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The dipolar hard sphere fluidHSF) is a useful model of a polar fluid. However, the DHSF lacks

a vapor-liquid transition due to the formation of chain-like structures. Such chains are not
characteristic of real polar fluids. A more realistic model of a polar fluid is obtained by adding a
Lennard—Jones potential to the intermolecular potential. Very similar results are obtained by adding
a Yukawa potential, instead of the Lennard—Jones potential. We call this fluid the dipolar Yukawa
fluid (DYF). We show that an analytical solution of the mean spherical approximdd&#) can

be obtained for the DYF. Thus, the DYF has many of the attractive features of the DHSF. We find
that, within the MSA, the Yukawa potential modifies only the spherically averaged distribution
function. Thus, although the thermodynamic properties of the DYF differ from those of the DHSF,
the MSA dielectric constant of the DYF is the same as that of the DHSF. This result, and some other
predictions, are tested by simulations and are found to be good approximatiori99®American
Institute of Physicg.S0021-96009)50815-3

I. INTRODUCTION Il. THEORY
Wertheim’s analytic solutichof the mean spherical ap- The pair potential of the DYF is

proximation (MSA) integral equation for the dipolar hard u(ry,ry)

sphere fluidDHSF) was the first advance in our understand-

ing of polar fluids since the work of Onsagefthe DHSF ®, Rp<o
fluid has been used in studies of ionic fluids. _ €y u?
Recently, the utility of the DHSF has been called into - R—ex;{—)\(Rlz— o)]— R—3D(1,2), Rio> 0,
12

guestion. The DHSF has a tendency to form chain-like struc- 12

tures that prevent vapor—liquid coexisteffceapor—liquid (1)
coexistence will occur if a sufficient amount of dispersion . .
forces is present. Thus, there has been interest recently in ﬂ%her_e R and ;pemfy the depth a_nd the range of the dis-
Stockmayer fluid(STMF), where the interaction is the sum persion interaction. The subscriptis used in the energy
of a Lennard—Jones(L:]) potential and a point-dipole parametefey to distinguish it from the dielectric constaat

. 5 ; The valuehx=1.8/o results in thermodynamic functions of
interaction? Unfortunately, the STMF does not lend |tself_ to the Yukawa fluid that are similar to those of the LJ fiid.

used in the theory of fluids. Analytical expressions can b:rhe parametersr and . are the diameter and the dipole

obtained from perturbation theory with suitable moment of a molecule, respectively. Finally,
simplifications”’ D(1,2=3(ju1- Rap) (- Rap) — A(L,2), )
An alternative procedure would be to use a Yukawa po-
tential to represent the dispersion force. This model, the divhere
polar Yukawa fluid(DYF), should have many, perhaps all, INE . 3
of the advantages of the STMF. In particular, we show that (1.9=p-p2, @
there is an analytic solution of the MSA for this fluid. Thus, u; is the dipole moment, with direction, of molectile
the DYF is at least as useful a model of a polar fluid as is the _
Rlz—rl_rz, (4)

DHSF.

and

dElectronic mail: doug@huey.byu.edu Ri= | R12|. (5)
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The MSA is based upon the combination of thewhere
Ornstein—Zernik€OZ) relation

Di(1,2=3(p1- k) (prz- K) = (g~ o), (15
h(112)20(112)+Pf h(1,3 c(2,3 drs, (6)  andh(k) is given by the Hankel transform
where g(1,2)=h(1,2)+1 is the pair distribution function T o J'°° 5.
(PDP), andc(1,2) is the direct correlation functiofDCF), ho (k)= =4 0 R%J2(kR) hp(R) dR (16)
ith
W The functionsjo(kR) andj,(kR) in Egs.(13) and (16) are
h(1,2=-1, Ry<o, the spherical Bessel functions.
(7) It is convenient to rewrite Eq14) as

c(1,2=—-pu(l,2, Ry >o0.

