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We report computer simulations and a theoretical study of the thermodynamics and structure of a
dipolar Yukawa system. A comparison between the analytical mean spherical approxi(ivegian
solution, perturbation theory and Monte Carlo simulation data of pressure, internal energy and
dielectric constant is given. In the perturbation theory, the MSA solution of hard core Yukawa fluid
is used as a reference system. It was found that the MSA solution is reasonable only at lower dipole
moments, while the perturbation theory gives good results at low and high values of dipole moment.
Liquid—vapor coexistence data of dipolar Yukawa fluid are also obtained by Monte Carlo simulation
and by both MSA and perturbation theory. It was found that at high dipole moments the liquid—
vapor equilibrium disappears while chain-like structures appear in the low density fluid phase. The
appearance of chain-like structures of dipolar Yukawa fluid is discussed in comparison with the
Stockmayer fluid. ©1999 American Institute of Physidss0021-96069)50225-(

I. INTRODUCTION Larsenet al,” has been given by Williamson and del Rio.

The understanding of the structures and phase trémsitio%ensity functional theoretical applications were proposed by
n

of simple polar systems has changed dramatically in rece roh and Dietricﬂ:loto §tudy the phase transitions of sph.e.ri-
years. The simplest available description of a polar liquid af:al gnd non;pherlcal dlpolqr partlples. Also.’ phase tranS|t.|0ns
the molecular level is the well known dipolar hard sphereIn _d|polar fluids have been mvesﬂgat_ed by mte_gral eq_uatlons
(DHS) fluid model. In connection with this fluid, one of the using the refe_ren_ce hypernetted cham_qpproxmziﬁ(Wnth

most surprising recent observations is the lack of a quuid—the lack of a liquid—vapor phase transition, the DHS model,
vapor phase transitiolt3 This lack of the liquid—vapor equi- as a reference system, cannot predict the complex phase

librium is explained by the formation of chain-like structures equ|_I|br|um CUIVES. These fa(?ts Justn‘y. that a new, more re-
in the low density DHS fluid phase. It seems that a minimalf’iIIStIC analytically solvable dipolar fluid mode| may be of

amount of dispersion interaction is necessary to stabilize thipterest in the statistical mechanics of phase transitions of

liquid—vapor equilibrium; although, in the case of dipolar polalr fluids. . d2in the f K of th

hard spherocylinders, a liquid—vapor coexistence island was N OUT previous papet, In the framework ot the mean
found by the Gibbs ensemble simulation methioda system spherlc_al approximatiogMSA,), an analytical solutlc_m has
without such a dispersion force. From the point of view Ofbeen given for the hard core dipolar Yu_ka\(DY) ﬂu'.d' It

the liquid—vapor phase transition of a real substance, th as been shown that the thermodynamical properties of DY
Stockmayer(STM) model is more reasonabI® than thé uid can be calculated easily from the corresponding results

4 .
DHS, but it does not have an analytical solution in the frame-mc hard core Yukawd and DHS* fluids. We note, that the

work of any known theory. Recently, both the DHS and DY potential proved to be successful in the perturbation
STM fluids have been used intensively as a reference systemgory stgdy of phasg separation of polar component_ fluid
to the calculation of isotropic—nematic and isotropic—m'xtures n |nterfaceé. In. the p.resent haper, a comparison
ferroelectric phase transitions of dipolar nonspherical parpf :\r/:/ermol\c/jlyn?mg: a}ndglele(;trll\zstfta Iforlli?( flugj S gtl\éen
ticles. For the calculation of the isotropic—nematic phas etween Monte CarléMC) an caicuiation. Lsing the

transition of dipolar hard spherocylinders, a generalization o SA pair correlation functions of the hard core Yukawa

the perturbation theory for dipolar hard spheres, proposed b juid, a perturbe_ltlon theory descrlptlon_ _for_ the DY. fluid is
roposed. The liquid—vapor phase equilibrium of this system

and the formation of chain-like structures is also studied in
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where (1+4§)2 (1_25)2 _q (8)
®, I<0 1-20" @+o* |
Uy(rip)= _ &yo 2 Of course, via the dipole-strength function, the dipolar part

