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Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-5700

Kwong-Yu Chand)

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong

~Received 27 January 1999; accepted 5 April 1999!

We report computer simulations and a theoretical study of the thermodynamics and structure of a
dipolar Yukawa system. A comparison between the analytical mean spherical approximation~MSA!
solution, perturbation theory and Monte Carlo simulation data of pressure, internal energy and
dielectric constant is given. In the perturbation theory, the MSA solution of hard core Yukawa fluid
is used as a reference system. It was found that the MSA solution is reasonable only at lower dipole
moments, while the perturbation theory gives good results at low and high values of dipole moment.
Liquid–vapor coexistence data of dipolar Yukawa fluid are also obtained by Monte Carlo simulation
and by both MSA and perturbation theory. It was found that at high dipole moments the liquid–
vapor equilibrium disappears while chain-like structures appear in the low density fluid phase. The
appearance of chain-like structures of dipolar Yukawa fluid is discussed in comparison with the
Stockmayer fluid. ©1999 American Institute of Physics.@S0021-9606~99!50225-0#
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I. INTRODUCTION

The understanding of the structures and phase transit
of simple polar systems has changed dramatically in rec
years. The simplest available description of a polar liquid
the molecular level is the well known dipolar hard sphe
~DHS! fluid model. In connection with this fluid, one of th
most surprising recent observations is the lack of a liqu
vapor phase transition.1–3 This lack of the liquid–vapor equi
librium is explained by the formation of chain-like structur
in the low density DHS fluid phase. It seems that a minim
amount of dispersion interaction is necessary to stabilize
liquid–vapor equilibrium; although, in the case of dipol
hard spherocylinders, a liquid–vapor coexistence island
found by the Gibbs ensemble simulation method4 in a system
without such a dispersion force. From the point of view
the liquid–vapor phase transition of a real substance,
Stockmayer~STM! model is more reasonable5,6 than the
DHS, but it does not have an analytical solution in the fram
work of any known theory. Recently, both the DHS a
STM fluids have been used intensively as a reference sys
to the calculation of isotropic–nematic and isotropic
ferroelectric phase transitions of dipolar nonspherical p
ticles. For the calculation of the isotropic–nematic pha
transition of dipolar hard spherocylinders, a generalization
the perturbation theory for dipolar hard spheres, proposed
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Larsenet al.,7 has been given by Williamson and del Rio8

Density functional theoretical applications were proposed
Groh and Dietrich9,10 to study the phase transitions of sphe
cal and nonspherical dipolar particles. Also, phase transiti
in dipolar fluids have been investigated by integral equati
using the reference hypernetted chain approximation.11 With
the lack of a liquid–vapor phase transition, the DHS mod
as a reference system, cannot predict the complex ph
equilibrium curves. These facts justify that a new, more
alistic analytically solvable dipolar fluid model may be
interest in the statistical mechanics of phase transitions
polar fluids.

In our previous paper,12 in the framework of the mean
spherical approximation~MSA!, an analytical solution has
been given for the hard core dipolar Yukawa~DY! fluid. It
has been shown that the thermodynamical properties of
fluid can be calculated easily from the corresponding res
of hard core Yukawa13 and DHS14 fluids. We note, that the
DY potential proved to be successful in the perturbat
theory study of phase separation of polar component fl
mixtures in interfaces.15 In the present paper, a compariso
of thermodynamic and dielectric data for DY fluid is give
between Monte Carlo~MC! and MSA calculation. Using the
MSA pair correlation functions of the hard core Yukaw
fluid, a perturbation theory description for the DY fluid
proposed. The liquid–vapor phase equilibrium of this syst
and the formation of chain-like structures is also studied
detail.

II. THE MODEL POTENTIAL

The DY potential in Cartesian form is defined as

u~r12,n1 ,n2!5uY~r 12!1uDD~r12,n1 ,n2!, ~1!

of

of

il:
© 1999 American Institute of Physics
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where

uY~r 12!5H `, r 12,s

2
«Ys

r 12
exp@2l~r 122s!#, r 12>s

~2!

is the Yukawa potential and

uDD~r12,n1 ,n2!52
m2

r 12
3 D~n12,n1 ,n2! ~3!

is the dipole–dipole interaction potential, where

D~n12,n1 ,n2!53~n1•n12!~n2•n12!2~n1•n2!, ~4!

gives the rotational invariant angular dependence of
dipole–dipole interaction. Here«Y and l specify the depth
and range of the dispersion interaction,s is the diameter of
hard core,ni5mi /m andn125r12/r 12 are unit vectors along
mi and r12, and m and r 12 are the magnitudes of dipol
moment and interparticle distance, respectively. Conside
the thermodynamical properties, the Yukawa fluid mim
the Lennard-Jones~LJ! fluid whenl51.8/s and, therefore,
the DY fluid is similar to the STM fluid in this case. In thi
work, all results are obtained with this value ofl.