The functionh(1,2) is usually called the total correlation FT[hp(Ri2) D(1,2)]=Hp(k) Di(1,2), 17)
function (TCF). The symbols=1KkT, wherek is the Boltz- \yherefi (k) is the Fourier transform dfi (Ry,), which is
mann constant and is the temperature. The symbpl o 5ieq tohp(Ry,) by
=N/V, whereN is the number of molecules in the system
and V is the volume. For simplicity, we use the notation ~hp(R")
0(1,2)=9(r¢,r,). The OZ relation is merely a definition of HD(R):hD(R)_?’fR R’
the DCF. The first part of E((7) is a statement of the fact
that the molecules cannot overlap because the pair potential Because of the orthogonality of the basis functions, the
is infinite inside the molecular core. The second part of Eqtransformed OZ relation decomposes into the equations
(7) is the approximation. ~ ~ ~ ~

We follow the procedure of Wertheim in obtaining the ~ Ns(kK)=Cs(k)+phs(k) cs(k), (19)
solution of the MSA for the DYF. Because the MSA is a
linear response type theory, the three functions\(1,2),

dR’. (18)

ha(k)=Ccs(k)+ 3p[ha(k) Ca(k)+2 Hp(k) Cp(K)],

and D(1,2) are a complete orthogonal basis set. Other 20
spherical harmonics cannot appear. Thus, and
9(1,2)=9gs(R12) + ha(R12)A(1,2 + hp(R12)D(1,2), ® Hp(k)=Cp(k)+ 5p[ha(k) Cp(k)+Hp(k) ca(k)
with a similar expansion forc(1,2). The projections, +hp(k) Co(K)]. (22)
9s(R12), ha(Ry2), andhp(Ryp), are given by The functionCp(R) and its transformCp(k) are defined
analogously tdHp(R) andHp (k). Note that Eq(19) is de-
gS(R12)=f 9(1,2 dQ, dQ,, 9 coupled from Egs(20) and (21). The functionshs(R) and
co(R) satisfy
ny(Ru =3 [ A(L29(1.2 402, 40, 10 hgR=-1, R<o,
(22)
and cs(R)= ﬁ:Uexp[—)\(R—U)], R>0.
3
hp(Ry) = QJ D(1,29(1,2) dQ2, d€5, 1D Thus,hg(R) andcg(R) are precisely the TCF and DCF

] o ] ) ) that results from the solution of the MSA for the Yukawa
where(); is the angle defining the orientation of molecule {4 i.e. the fluid defined by Eq1), with x=0. The DCF

Following Wertheim, we use the Fourier transform, and thermodynamics of this fluid have been given by
_ _ Waisman Waisman’s formulas have been simplifi€d.
f(k)=J f(R) exdik-R] dR, (12 The functionsh,(R), Hp(R), c;(R), andCp(R) satisfy
to obtain the solution of our equation. The Fourier transform  Na(R)=0, R<o,
of gs(Ry,) andh,(R;,) is obtained easily using cu(R)=0, R>o, (23
~ 4 o
f(k)=%f R f(R) sin(kR) dR and
° Ho(R)=—3K, R<o,
Z . (24
=47 | R(R)jo(kR)dR. (13 Cp(R)=0, R>o,
0
. ) where
The Fourier transform ohp(1,2)D(1,2) is more complex
sinceD(1,2) is a function of, andr,. However, using Eq. *hp(R) dR
= —— (25)
(12, s R
FT[hp(Ry1y) D(1,2)]=FD(k) D(1,2), (14 is a constant that is to be determined.
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Wertheim has shown that the solution of EqX)), (21),
(23), and(24) is

ha(R)=2K[hEYR;2Kp) — hD4R; —Kp)], (26)

and

Ho(R)=2K[ hf{R:2Kp) + 3R —Kp)],  (27)

whereh{(R;¢) is the solution of the Percus—YevicRY)
equation for hard spherdglS) for a given distanceR, and
density,¢, i.e., the fluid given by Eq1) with bothe,=0 and
u=0. The equations foc, (R) andCp(R) are analogous to
Egs.(26) and (27).

The parameteK is given by the formula due to Wer-
theim:

(1+4Kn)? (1-2Kp)?
(1-2K79)*  (1+Kp*

3y, (28

where 7=mpo3l6 and y=4mwpBu?/9. Note that KKy
<1/2.
The dielectric constant is given by Wertheim’s formula:

(1+4K7p)%2(1+Knp)*
(1-2Kp®

(29

Because the equations fgg(R) and cg(R), and those for
hA(R), cA(R), Hp(R), andCp(R) decouple in the MSA,

Henderson et al.

some results for vapor-liquid equilibria in the DYF. For the
parameters chosen, there is no evidence of chain-like struc-
tures.