r—lzexp:—)\(rlz— o)l re=o of the free energy depends on the temperature, density, and

dipole moment. The corresponding equations for the pres-
sure and internal energy can be predicted from the free
i energy*?® In the next paragraph we give a perturbation
Upp(F12,N1.Nz) = = r_i'zD(nﬂ’nl’n?) ) theory approximation for the free energy of the DY fluid. It
is worthwhile to extract the MSA results from the perturba-
tion terms; therefore, we must know the power expansion of
D(Ny2,n1,N5) =3(N1-Nyo) (Ny-Nyp) — (Ng-Ny), (4 the ABS” free energy term in terms of Using the power
series expansion of Eqé7) and(8) on the basis of Eq(6)
Sve obtain that

is the Yukawa potential and
2

is the dipole—dipole interaction potential, where

gives the rotational invariant angular dependence of th
dipole—dipole interaction. Herey and N specify the depth
and range of the dispersion interactienis the diameter of AMSA 3/1 5

hard coren;= u;/n andnq,=r,/r 1, are unit vectors along NKkT S 5 6)’ - 256y 3+, 9
M andrq,, and u andrq, are the magnitudes of dipole

moment and interparticle distance, respectively. Considerin% ) . o

the thermodynamical properties, the Yukawa fluid mimicsP- Perturbation theoretical approximation

the Lennard-Joned.J) fluid when\ =1.8/o and, therefore, One of the most useful thermodynamical perturbation
the DY fluid is similar to the STM fluid in this case. In this theories of polar fluids is based on the energy
work, all results are obtained with this value Jof expansiofr*®~1%f the free energy that is an extension of the

theory of Barker and Henderséh? In this perturbation
theory according to Eq91)—(3) the Yukawa term can be

IIl. THERMODYNAMIC DESCRIPTION OF DY FLUID considered as the reference potential and the dipole—dipole
_ o interaction is the perturbation potential. This division gives
A. Mean spherical approximation for the free energy of DY fluid that

In our previous papéf it has been shown that in the
MSA solution of the DY fluid model the radial distribution

function and the angular correlation functions can be decouyhere A, is the first order perturbation term, and so on.
pled. Therefore, the MSA free energy of the dipolar YukawaThese terms can be calculated with the help of the distribu-

Apy=AVSA+ AL+ A+ Az .., (10)

MSA: . .
fluid (Apy”) can be expressed as tion functions of the reference system. According to the sym-
AMSA_ AMSA pMSA (5  Metry of the dipole—dipole interaction potential the first or-

VISA - der term vanishes. After some manipulation of the second
whereAy =" is the free energy of the hard core Yukawa fluid grder term we obtain:

andA'VISA is the excess free energy of the dipolar hard sphere

fluid (of course, both in the framework of MSAIn the A, 9 y?
following, we assume thaAy>* contains the ideal gas and NkT 167 ©
the Carnahan—Starling hard sphere contributions. The ana-
lytic solution of MSA for the hard core Yukawa fluid was and
obtained by Waismatt To avoid repetition, the prediction "
of its thermodynamic properties are not discussed here. The | = *9v(1s)
free energy expression for the dipole—dipole interaction is 0 r12
known from Wertheim’$* analytical solution as

(11)

dryy, (12

wheregy(r,) is the pair correlation function of the Yukawa

ANSA 3 reference system. In our case the third order term is
NKT - 7 1(y), (6) ,
A; 9y
where 7=mpo®/6 is the packing fraction andy NKT 32 Ty ddd (13

=47pu?l(9KT) is the dipole-strength function. In both
quantities,p=N/V means the number density, whexeis ~ and
the number of particles and is the volume of the system. In
the definition ofy, T andk denote the temperature and the | 4da=

f J' frlz'”ls 1+C05a1 COSa2 COSag3)
\

Boltzmann constant, respectively. The functibty) is de- r1o-r1d Fia 1953
fined as X Qy(r12,r13,M23)drpdr3dros. (14
8 [ (1+82  (2-8)? . o
I(y)= —g (1_25)4+ 81+ 87| (7)  wheregy(rq,,r13,r»3 is the three-particle distribution func-
tion of the reference system ang is the interior angle at
where¢ is the solution of the following equation: particlei in the triangle formed by particles 1, 2, and 3. The
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series expansion of Eq10) converges poorly. Following

