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The dipolar hard sphere fluid~DHSF! is a useful model of a polar fluid. However, the DHSF lacks
a vapor–liquid transition due to the formation of chain-like structures. Such chains are not
characteristic of real polar fluids. A more realistic model of a polar fluid is obtained by adding a
Lennard–Jones potential to the intermolecular potential. Very similar results are obtained by adding
a Yukawa potential, instead of the Lennard–Jones potential. We call this fluid the dipolar Yukawa
fluid ~DYF!. We show that an analytical solution of the mean spherical approximation~MSA! can
be obtained for the DYF. Thus, the DYF has many of the attractive features of the DHSF. We find
that, within the MSA, the Yukawa potential modifies only the spherically averaged distribution
function. Thus, although the thermodynamic properties of the DYF differ from those of the DHSF,
the MSA dielectric constant of the DYF is the same as that of the DHSF. This result, and some other
predictions, are tested by simulations and are found to be good approximations. ©1999 American
Institute of Physics.@S0021-9606~99!50815-5#
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I. INTRODUCTION

Wertheim’s analytic solution1 of the mean spherical ap
proximation ~MSA! integral equation for the dipolar har
sphere fluid~DHSF! was the first advance in our understan
ing of polar fluids since the work of Onsager.2 The DHSF
fluid has been used in studies of ionic fluids.3

Recently, the utility of the DHSF has been called in
question. The DHSF has a tendency to form chain-like str
tures that prevent vapor–liquid coexistence.4 Vapor–liquid
coexistence will occur if a sufficient amount of dispersi
forces is present. Thus, there has been interest recently i
Stockmayer fluid~STMF!, where the interaction is the sum
of a Lennard–Jones~LJ! potential and a point-dipole
interaction.5 Unfortunately, the STMF does not lend itself
an analytical solution of any of the usual integral equatio
used in the theory of fluids. Analytical expressions can
obtained from perturbation theory with suitab
simplifications.6,7

An alternative procedure would be to use a Yukawa
tential to represent the dispersion force. This model, the
polar Yukawa fluid~DYF!, should have many, perhaps a
of the advantages of the STMF. In particular, we show t
there is an analytic solution of the MSA for this fluid. Thu
the DYF is at least as useful a model of a polar fluid as is
DHSF.
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II. THEORY

The pair potential of the DYF is

u~r1 ,r2!

5H `, R12,s

2
eYs

R12
exp@2l~R122s!#2

m2

R12
3

D~1,2!, R12.s,

~1!

whereeY and l specify the depth and the range of the d
persion interaction. The subscriptY is used in the energy
parametereY to distinguish it from the dielectric constante.
The valuel51.8/s results in thermodynamic functions o
the Yukawa fluid that are similar to those of the LJ fluid8

The parameterss and m are the diameter and the dipo
moment of a molecule, respectively. Finally,

D~1,2!53~m̂1•R̂12!~m̂2•R̂12!2D~1,2!, ~2!

where

D~1,2!5m̂1•m̂2 , ~3!

mi is the dipole moment, with direction, of moleculei,

R125r12r2 , ~4!

and

R125uR12u. ~5!

The caret over the vector indicates that the vector is a
vector, i.e.,R̂125R12/R12 and m̂i5mi /m. The three func-
tions, 1,D(1,2), andD(1,2) are orthogonal functions.

ty
8 © 1999 American Institute of Physics
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The MSA is based upon the combination of t
Ornstein–Zernike~OZ! relation

h~1,2!5c~1,2!1rE h~1,3! c~2,3! dr3 , ~6!

where g(1,2)5h(1,2)11 is the pair distribution function
~PDF!, andc(1,2) is the direct correlation function~DCF!,
with

h~1,2!521, R12,s,
~7!

c~1,2!52bu~1,2!, R12.s.