III. THERMODYNAMIC DESCRIPTION OF DY FLUID

A. Mean spherical approximation

In our previous paper12 it has been shown that in th
MSA solution of the DY fluid model the radial distributio
function and the angular correlation functions can be dec
pled. Therefore, the MSA free energy of the dipolar Yuka
fluid (ADY

MSA) can be expressed as

ADY
MSA5AY

MSA1ADD
MSA, ~5!

whereAY
MSA is the free energy of the hard core Yukawa flu

andADD
MSA is the excess free energy of the dipolar hard sph

fluid ~of course, both in the framework of MSA!. In the
following, we assume thatAY

MSA contains the ideal gas an
the Carnahan–Starling hard sphere contributions. The
lytic solution of MSA for the hard core Yukawa fluid wa
obtained by Waisman.13 To avoid repetition, the prediction
of its thermodynamic properties are not discussed here.
free energy expression for the dipole–dipole interaction
known from Wertheim’s14 analytical solution as

ADD
MSA

NkT
52

3

h
I ~y!, ~6!

where h5prs3/6 is the packing fraction andy
54prm2/(9kT) is the dipole-strength function. In bot
quantities,r5N/V means the number density, whereN is
the number of particles andV is the volume of the system. In
the definition ofy, T and k denote the temperature and th
Boltzmann constant, respectively. The function,I (y) is de-
fined as

I ~y!5
8

3
j2F ~11j!2

~122j!4 1
~22j!2

8~11j!4G , ~7!

wherej is the solution of the following equation:
Downloaded 02 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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F ~114j!2

~122j!42
~122j!2

~11j!4 G53y. ~8!

Of course, via the dipole-strength function, the dipolar p
of the free energy depends on the temperature, density,
dipole moment. The corresponding equations for the pr
sure and internal energy can be predicted from the f
energy.12,16 In the next paragraph we give a perturbati
theory approximation for the free energy of the DY fluid.
is worthwhile to extract the MSA results from the perturb
tion terms; therefore, we must know the power expansion
the ADD

MSA free energy term in terms ofy. Using the power
series expansion of Eqs.~7! and ~8! on the basis of Eq.~6!
we obtain that

ADD
MSA

NkT
.2

3

h S 1

16
y22

5

256
y31...D . ~9!

B. Perturbation theoretical approximation

One of the most useful thermodynamical perturbat
theories of polar fluids is based on the ener
expansion7,16–19of the free energy that is an extension of t
theory of Barker and Henderson.20,21 In this perturbation
theory according to Eqs.~1!–~3! the Yukawa term can be
considered as the reference potential and the dipole–di
interaction is the perturbation potential. This division giv
for the free energy of DY fluid that

ADY5AY
MSA1A11A21A31..., ~10!

where A1 is the first order perturbation term, and so o
These terms can be calculated with the help of the distri
tion functions of the reference system. According to the sy
metry of the dipole–dipole interaction potential the first o
der term vanishes. After some manipulation of the seco
order term we obtain:

A2

NkT
52

9

16

y2

h
I 6 ~11!

and

I 65E
0

` gY~r 12!

r 12
4 dr12, ~12!

wheregY(r 12) is the pair correlation function of the Yukaw
reference system. In our case the third order term is

A3

NkT
5

9

32

y3

h
I ddd ~13!

and

I ddd5E
0

`E
0

`E
ur 122r 13u

r 121r 13 ~11cosa1 cosa2 cosa3!

r 12
2 r 13

2 r 23
2

3gY~r 12,r 13,r 23!dr12dr13dr23. ~14!

wheregY(r 12,r 13,r 23) is the three-particle distribution func
tion of the reference system anda i is the interior angle at
particle i in the triangle formed by particles 1, 2, and 3. Th
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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339J. Chem. Phys., Vol. 111, No. 1, 1 July 1999 Dipolar Yukawa fluid
series expansion of Eq.~10! converges poorly. Following
Larsen et al.7 and Rushbrookeet al.,16 we use the corre-
sponding Pade´ approximation:

ADY5AY
MSA1

A2

12A3 /A2
. ~15!