Larsenet al” and Rushbrookeet al,'® we use the corre- GFPJ ((N1-N2)9(r12,N1,M2)) 6y, w0, A" 12- (23

sponding Padapproximation: i . . i

The deS|gnat|on<...>w1,0,2 denotes unweighted averaging
Apy=AYSAL A _ (15 ~ over the orientations of dipoles 1 and_2. Similar to the_ dipo-
1-As/A; lar hard spheré and Stockmayéf fluids pair correlation

In the calculation of thermodynamic properties, we refer tolUnction gives only a second order perturbation term contri-

this perturbation theory equation as PT1. For the case dfution to the correlation parameter

charged hard sphere and dipolar hard sphere systems Hend- 9

ersonet al?? have showed that the convergence of the per- G1=1+yzﬁ|ddm (24

turbation series expansion is better if we use the DY MSA

expression as the starting term, and remove the correspon@here

ing MSA tgrms from the perturbation gpproximation. In this 1672 [ [* (T12+713 (3 CO€ awg— 1)
case in third order formally we can write that lqaa= > | \T
0 J0 Jlrip—ra3 13' 23
Aoy =AN A+ A+ A;. 16
Py oy 270 (19 XT199v(M12,013,7 23) 112011307 23. (25

The A, andA; terms can be calculated by the help of EGs. | the case of dipolar hard sph&tend Stockmay&f

(9), (12), and(13): systems, for the perturbation theoretical calculatior,ahe
A, 9 yz( 1) following power expansion of the Kirkwood equation proved
6

(17 to be more successful than the original E2Q):

NkT 16 7 3
9lgaa
and i 3 sDY=1+3y+3y2+3y3( 6.2 - (26)
Az 9y 15 . . . . .
_° 7 R One reason is that perturbation theory is exact in the first
NKT 32 7 ('ddd 72)' (18 P Y

three terms in the density expansionegfbut is only exact

By the help of the Padapproximatiod® a further improve-  for the first term in the density expansion of the angular
ment can be reached in the convergence of the series:  correlation parameter. The dielectric constant calculation Eq.
(26) is referred to as PT1. Removing the corresponding MSA

MSA A, terms from the perturbation expansionsofve obtain that:
Apy=Apy t ~—/~ (19 ol 17
l_A3 A2 ddA
. . . . , coy=epy +3y° 16 2_1_6)' 27
Hereinafter, we refer to this perturbation theoretical equation &
as PT2. Hereinafter, we refer to this perturbation theoretical equation
as PT2.

IV. DIELECTRIC CONSTANT OF DY FLUID

A. Mean spherical approximation V. COMPUTATIONAL DETAILS

It was show®? that the dielectric constant of DY fluid is # Numerical calculations

given by the formula due to Wertheiffi: One of the most important features of the DY fluid is
(1+48)%(1+&)* that an analytic solution is available in MSA. The solution of
gMA= — (200 the MSA is analytic but implicit. In our previous papeit
(1=2¢) has been shown that the free energy of DY fluid is the sum
whereé can be calculated from E¢8). Of course the dielec- that of the DHS and hard core Yukawa fluids in MSA. The
tric constant again depends on €T, andu via the dipole-  numerical calculation of pressure and internal energy were
strength function. Similar to the free energy, the power seriegarried out on the basis of the original works**°To the

expansion ok with respect toy reads as calculation of the perturbation theoretical integrals
3 (I',1gdd:1qqa) the knowledge of the MSA pair correlation
eVSA~ 14 3y + 3y2+ Ey3+”' _ (21  function of the Yukawa fluid is necessary. It was calculated

numerically on the basis of the Ornstein—Zernike equation,
using the MSA direct correlation function and its analytically