The functionh(1,2) is usually called the total correlatio
function ~TCF!. The symbolb51/kT, wherek is the Boltz-
mann constant andT is the temperature. The symbolr
5N/V, whereN is the number of molecules in the syste
and V is the volume. For simplicity, we use the notatio
g(1,2)5g(r1 ,r2). The OZ relation is merely a definition o
the DCF. The first part of Eq.~7! is a statement of the fac
that the molecules cannot overlap because the pair pote
is infinite inside the molecular core. The second part of
~7! is the approximation.

We follow the procedure of Wertheim in obtaining th
solution of the MSA for the DYF. Because the MSA is
linear response type theory, the three functions 1,D(1,2),
and D(1,2) are a complete orthogonal basis set. Ot
spherical harmonics cannot appear. Thus,

g~1,2!5gS~R12!1hD~R12!D~1,2!1hD~R12!D~1,2!,
~8!

with a similar expansion forc(1,2). The projections,
gS(R12), hD(R12), andhD(R12), are given by

gS~R12!5E g~1,2! dV1 dV2 , ~9!

hD~R12!53E D~1,2!g~1,2! dV1 dV2 , ~10!

and

hD~R12!5
3

2E D~1,2!g~1,2! dV1 dV2 , ~11!

whereV i is the angle defining the orientation of moleculei.
Following Wertheim, we use the Fourier transform,

f̃ ~k!5E f ~R! exp@ ik•R# dR, ~12!

to obtain the solution of our equation. The Fourier transfo
of gS(R12) andhD(R12) is obtained easily using

f̃ ~k!5
4p

k E
0

`

R f~R! sin~kR! dR

54pE
0

`

R2f ~R! j 0~kR! dR. ~13!

The Fourier transform ofhD(1,2)D(1,2) is more complex
sinceD(1,2) is a function ofr1 andr2. However, using Eq.
~12!,

FT@hD~R12! D~1,2!#5h̄D~k! Dk~1,2!, ~14!
Downloaded 13 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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where

Dk~1,2!53~m̂1• k̂!~m̂2• k̂!2~m̂1•m̂2!, ~15!

and h̄(k) is given by the Hankel transform

h̄D~k!524pE
0

`

R2 j 2~kR! hD~R! dR. ~16!

The functionsj 0(kR) and j 2(kR) in Eqs. ~13! and ~16! are
the spherical Bessel functions.

It is convenient to rewrite Eq.~14! as

FT@hD~R12! D~1,2!#5H̃D~k! Dk~1,2!, ~17!

whereH̃D(k) is the Fourier transform ofHD(R12), which is
related tohD(R12) by

HD~R!5hD~R!23E
R

`hD~R8!

R8
dR8. ~18!

Because of the orthogonality of the basis functions,
transformed OZ relation decomposes into the equations

h̃S~k!5 c̃S~k!1r h̃S~k! c̃S~k!, ~19!

h̃D~k!5 c̃S~k!1 1
3 r @ h̃D~k! c̃D~k!12 H̃D~k! C̃D~k!#,

~20!

and

H̃D~k!5C̃D~k!1 1
3 r @ h̃D~k! C̃D~k!1H̃D~k! c̃D~k!

1h̃D~k! C̃D~k!#. ~21!

The functionCD(R) and its transformC̃D(k) are defined
analogously toHD(R) andH̃D(k). Note that Eq.~19! is de-
coupled from Eqs.~20! and ~21!. The functionshS(R) and
cS(R) satisfy

hS~R!521, R,s,
~22!

cS~R!5
beYs

R
exp@2l~R2s!#, R.s.

Thus,hS(R) andcS(R) are precisely the TCF and DC
that results from the solution of the MSA for the Yukaw
fluid, i.e., the fluid defined by Eq.~1!, with m50. The DCF
and thermodynamics of this fluid have been given
Waisman.9 Waisman’s formulas have been simplified.10

The functionshD(R), HD(R), cD(R), andCD(R) satisfy

hD~R!50, R,s,
~23!

cD~R!50, R.s,

and

HD~R!523K, R,s,
~24!