In the calculation of thermodynamic properties, we refer
this perturbation theory equation as PT1. For the case
charged hard sphere and dipolar hard sphere systems H
ersonet al.22 have showed that the convergence of the p
turbation series expansion is better if we use the DY M
expression as the starting term, and remove the corresp
ing MSA terms from the perturbation approximation. In th
case in third order formally we can write that

ADY5ADY
MSA1Ã21Ã3 . ~16!

The Ã2 and Ã3 terms can be calculated by the help of Eq
~9!, ~11!, and~13!:

Ã2

NkT
52

9

16

y2

h S I 62
1

3D ~17!

and

Ã3

NkT
5

9

32

y3

h S I ddd2
15

72D . ~18!

By the help of the Pade´ approximation7,16 a further improve-
ment can be reached in the convergence of the series:

ADY5ADY
MSA1

Ã2

12Ã3 /Ã2

. ~19!

Hereinafter, we refer to this perturbation theoretical equa
as PT2.

IV. DIELECTRIC CONSTANT OF DY FLUID

A. Mean spherical approximation

It was shown12 that the dielectric constant of DY fluid i
given by the formula due to Wertheim:14

«DY
MSA5

~114j!2~11j!4

~122j!6 , ~20!

wherej can be calculated from Eq.~8!. Of course the dielec-
tric constant again depends on ther, T, andm via the dipole-
strength function. Similar to the free energy, the power se
expansion of« with respect toy reads as

«DY
MSA.113y13y21

3

16
y31... . ~21!

B. Perturbation theoretical approximation

In statistical thermodynamics the static dielectric co
stant is given by the Kirkwood equation19

~«21!~2«11!

9«
5y~11G1!, ~22!

where theG1 angular correlation parameter can be given
the pair correlation function of the system as
Downloaded 02 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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G15rE ^~n1•n2!g~r12,n1 ,n2!&v1 ,v2
dr12. ~23!

The designation̂ ...&v1 ,v2
denotes unweighted averagin

over the orientations of dipoles 1 and 2. Similar to the dip
lar hard sphere23 and Stockmayer24 fluids pair correlation
function gives only a second order perturbation term con
bution to the correlation parameter

G1511y2
9

16p2 I ddD , ~24!

where

I ddD5
16p2

2 E
0

`E
0

`E
ur 122r 13u

r 121r 13 ~3 cos2 a321!

r 13
2 r 23

2

3r 12gY~r 12,r 13,r 23!dr12dr13dr23. ~25!

In the case of dipolar hard sphere23 and Stockmayer24

systems, for the perturbation theoretical calculation of«, the
following power expansion of the Kirkwood equation prove
to be more successful than the original Eq.~22!:

«DY5113y13y213y3S 9I ddD

16p221D . ~26!

One reason is that perturbation theory is exact in the fi
three terms in the density expansion of«, but is only exact
for the first term in the density expansion of the angu
correlation parameter. The dielectric constant calculation
~26! is referred to as PT1. Removing the corresponding M
terms from the perturbation expansion of« we obtain that:

«DY5«DY
MSA13y3S 9I ddD

16p22
17

16D . ~27!

Hereinafter, we refer to this perturbation theoretical equat
as PT2.

V. COMPUTATIONAL DETAILS

A. Numerical calculations

One of the most important features of the DY fluid
that an analytic solution is available in MSA. The solution
the MSA is analytic but implicit. In our previous paper12 it
has been shown that the free energy of DY fluid is the s
that of the DHS and hard core Yukawa fluids in MSA. Th
numerical calculation of pressure and internal energy w
carried out on the basis of the original works.13,14,16To the
calculation of the perturbation theoretical integra
(I 6 ,I ddd ,I ddD) the knowledge of the MSA pair correlatio
function of the Yukawa fluid is necessary. It was calculat
numerically on the basis of the Ornstein–Zernike equati
using the MSA direct correlation function and its analytica
given Fourier transform.13,25 The details of this calculation
are given in a previous paper of Hendersonet al.26 The in-
tegral I 6 was calculated by the Simpson method. In conn
tion with integralsI ddd and I ddD , we note that higher-body
distribution functions are unknown even for hard sphere s
tems. However, they can be approximated using the su
position approximation

gY~r 12,r 13,r 23!.gY~r 12!gY~r 13!gY~r 23!. ~28!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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The integralI ddd was calculated by using the Simpson int
grand method three times repeatedly. The integrand ofI ddD

is long range, therefore it is difficult to obtain its value
when the integrations are performed in a straightforw
manner and no cutoff is used. In this work the values ofI ddD

were calculated on the basis of the Fourier-transform con
lution theorem proposed by Goldman24 and Taniet al.23 Of
course, via the pair distribution functions all integrals depe
on the density and temperature of the system. At a gi
temperature the liquid–vapor coexistence can be obtaine
finding the intersection of the chemical potential versus pr
sure curves. The reduced chemical potential is given as

m

kT
5

A

NkT
1z, ~29!

