUSSIAN 98, Revision A.7 (Gaussian, Inc., Pittsburgh, Pennsylvania, 1998).
- ⁵⁸A. D. Becke, J. Chem. Phys. **98**, 1372 (1993).
- ⁵⁹R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett. 256, 454 (1996).

- ⁶⁰T. H. Dunning, Jr., J. Chem. Phys. **90**, 1007 (1989).
- ⁶¹A. K. Wilson, D. E. Woon, K. A. Peterson, and T. H. Dunning, Jr., J. Chem. Phys. **110**, 7667 (2000). Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 1.0, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, U.S.A. and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multi-program laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC06-76RLO 1830. Contact David Feller or Karen Schuchardt for further information.
- ⁶² N. Godbout, D. R. Salahub, J. Andzelm, and E. Wimmer, Can. J. Chem. **70**, 560 (1992). Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Environmental and Molecular Sciences Laboratory which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, U.S.A., and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multi-program laboratory operated by Battele Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC06-76RLO 1830. Contact David Feller or Karen Schuchardt for more information.
- ⁶³A. J. Sadlej, Theor. Chim. Acta **81**, 339 (1992).
- ⁶⁴ F. Bernardi, A. Bottini, J. J. W. McDougall, M. A. Robb, and H. B. Schlegel, Faraday Symp. Chem. Soc. **19**, 137 (1984).
- ⁶⁵ M. J. Frisch, I. N. Ragazos, M. A. Robb, and H. B. Schlegel, Chem. Phys. Lett. **189**, 524 (1992).
- ⁶⁶C. Gonzalez and H. B. Schlegel, J. Chem. Phys. **90**, 2154 (1989).
- ⁶⁷N. Yamamoto, T. Vreven, M. A. Robb, M. J. Frisch, and H. B. Schlegel, Chem. Phys. Lett. **250**, 373 (1996).
- ⁶⁸ See EPAPS document No. E-JCPSA6-113-001048 for supporting information on density functional theory calculation results. This document may be retrieved via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for further information.
- ⁶⁹X. Zheng and D. L. Phillips, Chem. Phys. Lett. **316**, 524 (2000).
- ⁷⁰G. P. Brown and J. P. Simons, Trans. Faraday Soc. 65, 3245 (1969).
- ⁷¹ M. S. Kharasch, E. V. Jensen, and W. H. Urry, J. Am. Chem. Soc. 69, 1100 (1947).
- ⁷²H. Taube, Trans. Faraday Soc. **53**, 656 (1957).
- ⁷³ M. J. Molina, T. L. Tso, L. T. Molina, and F. C. Y. Wang, Science 238, 1253 (1987).
- ⁷⁴ M. A. Tolbert, M. J. Rossi, and D. M. Golden, Science **240**, 1018 (1988).
- ⁷⁵D. Hanson and K. Mauersberger, Geophys. Res. Lett. 15, 855 (1988).
- ⁷⁶D. Hofmann, Nature (London) **337**, 447 (1989).
- ⁷⁷ J. Lelieveld and P. J. Crutzen, Nature (London) **343**, 227 (1990).
- ⁷⁸M. J. Molina, Atmos. Environ. A 25, 2535 (1991).
- ⁷⁹D. R. Hanson and A. R. Ravishankara, J. Phys. Chem. **96**, 2682 (1992).
- ⁸⁰G. Brasseur and C. Granier, Science 257, 1239 (1992).
- ⁸¹M. J. Prather, J. Geophys. Res. **97**, 10187 (1992).
- ⁸²F. J. Dentener and P. J. Crutzen, J. Geophys. Res. 98, 7149 (1993).
- ⁸³ D. R. Hanson, A. R. Ravishankara, and S. Solomon, J. Geophys. Res. 99, 3615 (1994).
- ⁸⁴T. Koop and K. S. Carslaw, Science 272, 1638 (1996).
- ⁸⁵M. A. Tolbert, Science 272, 1597 (1996).
- ⁸⁶J. Reichardt, A. Ansmann, M. Serwazi, C. Weitkamp, and W. Michaelis, Geophys. Res. Lett. 23, 1929 (1996).
- ⁸⁷ R. Vogt, P. J. Crutzen, and R. Sander, Nature (London) 383, 327 (1996).
- ⁸⁸D. Davis, J. Crawford, S. Liu *et al.*, J. Geophys. Res., [Oceans] **101**, 2135 (1996).
- ⁸⁹J. P. D. Abbatt, Geophys. Res. Lett. 24, 1479 (1997).
- ⁹⁰M. O. Andrqe and P. J. Crutzen, Science **221**, 744 (1997).
- ⁹¹B. J. Finlayson-Pitts and J. N. Pitts, Jr., Science 276, 1045 (1997).
- 92 A. R. Ravishankara, Science 276, 1051 (1997).
- ⁹³L. J. Liang and D. J. Jacob, J. Geophys. Res., [Oceans] **102**, 5993 (1997).
 ⁹⁴C. J. Walcek, H.-H. Yuan, and W. R. Stockwell, Atmos. Environ. **31**,
- 1221 (1997).
- ⁹⁵K. W. Oum, M. J. Lakin, D. O. DeHaan *et al.*, Science **279**, 74 (1998).
- ⁹⁶N. A. Clegg and R. Toumi, J. Geophys. Res., [Oceans] 103, 31095 (1998).
- ⁹⁷L. J. Carpenter, W. T. Sturges, S. A. Penkett *et al.*, J. Geophys. Res., [Oceans] **104**, 1679 (1999).
- ⁹⁸B. Ramacher, J. Rudolph, and R. Koppmann, J. Geophys. Res., [Oceans] 104, 3633 (1999).

Downloaded 03 Nov 2006 to 147.8.21.97. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

- ⁹⁹ R. Vogt, R. Sander, R. Von Glasow, and P. J. Crutzen, J. Atmos. Chem. 32, 375 (1999).
- ¹⁰⁰ Chemistry of Atmospheres, 3rd ed., edited by R. P. Wayne (Oxford University Press, Oxford, 2000).
- ¹⁰¹ H. Niki, P. D. Maker, C. M. Savage, and L. P. Breitenbach, Environ. Sci. Technol. **17**, 312A (1983).
- ¹⁰²S. Hatakeyama, K. Izumi, T. Fukuyama, and H. Akimoto, J. Geophys. Res., [Oceans] 94, 13013 (1989).
- ¹⁰³ P. Neeb, O. Horie, and G. K. Moortgat, Chem. Phys. Lett. **246**, 150 (1995).
- ¹⁰⁴ A. A. Chew and R. Atkinson, J. Geophys. Res., [Oceans] **101**, 28649 (1996).
- ¹⁰⁵N. J. Blake, D. R. Blake, T.-Y. Chen *et al.*, J. Geophys. Res., [Oceans] **102**, 28315 (1997).
- ¹⁰⁶D. Helmig, J. Greenberg, A. Guenther *et al.*, J. Geophys. Res., [Oceans] 103, 22397 (1998).
- ¹⁰⁷N. M. Donohue, J. H. Kroll, J. G. Anderson, and K. L. Demerjian, Geophys. Res. Lett. 25, 59 (1998).
- ¹⁰⁸T. Pfeiffer, O. Forberich, and F. J. Comes, Chem. Phys. Lett. **298**, 351 (1998).
- ¹⁰⁹S. Houweling, F. Dentener, and J. Lelieveld, J. Geophys. Res., [Oceans] 103, 10673 (1998).
- ¹¹⁰ B. Alicke, K. Hebestreit, J. Stutz, and U. Platt, Nature (London) **397**, 572 (1999).