CD~R!50, R.s,

where

K5E
s

`hD~R! dR

R
, ~25!

is a constant that is to be determined.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Wertheim has shown that the solution of Eqs.~20!, ~21!,
~23!, and~24! is

hD~R!52K@hHS
PY~R;2Kr!2hHS

PY~R;2Kr!#, ~26!

and

HD~R!52K@hHS
PY~R;2Kr!1 1

2 hHS
PY~R;2Kr!# , ~27!

wherehHS
PY(R;j) is the solution of the Percus–Yevick~PY!

equation for hard spheres~HS! for a given distance,R, and
density,j, i.e., the fluid given by Eq.~1! with botheY50 and
m50. The equations forcD(R) andCD(R) are analogous to
Eqs.~26! and ~27!.

The parameterK is given by the formula due to Wer
theim:

~114Kh!2

~122Kh!4
2

~122Kh!2

~11Kh!4
53y, ~28!

where h5prs3/6 and y54prbm2/9. Note that 0,Kh
,1/2.

The dielectric constant is given by Wertheim’s formu

e5
~114Kh!2~11Kh!4

~122Kh!6
. ~29!

Because the equations forgS(R) and cS(R), and those for
hD(R), cD(R), HD(R), and CD(R) decouple in the MSA,
the thermodynamics will also be additive. This cannot
exactly true because simulation studies for the DHSF h
shown thatgS(R) increases slightly near contact as the
pole moment is turned on. However, it is to be hoped tha
will be true, within a reasonable approximation.

The energy is given by

E2E0

NkT
523Ky, ~30!

whereE0 /NkT is the energy of the YF. Assuming that th
energy is the best route to the free energy and pressure
have

A2A0

NkT
52K2hF8

~11Kh!2

~122Kh!4
1

~22Kh!2

~11Kh!4G , ~31!

and

p2p0

rkT
5K2hF8

~11Kh!2

~122Kh!4
1

~22Kh!2

~11Kh!4G23Ky, ~32!

whereE0 , A0, andp0 are the values of these functions f
the YF. These can be calculated implicitly from the formu
of Waisman, with the simplifications of Ho”ye and Stell and
Ginoza or explicitly from the approximate formulas of Hen
ersonet al.10

Before examining the properties of the DYF, we fir
investigate the independence ofgS(R), hD(R), and hD(R)
by simulations. Firstly, we start with a YF and examine t
degree to whichgS(R) changes asm is increased at constan
eY . Secondly, we start with the DHSF and examine the
gree to whichhD(R), hD(R), ande change aseY is increased
at constantm and constant temperature. Thirdly, we rep
Downloaded 13 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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some results for vapor–liquid equilibria in the DYF. For th
parameters chosen, there is no evidence of chain-like st
tures.

III. SIMULATIONS

The bulk simulations were performed in the canonic
(NVT) ensemble using the usual Boltzmann sampling a
periodic boundary conditions. A spherical cutoff of half th
cell length was applied, and long range corrections~LRC!
were taken into account. The LRC of the dipole–dipole
teraction was calculated on the basis of the reaction fi
~RF! method11 using the conducting boundary conditio
(eRF→`), while the LRC of the Yukawa-tail was obtaine
from

UY
LRC522pNreYs~Rcl

211l22!exp@2l~Rc2s!#,
~33!

whereRc is the cutoff radius.
The dielectric constant of the fluid can be obtained fro

the equation

~e21!~2eRF11!

e12eRF
53ygK , ~34!

wheregK is the Kirkwoodg-factor, and it is related to the
fluctuation of the total dipole moment in the simulation c
in following manner:

gK5
^M2&2^M &2

Nm2
5

^M2&

Nm2
. ~35!

The latter equality is due to the fact that in zero field^M &
50.

Simulations were performed at reduced densityrs3

50.8 for l51.8/s for various values ofbeY and bm2/s3.
Some results for the contact value of the radial distribut
function,gS(s1), the energy, the pressure, and the dielec
constant can be seen in Table I. The results obtained for
agree well with previous MC8 and molecular dynamics12

data. Further, the results obtained for the DHS show g
agreement with the simulation results of Levesqueet al.13,14

and Lombaet al.15 The simulation values for hard sphere
~HSF! are those of Barker and Henderson.16

From Table I it is evident that turning on the Yukaw
tail has a strong effect on the energy of the fluid. The diel
tric constant, on the contrary, is relatively insensitive
changes in the value ofbeY . This is exactly what the MSA
predicts.