where z5pV/(NkT) is the compressibility factor andp is
the pressure, respectively. We note that at higher temp
tures when in the two-phase region the singularity of
hard core Yukawa MSA solution is disappearing,27 the Max-
well ‘‘equal area’’ construction is also appropriate to obta
the equilibrium pressure and densities.

B. Details of Monte Carlo simulations

We present the simulation results of both canonical N
and NpT ensembles using the usual Boltzmann sampling
periodic boundary conditions in a cubic box. A spheric
cutoff of half the cell length was applied, and long ran
corrections~LRC! were taken into account.28 For the disper-
sion part of the potential, the usual Yukawa-tail LRC w
used while for the dipole–dipole interaction a spherical
action field LRC and a conducting boundary condition we
applied. In both ensembles 256 particles were used.
simulations were started from an fcc lattice with random
oriented dipoles. After 40 000 equilibration cycles, 200 00
400 000 production cycles were used. Statistical errors w
calculated from the standard deviations of the subavera
containing 10 000 cycles. The liquid–vapor equilibriu
simulations were carried out using our extended NpT p
test particle method.29,30 The essential idea of the method
to choose a gas and a liquid point on the~T,p! plane which
are close enough to the vapor pressure curve and also to
other, calculate the chemical potential surfacesm5m(T,p)
in both phases in some neighborhood of these points,
search for the intersection of these surfaces, where the
chemical potentials are equal. The projection of this inters
tion to the~T,p! plane gives a section of the vapor pressu
curve, since the condition for intersection is the same as
the liquid–vapor equilibrium. The construction of the chem
cal potential surfaces can be carried out by using a Ta
expansion. The coefficients of the series expansion can
calculated on the basis of the Widom’s test particle meth
and from fluctuation formulas. In our simulations, 256 re
and 256 test particles were used. The length of the sim
tions was two to three times longer than the bulk phase si
lations.
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VI. RESULTS AND DISCUSSION

The theoretical pressure isotherms~MSA and perturba-
tion theory! at two different reduced dipole moments a
compared to the corresponding MC simulation data in Fi
1 and 2. At the lower temperature, due to the two-ph
region, discontinuities can be found in both curves.
m2/(kTs3)51 the agreement between the MSA and sim
lation results is quite good at both temperatures. Howe
both perturbation approximations give slightly better resu
than the MSA. Considering the higher dipole moment~Fig.
2! the perturbation theory results are much more reliable t
the corresponding MSA values. The fact that there is
large difference between the two perturbation theory res
shows that the higher order terms in Eq.~9! do not make a
substantial contribution to the free energy in MSA.

The density dependence of internal energy at differ
constant temperatures are displayed in Figs. 3 and 4. At
lower dipole moment the agreement between the MSA

FIG. 1. The reduced pressure of the dipolar Yukawa fluid at a redu
dipole momentm2/(kTs3)51 calculated from the different theories as
function of the reduced density in comparison with simulation data.
kT/eY51 the PT1 and PT2 curves coincide on the scale of the figure.

FIG. 2. The reduced pressure of the dipolar Yukawa fluid at a redu
dipole momentm2/(kTs3)52 calculated from the different theories as
function of the reduced density in comparison with simulation data.
kT/eY51 the PT1 and PT2 curves coincide on the scale of the figure.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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simulation results is reasonable, except in the vicinity of
two phase region. At both dipole moments, the perturba
theory results seem to be accurate except in the vicinity
the two phase region. The PT1 and PT2 approximations g
practically the same results for the internal energy. It is
surprising that for the internal energy, the temperature
rivative of the free energy, we get the same results in b
approximations, because theI 6 and I ddd integrals depend
weakly on temperature.~In the framework of the MSA the
pair correlation function of Yukawa fluid is nearly indepe
dent of the temperature.!