lll. SIMULATIONS

The bulk simulations were performed in the canonical
(NVT) ensemble using the usual Boltzmann sampling and
periodic boundary conditions. A spherical cutoff of half the
cell length was applied, and long range correcti¢nRC)
were taken into account. The LRC of the dipole—dipole in-
teraction was calculated on the basis of the reaction field
(RF) method! using the conducting boundary condition
(err— ), while the LRC of the Yukawa-tail was obtained
from

ULRC=—27Npeyo (RN "1+ N "2)exd — N (Re— )],
(33
whereR; is the cutoff radius.
The dielectric constant of the fluid can be obtained from
the equation

(€—1)(2€rrt1)

e+ 2€R|: (34)

=3y 0k,
where gk is the Kirkwood g-factor, and it is related to the
fluctuation of the total dipole moment in the simulation cell
in following manner:

the thermodynamics will also be additive. This cannot be
exactly true because simulation studies for the DHSF have (M2y—(M)2  (M?)
shown thatgg(R) increases slightly near contact as the di- - 2 - N2’
pole moment is turned on. However, it is to be hoped that it

Ok (35

Nu

will be true, within a reasonable approximation.
The energy is given by

E-Eg

NkT

= —3Ky, (30)

whereEy/NKT is the energy of the YF. Assuming that the

energy is the best route to the free energy and pressure, we

have
A-A 1+K7p)? (2—Kpg)?
o k2, 8( 7) +( 7) , (31)
NkT (1-2Kp)*  (1+Kp)*
and
- 1+Kn)? (2—Kp)?
p pO=K27;8( n° 7) 3Ky, (32
pkT (1-2Kp)* (1+Knp)*

whereEq, Ap, andpgy are the values of these functions for

The latter equality is due to the fact that in zero fiéM)
=0.

Simulations were performed at reduced dengiiy®
=0.8 for A=1.8/o for various values of3ey and Bu?/o>.
Some results for the contact value of the radial distribution
function,gg(o ™), the energy, the pressure, and the dielectric
constant can be seen in Table I. The results obtained for YF
agree well with previous MEand molecular dynami¢
data. Further, the results obtained for the DHS show good
agreement with the simulation results of Levesgual **
and Lombaet al!® The simulation values for hard spheres
(HSP are those of Barker and Henders8n.

From Table | it is evident that turning on the Yukawa-
tail has a strong effect on the energy of the fluid. The dielec-
tric constant, on the contrary, is relatively insensitive to
changes in the value @ey. This is exactly what the MSA
predicts.

Also the distribution functionsgg(R), hx(R), and

the YF. These can be calculated implicitly from the formulashp(R) behave according to the predictions of the MSA. Fig-

of Waisman, with the simplifications of e and Stell and

Ginoza or explicitly from the approximate formulas of Hend-

ersonet all®

ure 1 showgg(R) of the DYF for various dipole moments,
while in Figs. 2 and 3 the projectiorg,(R) andh,(R) can
be seen for various values @fey . It is seen thagg(R) is

Before examining the properties of the DYF, we first relatively insensitive to8u?/o2. Of course, as is seen in

investigate the independence @§(R), h,(R), andhp(R)

Table I, some change occurs at contact. The functig/{R)

by simulations. Firstly, we start with a YF and examine theand h,(R) do not depend orBey, at least at the studied

degree to whiclyg(R) changes ag is increased at constant

ey . Secondly, we start with the DHSF and examine the de-

gree to whichh, (R), hp(R), ande change agy is increased

parameters of the DYF.
In Figs. 4 and 5 we report MSA and simulation values
for vapor—liquid coexistence in the DYF fg@u?/0>=0 and

at constantu and constant temperature. Thirdly, we reportl. The simulation results were obtained using the extended
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TABLE |. Comparison of simulatiofiMC) and DYF MSA resultspa®=0.8, A= 1.8/ andN=256.