Also the distribution functionsgS(R), hD(R), and
hD(R) behave according to the predictions of the MSA. F
ure 1 showsgS(R) of the DYF for various dipole moments
while in Figs. 2 and 3 the projectionshD(R) andhD(R) can
be seen for various values ofbeY . It is seen thatgS(R) is
relatively insensitive tobm2/s3. Of course, as is seen i
Table I, some change occurs at contact. The functionshD(R)
and hD(R) do not depend onbeY , at least at the studied
parameters of the DYF.

In Figs. 4 and 5 we report MSA and simulation valu
for vapor–liquid coexistence in the DYF forbm2/s350 and
1. The simulation results were obtained using the exten
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Downloaded 13 N
TABLE I. Comparison of simulation~MC! and DYF MSA results.rs350.8, l51.8/s andN5256.

System beY bm2/s3 g(s1) U/NkT ps3/kT e

MC MSA MC MSA MC MSA MC MSA

HSF 0 0 3.97 3.58 0 0 6.12 6.199 1 1
YF 1 0 4.43 3.68 25.64 25.616 0.96 0.909 1 1

DHSF 0 1 4.28 3.58 21.03 20.688 5.71 5.970 8.8 7.799
DYF 0.5 1 4.45 3.63 23.85 23.492 3.05 3.316 8.0 7.799
DYF 1 1 4.66 3.68 26.68 26.304 0.43 0.680 8.6 7.799

DHSF 0 2 4.74 3.58 22.85 21.992 4.87 5.612 29.5 20.001
DYF 0.5 2 4.96 3.63 25.62 24.796 2.31 2.959 31.3 20.001
DYF 1 2 5.21 3.68 28.47 27.608 20.27 0.323 32.7 20.001
-
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NpT plus test particle~NpT1TP! method, described in de
tails in our previous work.17,18We only give an outline here
Prescribing the point (b0 ,p0) in the b,p parameter plane
the reduced chemical potential (bg) can be expanded into
two dimensional Taylor series about the point (b0 ,p0) up to
third order:

bg~b,p!5b0g~b0 ,p0!1 (
n51

3
1

n! F ~b2b0!
]

]b
1~p

2p0!
]

]pGn

bg~b,p!. ~36!

The coefficients of the series can be derived from sim
thermodynamic relations on the basis of the derivatives
the enthalpy and volume of the system with respect tob and
p and can be calculated from fluctuation formulas by p
forming an NpT1TP MC simulation at the (b0 ,p0) point.
All these derivatives and fluctuation formulas have be
given.17 Performing this procedure for a gas and a liqu
system phase point, and rewriting the third order Taylor
ries of bg for these points, the vapor pressure curve as w
as other equilibrium data can be obtained from the inters
tion of these curves in the appropriate temperature rang
within a desired accuracy. The NpT ensemble MC simu
tions involving 256 particles and about 1 million cycles we
performed. The chemical potential was calculated by W

FIG. 1. gS(R) of the YF (m50) and DYF atbeY51.
ov 2006 to 147.8.21.97. Redistribution subject to AIP
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dom’s test particle method~256 test particle insertions fo
both the liquid and gas phases were used in a single cy!.
The agreement of the MSA and simulation coexisten
curves is quite good. We find that our results for Yukaw
fluid are essentially the same as the results from
literature,19 which proves that the program is reliable. W
have examined the question of whether chain-like structu
of the dipoles are formed. None were found. Of course, im
is increased to an arbitrarily large value, such chains
occur. The question of what value ofbm2/s3 is necessary
for such structures to occur will be considered in later wo

Some discussion of the system size is needed. Leves
et al.16 found thathD(r ) of DHSF is very sensitive to the
number of particles used in the MC simulation. This ph
nomenon is less apparent in our case. As can be seen in
6, hD(R) is not very sensitive to the number of particle
except at long range. The functionshD(R) andhD(R) should
approach zero at largeR. Larger values ofN satisfy this
condition better. This may be the consequence of the c
ducting boundary condition applied in the framework of t
reaction field construction. Levesqueet al. used a spherica
cutoff, a minimum image, and in some cases the RF met
with a low finite value of eRF. Nevertheless, in a late
publication,14 they used a highereRF, and found thathD(R)
lies closer to that obtained from integral equation theory
an infinite system.