B. Perturbation theoretical approximation given Fourier transform®?° The details of this calculation
In statistical thermodynamics the static dielectric con-&'€ given in a previous paper of Hendersairal *® The in-
stant is given by the Kirkwood equatith t_egral I_6 was calculated by the Simpson metho_d. In connec-
tion with integralsl 444 andl4q4x , We note that higher-body
(e—1)(2e+1) 146G 22 distribution functions are unknown even for hard sphere sys-
9¢ =¥ 1), tems. However, they can be approximated using the super-

where theG; angular correlation parameter can be given bypOSItlon approximation

the pair correlation function of the system as Ov(r12,r13,r23)=0y(r12)gy(r 13)9y(r 23)- (28
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The integrall 444 Was calculated by using the Simpson inte- WAKTG') =1
grand method three times repeatedly. The integraniq, of 6 * ‘ '
is long range, therefore it is difficult to obtain its values
when the integrations are performed in a straightforward
manner and no cutoff is used. In this work the valueb,gf

were calculated on the basis of the Fourier-transform convo-
lution theorem proposed by Goldnfdrand Taniet al® Of
course, via the pair distribution functions all integrals depend
on the density and temperature of the system. At a given
temperature the liquid—vapor coexistence can be obtained by
finding the intersection of the chemical potential versus pres-
sure curves. The reduced chemical potential is given as

pe/kT)

2 | . . .
M A 0 0.2 0.4 0.6 0.8 1

KT~ NkT 2 (29 po

FIG. 1. The reduced pressure of the dipolar Yukawa fluid at a reduced
wherez=pV/(NKT) is the compressibility factor angd is dipole momentu?/(kTo®)=1 calculated from the different theories as a
the pressure, respectively. We note that at higher temperé_unction of the reduced density in cqmparison with simulation .data. For

. . . - kT/ey=1 the PT1 and PT2 curves coincide on the scale of the figure.

tures when in the two-phase region the singularity of the
hard core Yukawa MSA solution is disappearfighe Max-
well “equal area” construction is also appropriate to obtainV|_ RESULTS AND DISCUSSION
the equilibrium pressure and densities.

The theoretical pressure isotherttdSA and perturba-
tion theory at two different reduced dipole moments are
compared to the corresponding MC simulation data in Figs.
1 and 2. At the lower temperature, due to the two-phase

B. Details of Monte Carlo simulations region, discontinuities can be found in both curves. At
We present the simulation results of both canonical NVT’“Z./(kT‘Tg): 1.the ggreement between the MSA and simu-
and NpT ensembles using the usual Boltzmann sampling ar{?ﬂon results IS quite gogd a.t both.temp.eratures. However,
- I . . X oth perturbation approximations give slightly better results
periodic boundary conditions in a Cub'IC box. A spherlcalthan the MSA. Considering the higher dipole moméFiy.
cutoff qf half the cell Iength_was applied, and Ion_g rangez) the perturbation theory results are much more reliable than
corrections(LRC) were taken into accouRit.For the disper- the corresponding MSA values. The fact that there is no

sion part of the potential, the usual Yukawa-tail LRC was . .
: : . : . . large difference between the two perturbation theory results
used while for the dipole—dipole interaction a spherical re- . )
o . - shows that the higher order terms in Ef) do not make a
action field LRC and a conducting boundary condition were . L2 .
. . substantial contribution to the free energy in MSA.
applied. In both ensembles 256 particles were used. The : . .
k ; . : The density dependence of internal energy at different
simulations were started from an fcc lattice with randomly : -
: ; S constant temperatures are displayed in Figs. 3 and 4. At the
oriented dipoles. After 40 000 equilibration cycles, 200 000— .
. 7 lower dipole moment the agreement between the MSA and
400000 production cycles were used. Statistical errors were
calculated from the standard deviations of the subaverages
containing 10000 cycles. The liquid—vapor equilibrium
simulations were carried out using our extended NpT plus 6
test particle metho®3° The essential idea of the method is
to choose a gas and a liquid point on {ffep) plane which
are close enough to the vapor pressure curve and also to each 4
other, calculate the chemical potential surfages w(T,p)
in both phases in some neighborhood of these points, and
search for the intersection of these surfaces, where the two
chemical potentials are equal. The projection of this intersec-

tion to the(T,p) plane gives a section of the vapor pressure

WAKTG') =2

pSAKkT)
[

curve, since the condition for intersection is the same as for 0 7
the liquid—vapor equilibrium. The construction of the chemi- KT, =1 "