The results of the theoretical calculations for the diel
tric constant can be seen in Figs. 5 and 6. Atm2/(kTs3)
51, the agreement between MSA and simulation result
quite good, especially at lower densities. Figure 5 shows
PT2 gives the best prediction at that dipole moment. At
higher dipole moment, both MSA and PT2 underestimate
dielectric constant, but PT1 seems to be very good. In Fig
and 6 the MC simulation data are obtained at two differ

FIG. 3. The reduced internal energy of the dipolar Yukawa fluid at a
duced dipole momentm2/(kTs3)51 calculated from the different theorie
as a function of the reduced density in comparison with simulation data.
PT1 and PT2 curves coincide on the scale of the figure.

FIG. 4. The reduced internal energy of the dipolar Yukawa fluid at a
duced dipole momentm2/(kTs3)52 calculated from the different theorie
as a function of the reduced density in comparison with simulation data.
PT1 and PT2 curves coincide on the scale of the figure.
Downloaded 02 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
e
n
f
e
t

e-
th

-

is
at
e
e
5
t

temperatures. The MSA dielectric constant of DY fluid is t
same as for the DHS and depends only ony; therefore, once
m2/(kTs3) is fixed,« does not depend on temperature. Bo
perturbation theory approximations give a temperature
pendence that are not visible in Figs. 5 and 6. We note tha
the PT2, the dielectric constant of DY fluid is nearly th
same as the corresponding value of the STM fluid, beca
the values ofI ddD integrals are very similar.~For example at
kT/«Y5kT/«LJ51 andrsY

35rsLJ
3 50.8 I ddD522.15 for the

DY fluid and I ddD522.27 for the STM fluid.24!
The MSA and perturbation theory liquid–vapor coexis

ence curves of DY fluid in comparison with simulation r
sults are displayed in Fig. 7 at different reduced dipole m
ments. The agreement is reasonable only at low dip
moments. At higher dipole moments, the MSA undere
mates the critical temperature while the perturbation the
overestimates the critical temperature. With increasing
pole moment we can see, that the estimated critical dens
~from the simulation data! are lower. At a large dipole mo
ment, (m2/(«Ys3)516), we were not able to detect an

-

e

-

e

FIG. 5. The dielectric constant of the dipolar Yukawa fluid at a reduc
dipole momentm2/(kTs3)51 calculated from the different theories as
function of the reduced density in comparison with simulation data.

FIG. 6. The dielectric constant of the dipolar Yukawa fluid at a reduc
dipole momentm2/(kTs3)52 calculated from the different theories as
function of the reduced density in comparison with simulation data.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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liquid–vapor coexistence by the NpT plus test parti
method. We can postulate that the liquid–vapor coexiste
starts to disappear near this dipole moment.

The lack of the liquid–vapor equilibrium may be relate
to the formation of chains in the low-density gas phase
was shown that in the presence of sufficient dispers
forces, for example, the LJ in STM fluid, no chain-like stru
tures were found. Van Leeuwen and Smit2 have investigated
the transition from a fluid with liquid–vapor coexistence
one without by modulating the range of the attractive par
the LJ force. They adjust a parameterl in the modified LJ
equation,

u~r 12!54eH S s

r 12
D 12

2lS s

r 12
D 6J , ~30!

which in effect is changing the strength of the LJ potential
can be shown that Eq.~30! is equivalent to the ordinary LJ
equation withs85sl21/6 and e85el2. Here, we would
like to investigate the change of the fluid character fro
absence of chains to the presence of chains by slowly
creasing the dipole moment relative to the dispersion fo
parametereY . At low density, one can fixT and eY and
increasem to observe the appearance of chain-like structu
However, as the dipole moment increases, the critical t
perature also increases, as shown in Figs. 7 and 8. Witho
change in the value ofkT/eY , an increase in the reduce
dipole moment would result in a temperature much less t
the critical temperature or perhaps even less than the t
point temperature. Thus, at increased reducedm we must

FIG. 7. Liquid–vapor coexistence curves for dipolar Yukawa fluids at d
ferent dipole moments calculated from MSA and perturbation theory
comparison with simulation data. The values of reduced dipole momen
denoted by the numbers at the theoretical curves.
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examine greater values of thekT/eY ; we adjust botheY and
m so thatT/Tcrit , the reduced temperature, remains relativ
constant.