FIG. 2. hD(R) and hD(R) of the DHSF (beY50) and DYF (beY51) at
bm2/s351.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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In general, the value ofeRF influences only the
Kirkwood-factor andhD(R), while the dielectric constant is
rather independent of the applied boundary condition~i.e.,
the value ofeRF). Note that the system size dependence
hD(R) is stronger at lower values ofeRF.

Because of the absence of a strong system size de
dence ofhD(R) found in the conducting boundary conditio
(eRF→`) applied, we used 256 particles in the simulatio
tabulated in Table I.

IV. SUMMARY AND CONCLUSION

In this paper, we have obtained the solution of the MS
for the DYF. The main feature of the solution is that t
radial distribution functiongS(R) and the angular correlatio
functions hD(R) and hD(R) are decoupled. The functio
gS(R) depends on the strength,eY of the Yukawa potential
and not on the dipole moment,m, whereashD(R) andhD(R)
depend onm and not oneY .

The MSA values ofgS(R), hD(R), andhD(R) are com-
pared with our simulations for the DYF. Although the MS
thermodynamic functions are quite reasonable for the DH
these distribution functions are known to be in error for t

FIG. 3. hD(R) and hD(R) of the DHSF (beY50) and DYF (beY51) at
bm2/s352.

FIG. 4. Vapor–liquid coexistence curves for the DYF forbm2/s350 and 1
obtained from simulation~points! and the MSA~curves!.
Downloaded 13 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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DHSF and therefore for the DYF too. It is more instructiv
to examine the extent to whichgS(R) depends onm, and
hD(R), hD(R) and e depend oneY . Except near contac
(R5s), gS(R) is only weakly dependent onm. The angular
functions,hD(R) andhD(R), ande are only weakly depen-
dent oneY . This agrees with predictions of the MSA.

Hence, the errors in the MSA are most apparent in
values ofgS(s1). If the MSA were exact,gS(s1) would be
independent ofm. As seen in Table I, the change ingS(s1),
with beY51, for bm2/s3 changing from 0 to 2 is not greate
than withbeY50 for the same change inbm2/s3. Thus, the
MSA error for the DYF is not worse than that for the DHS

As opposed to the DHSF, the liquid–vapor equilibriu
exists in the DYF. The MSA and simulation results for th
coexistence curve has been compared. The MSA predic
agrees well with the simulation results.

The DYF seems as useful as the DHSF was once thou
to be and the DYF is, under most circumstances, free
chain-like structures seen in the DHSF. Such structures
not present in the STMF if the dispersion force is stro
enough. This is true for the DYF ifeY is large enough rela-
tive to m. Variation of l may also affect the existence o

FIG. 5. Vapor pressure curves for the DYF for the two values of the dip
moment used in Fig. 4. The curves and points have the same meaning
Fig. 4.

FIG. 6. hD(R) andhD(R) of the DHSF (beY50) atbm2/s351 for various
numbers of particles.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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chain-like structures in the DYF. This question and furth
work on the thermodynamic properties for the DYF are u
der study.

The fact that the properties of the DYF can be obtain
from analytic formulas using the MSA is an important a
vantage of the DYF as compared to the similar STMF. F
example, the DYF could be used as a reference fluid i
perturbation theory. To use the STMF in such an applicat
requires the use of some numerical fit of the STMF prop
ties that involves a large number of parameters. Furtherm
the range parameter of the YF can be varied rather ea
The counterpart of this in the STMF fluid is to change one
more of the indices 12 and 6 in the Lennard–Jones poten
the consequences of which are not well studied.
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