cal potential surfaces can be carried out by using a Taylor

expansion. The coefficients of the series expansion can be 2, 02 04 06 03 ]
calculated on the basis of the Widom'’s test particle method po’

and from fluctuation formulas. In our simulations, 256 real . 2. The reduced  the divolar Yukawa fluid at duced
and 256 test particles were used. The length of the simuld;: 2 The reduced pressure of the dipolar Yukawa fluid at a reduce
. . . dipole momentu“/(kTo®)=2 calculated from the different theories as a

tions was two to three times longer than the bulk phase simUynction of the reduced density in comparison with simulation data. For

lations. kT/ey=1 the PT1 and PT2 curves coincide on the scale of the figure.
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WAKTS ) =1 WAKTS ) =1
0 . ‘ , ; 12 . , 1 l
e — DYMSA v
e e, PTI
ol T _ gl ——-PR2 7 i

o MC kTfe,=2 A
* MC KT/ =1 -

g
Z4r 2 € 6 :
S
-6 F E 3 4
-8 I L 1 L 0 L 1 ) 1
0 0.2 0.4 0.6 0.8 1 0 02 0.4 0.6 038 1

po’ ) po

FIG. 3. The reduced internal energy of the dipolar Yukawa fluid at a re-FIG. 5. The dielectric constant of the dipolar Yukawa fluid at a reduced
duced dipole moment?/(kTo®)=1 calculated from the different theories dipole momentu?/(kTo®)=1 calculated from the different theories as a
as a function of the reduced density in comparison with simulation data. Théunction of the reduced density in comparison with simulation data.

PT1 and PT2 curves coincide on the scale of the figure.

. . . . _ temperatures. The MSA dielectric constant of DY fluid is the
simulation results is reasonable, except in the vicinity of the
same as for the DHS and depends onlyyptherefore, once

two phase region. At both dipole moments, the perturbation 2/(kTo?) is fixed, e does not depend on temperature. Both
theory results seem to be accurate except in the vicinity o erturbation theor, N . ) )
. L . y approximations give a temperature de
the two phase region. The PT1 and PT2 approximations gIVB T ;
. . . endence that are not visible in Figs. 5 and 6. We note that in
practically the same results for the internal energy. It is no

surprising that for the internal energy, the temperature de—he PT2, the dielectric constant of DY fluid is nearly the
P 9 9y b same as the corresponding value of the STM fluid, because

rivative of the free energy, we get the same results in both : e
L . the values of 44, integrals are very similafFor example at
approximations, because thg and | 444 integrals depend - . 3_ 3 _
weakly on temperaturgln the framework of the MSA the KT/ey=kT/z,=1 andpoy=poiy=0.81 gy =22.15 for the
uid an A =22.27 for the uid’
y p o 4

pair correlation function of Yukawa fluid is nearly indepen- The MSA and perturbation theory liquid—vapor coexist-

dent of the temperature. ence curves of DY fluid in comparison with simulation re-
The results of the theoretical calculations for the dielec- P

tric constant can be seen in Figs. 5 and 6. & (kTo®) sults are displayed in Fig. 7 at different reduced dipole mo-

=1, the agreement between MSA and simulation results ignents. The agreement is reasonable only at low dipole

X . - . rpoments. At higher dipole moments, the MSA underesti-
quite good, especially at lower densities. Figure 5 shows tha . . .

) . . mates the critical temperature while the perturbation theory

PT2 gives the best prediction at that dipole moment. At theoverestimates the critical temperature. With increasing di-

higher dipole moment, both MSA and PT2 underestimate the P : g

: : : ole moment we can see, that the estimated critical densities
dielectric constant, but PT1 seems to be very good. In Figs. 5

and 6 the MC simulation data are obtained at two different rom the23|mulgtlgn dajaare lower. At a large dipole mo-
ment, (w/(eyc®)=16), we were not able to detect any

WAKTS ) =2

0 . . : WAKTS) =2
40 : | . .
-2+ ] —— DYMSsA
R ~ PTI £,
b . | S S 1
—~ o MC kTfe,=2 A
% . ® MC kTre,=1 Ey
S ’ : ‘
DY MSA
8t * MC 4
PTI, PT2 - |
_10 b kTre, =1 i
1 L 1 L
0 0.2 04 0.6 0.8 1