A series of simulations were performed atrs350.05
following this scheme, with the path shown in Fig. 8.
points A–C we were not able to detect any chain-like str
ture. The first chain-formation was found in the state po
denoted by D. The corresponding snapshot of DY fluid
displayed in Fig. 9. The appearance of chains coincides w
our NpT plus test particle simulation result of the absence
phase separation atm2/(eYs3)516. Upon further decreas
of the relative strength of the dispersion interaction~in other
words, increase both the dipole moment and temperatu!,
the chain-like structure is more conspicuous. Figure
shows the appearance of longer chains in the simulation b
Continuing the path of Fig. 8, we will reach the DHS limi
We would like to confirm the appearance of chain-like stru
tures in DHS. However, atm2/(eYs3)5`, there is an arbi-
trary choice of dipole moment sinceeY is zero. In the work
of Van Leeuwen and Smit, they investigated the disappe
ance of the vapor–liquid coexistence by decreasing the
persion force, rather than increasing the dipole moment a

-
n
re

FIG. 8. The reduced critical temperature of dipolar Yukawa fluid as a fu
tion of the reduced dipole moment. For the meaning of the open circles
the text.

FIG. 9. Snapshot of the dipolar Yukawa fluid (kT/eY53.33,rs350.05 and
m2/(eYs3)516.7!. ~Point D of Fig. 8.!
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our study here. They did not find any liquid–vapor pha
separation forl,0.3, and concluded that the dipolar ha
sphere and soft core fluids did not have liquid–vapor co
istence. In their study, they were not able to locate any ph
separation for the values ofkTs3/m2<0.15. As explained
above, the potential of Eq.~30! is the Stockmayer potentia
For l,0.3, it corresponds tomSTM

2 /(kTsLJ
3 )>12 in the or-

dinary STM fluid according to the above mentioned conv
sion of Eq.~30!. To choose the value of dipole moment
DHS in the search for chains, we refer to this limit
m2/(kTs3)512, which corresponds to a highly polar DH
fluid. The simulation snapshot, which corresponds to t
state is displayed in Fig. 11. The features of these chains
very similar to the partially flexible polymers and those o
tained by Levesque and Weis31 for a little stronger dipolar
hard spheres. The values ofm2/(kTs3) in state points D and
E are respectively, 5 and 7. This means that the chain
mation in a DY fluid started at higher temperatures than
the corresponding STM fluid. This difference is probab
caused by the hard core of the Yukawa potential. Recen
Tavareset al.32 and Osipovet al.33 reported density func-
tional theory results for the critical locus of the STM flui
They found that the critical density decreases with increas
dipolar strength. The relation of liquid–vapor coexisten

FIG. 10. Snapshot of the dipolar Yukawa fluid (kT/eY55, rs350.05 and
m2/(eYs3)535!. ~Point E of Fig. 8.!

FIG. 11. Snapshot of the dipolar Yukawa fluid (kT/eY5`, rs350.05,
m2/(eYs3)5` andm2/(kTs3)512!. ~DHS fluid.!
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and chain-like structures were also discussed. It should
noted that our observations here are in good qualita
agreement with their results.

VII. SUMMARY AND CONCLUSIONS

For the DY fluid, pressure, internal energy and dielect
constant as a function of density has been calculated at
ferent temperatures and dipole moments by MSA, pertur
tion theory and MC simulation. At lower dipole moment
MSA results are in reasonable agreement with the co
sponding MC simulation data. At higher dipole moments t
perturbation theory gives unambigously better predicti
For the perturbation theory calculation, the hard co
Yukawa MSA pair correlation function was used. Knowin
the imperfection of this solution, better results might be o
tained by using the exponential and linearized exponen
modification of MSA26 pair correlation functions, but the
available analytical expressions for the thermodynamic pr
erties will be lost. The weakness of the MSA approximati
mainly comes from the DHS MSA solution. Therefore, t
combination of different routes of this part could improve t
approximation as it was done in the case of STM fluid.34 It
has been found that in the calculation of thermodynam
properties there is no significant difference between the
proposed perturbation theory approximations, although P
gives better prediction of the dielectric constant. Liquid
vapor equilibrium simulations and both MSA and perturb
tion theory calculations have also been performed. T
agreement between the simulation and theoretical data is
sonable only at low dipole moments. The disappearance
liquid–vapor coexistence and appearance of chain-like st
ture in the low density fluid phase are also studied. It h
been found that chain formation started at lower redu
dipole moment, (m2/(kTs3)), than in the Stockmayer fluid
Even so, the value of this reduced dipole moment is s
large. On the basis of its properties, the dipolar Yuka
model and its analytical MSA solution may be a valuab
tool in the further research of structure and thermodynam
of dipolar fluids.
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