3

po

FIG. 4. The reduced internal energy of the dipolar Yukawa fluid at a re-

duced dipole moment?/(kTo®)=2 calculated from the different theories FIG. 6. The dielectric constant of the dipolar Yukawa fluid at a reduced
as a function of the reduced density in comparison with simulation data. Thelipole momentu?/(kTo®)=2 calculated from the different theories as a
PT1 and PT2 curves coincide on the scale of the figure. function of the reduced density in comparison with simulation data.
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6 T T T 10 T
—— DYMSA -
---- PTI KT,../ey:
16 o W/(e,6’)=0 MC 8} —— DYMSA e 1
. . .« WAe,0)=1 MC ---- PTI 7
5L/ ~. aWfe,o)=2MC ]
/ N v WAe,0')=4 MC
/ N o WAe,0')=9 MC
! \\ * Crit. point MC

0 10 20 30 40
uz/( sycs] )

FIG. 8. The reduced critical temperature of dipolar Yukawa fluid as a func-
tion of the reduced dipole moment. For the meaning of the open circles, see
the text.

examine greater values of thd/ ey ; we adjust bothey, and
S0 thatT/T,;, the reduced temperature, remains relatively

constant.
. ) s A series of simulations were performed @t>=0.05
0 02 0‘4p63 06 08 following this scheme, with the path shown in Fig. 8. In

points A—C we were not able to detect any chain-like struc-
FIG. 7. Liquid—vapor coexistence curves for dipolar Yukawa fluids at dif- ture. The first chain-formation was found in the state point
ferent Qipole moments palculated from MSA and perturpation theory indenoted by D. The corresponding snapshot of DY fluid is
gg?optzgsg; t"t‘:ghni'mg:ts'oeﬂ ?ﬁf‘t‘hzg‘fe‘t’iig‘le:u?\zgd”“d dipole moment argichjaved in Fig. 9. The appearance of chains coincides with
our NpT plus test particle simulation result of the absence of
phase separation at?/(eyo®)=16. Upon further decrease
of the relative strength of the dispersion interactipnother
Cwords, increase both the dipole moment and tempergture

the chain-like structure is more conspicuous. Figure 10
shows the appearance of longer chains in the simulation box.
Continuing the path of Fig. 8, we will reach the DHS limit.

e would like to confirm the appearance of chain-like struc-
ures in DHS. However, g/ (eyo®) =, there is an arbi-
trary choice of dipole moment sinag, is zero. In the work
of Van Leeuwen and Smit, they investigated the disappear-
ance of the vapor-liquid coexistence by decreasing the dis-
persion force, rather than increasing the dipole moment as in

liquid—vapor coexistence by the NpT plus test particle
method. We can postulate that the liquid—vapor coexisten
starts to disappear near this dipole moment.

The lack of the liquid—vapor equilibrium may be related
to the formation of chains in the low-density gas phase. |
was shown that in the presence of sufficient dispersior,E
forces, for example, the LJ in STM fluid, no chain-like struc-
tures were found. Van Leeuwen and Shhiave investigated
the transition from a fluid with liquid—vapor coexistence to
one without by modulating the range of the attractive part o
the LJ force. They adjust a parametein the modified LJ

equation,
o 12 o 6 :
u(ri)=4ei|—| =N —| ¢, (30 [
EP) le i - i
. . . . . [ /\'\Jw/' ~ H \.‘/r
which in effect is changing the strength of the LJ potential. It rik,/ s £
can be shown that Eq30) is equivalent to the ordinary LJ ! - ‘\\\ -
equation witha’ =o\~Y® and €' =e\2 Here, we would rv\é’}?ﬁj\ s Ny
like to investigate the change of the fluid character from ﬁ)‘y AN ! - i
absence of chains to the presence of chains by slowly in- :5‘ \‘i’\z\ N 3&9\
creasing the dipole moment relative to the dispersion force \f >~ { B ){‘ﬁﬁ% S
parameterey. At low density, one can fixT and ey and ‘; 7 /\Qq—.’f\
; e 4 LSRR
increaseu to observe the appearance of chain-like structures. - o V(J SN TN,
However, as the dipole moment increases, the critical tem- \1” } \\\\ \.l/\\
perature also increases, as shown in Figs. 7 and 8. Without a ™ p /
Y |

change in the value dkT/ey, an increase in the reduced
dipole moment would result in a temperature much less then

the_ critical temperature or pe_rhaps even less than the tripleig. 9. snapshot of the dipolar Yukawa fluiT/ e, = 3.33,po%=0.05 and
point temperature. Thus, at increased redugedie must  w?(eyo®)=16.7). (Point D of Fig. 8)
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~ > and chain-like structures were also discussed. It should be
TR LY : . -
AR TSN - noted that our observations here are in good qualitative
- f\'i Nee 5 agreement with their results.
Y
M. \ Jk 1": ,ai \E‘ VIl. SUMMARY AND CONCLUSIONS
< o N, . : S
*jrl“}a\\ o, f»\ For the DY fluid, pressure, internal energy and dielectric
N \:\ 7{ f ™ ts] constant as a function of density has been calculated at dif-
. \\-/{\ N, _ ferent temperatures and dipole moments by MSA, perturba-
{H - N LY tion theory and MC simulation. At lower dipole moments,
Y J ! Lo/ MSA results are in reasonable agreement with the corre-
= AT sponding MC simulation data. At higher dipole moments the
? perturbation theory gives unambigously better prediction.

For the perturbation theory calculation, the hard core
FIG. 10. Snapshot of the dipolar Yukawa fluiT/e,=5, po®=0.05 and  YUkawa MSA pair correlation function was used. Knowing
w2l (eya®)=35). (Point E of Fig. 8) the imperfection of this solution, better results might be ob-
tained by using the exponential and linearized exponential
modification of MSA® pair correlation functions, but the
our study here. They did not find any liquid—vapor phaseayailable analytical expressions for the thermodynamic prop-
separation forA<0.3, and concluded that the dipolar hard erties will be lost. The weakness of the MSA approximation
sphere and soft core fluids did not have liquid—vapor coexmainly comes from the DHS MSA solution. Therefore, the
istence. In their study, they were not able to locate any phasgombination of different routes of this part could improve the
separation for the values &fTo® u?<0.15. As explained approximation as it was done in the case of STM filfidt
above, the potential of E430) is the Stockmayer potential. has peen found that in the calculation of thermodynamic
For \<0.3, it corresponds ta&my/(kToP;)=12 in the or-  properties there is no significant difference between the two
dinary STM fluid aCCOfding to the above mentioned Conver-proposed perturbation theory approxima’[ionS, a|though PT1
sion of Eq.(30). To choose the value of dipole moment in gives better prediction of the dielectric constant. Liquid—
DHS in the search for chains, we refer to this limit of yapor equilibrium simulations and both MSA and perturba-
u?I(kTo®)=12, which corresponds to a highly polar DHS tion theory calculations have also been performed. The
fluid. The simulation snapshot, which corresponds to thisagreement between the simulation and theoretical data is rea-
state is d|Sp|ayEd in F|g 11. The features of these chains akHnable 0n|y at low d|p0|e moments. The disappearance of
very similar to the partially flexible polymers and those ob-|iquid—vapor coexistence and appearance of chain-like struc-
tained by Levesque and W&isfor a little stronger dipolar tyre in the low density fluid phase are also studied. It has
hard spheres. The values f/(kTo®) in state points D and peen found that chain formation started at lower reduced
E are respectively, 5 and 7. This means that the chain fordip0|e moment, %/(kTa®)), than in the Stockmayer fluid.
mation in a DY fluid started at higher temperatures than ineven so, the value of this reduced dipole moment is still
the corresponding STM fluid. This difference is probably|arge. On the basis of its properties, the dipolar Yukawa
caused by the hard core of the Yukawa potential. Recentlymodel and its analytical MSA solution may be a valuable

Tavareset al*? and Osipovet al*® reported density func- ool in the further research of structure and thermodynamics
tional theory results for the critical locus of the STM fluid. of dipolar fluids.

They found that the critical density decreases with increasing
dipolar strength. The relation of liquid—vapor coexistence,c-kNOWLEDGMENTS
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