System Bey  Bu?lod g(o™) U/NKT po®/kT €

MC MSA MC MSA MC MSA MC MSA

HSF 0 0 3.97 3.58 0 0 6.12  6.199 1 1
YF 1 0 4.43 3.68 —-564 —5616 0.96  0.909 1 1
DHSF 0 1 4.28 3.58 -1.03 -0.688 571 5.970 8.8 7.799
DYF 0.5 1 4.45 3.63 —3.85 —3.492 3.05 3.316 8.0 7.799
DYF 1 1 4.66 3.68 —6.68 —6.304 0.43 0.680 8.6 7.799
DHSF 0 2 4.74 358 -2.85 —1.992 487 5612 295 20.001
DYF 0.5 2 4.96 3.63 —-5.62 —4.79% 231 2959 31.3 20.001
DYF 1 2 5.21 368 —-847 —-7.608 —-0.27 0323 32.7 20.001

NpT plus test particléNpT+TP) method, described in de- dom’s test particle metho®56 test particle insertions for
tails in our previous work”*®We only give an outline here. both the liquid and gas phases were used in a single cycle
Prescribing the pointf#y,po) in the B,p parameter plane, The agreement of the MSA and simulation coexistence
the reduced chemical potentigbg) can be expanded into a curves is quite good. We find that our results for Yukawa
two dimensional Taylor series about the poipy(pg) upto  fluid are essentially the same as the results from the
third order: literature®® which proves that the program is reliable. We
have examined the gquestion of whether chain-like structures
+(p of the dipoles are formed. None were found. Of courseg, if
B is increased to an arbitrarily large value, such chains can
occur. The question of what value @u?/o® is necessary
BI(B.p). (36)  for such structures to occur will be considered in later work.
Some discussion of the system size is needed. Levesque

The coefficients of the series can be derived from simpleet al'® found thath,(r) of DHSF is very sensitive to the
thermodynamic relations on the basis of the derivatives oftumber of particles used in the MC simulation. This phe-
the enthalpy and volume of the system with respeggand ~ homenon is less apparent in our case. As can be seen in Fig.
p and can be calculated from fluctuation formulas by per6. ha(R) is not very sensitive to the number of particles,
forming an NpT+TP MC simulation at the §,,p,) point. ~ €xcept atlong range. The functiohg(R) andh,(R) should

All these derivatives and fluctuation formulas have beerfPproach zero at largR. Larger values ofN satisfy this
given_17 Performing this procedure for a gas and a |iquidC0nditi0n better. This may be the consequence of the con-
system phase point, and rewriting the third order Taylor seducting boundary condition applied in the framework of the
ries ofﬁg for these pointS, the vapor pressure curve as We"eaction field construction. Levesqee al. used a Spherical

as other equilibrium data can be obtained from the interseccutoff, a minimum image, and in some cases the RF method
tion of these curves in the appropriate temperature range tith a low f|n|te value of ege. Nevertheless, in a later
within a desired accuracy. The NpT ensemble MC simulaPublication; they used a highesge, and found thah,(R)
tions involving 256 particles and about 1 million cycles werelies closer to that obtained from integral equation theory for
performed. The chemical potential was calculated by wi-an infinite system.

B9(B,p)=B9(Bo. po>+2 (B— Bo)

0
po)%

25 ; '
i
020 puic’=1  — p(R)DHSF
— yr ---- hy(R) DYF
- E §
S DYF puia’=1 o5 Lt T LR DISE
---- DYFpulic’=2 < L AR
= < 010
151 . =
% =
. = 005t
Lo ) - 0.00 i R
N
-
_0.05 L 1 L
05 . ‘ ! 1.0 15 2.0 2.5 3.0
1.0 1.5 2.0 25 3.0 RIG
Ric
FIG. 2. hp(R) andh,(R) of the DHSF Bey=0) and DYF (Bey=1) at
FIG. 1. gs(R) of the YF (u=0) and DYF atBey=1. Bullad=1.
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0.40 ; . 0.2 . . .
Y—,  — h(R)DHSF |
0.30 |- \q Pu ---- h(R)DYF 045 | ——- uz/((s:ev)=0 |
Lo e h,(R) DHSF : — Koyl ,

=
< 020 F &
= “g 01 F 1
o =
=2

0.10 +

0.05 + i
0.00 F
I I 1 0
1.0 15 2.0 2.5 3.0 0.6 1.4
Ric KTley

FIG. 3. hp(R) andh,(R) of the DHSF Bey,=0) and DYF (Bey=1) at
Bupllad=2.

FIG. 5. Vapor pressure curves for the DYF for the two values of the dipole
moment used in Fig. 4. The curves and points have the same meaning as in
Fig. 4.

In general, the value ofege influences only the

Kirkwood-factor andh,(R), while the dielectric constant is DHSF and therefore for the DYF too. It is more instructive
rather independent of the applied boundary condifioR., tg examine the extent to whichs(R) depends onu, and
the value oferr). Note that the system size dependence oh,(R), h,(R) and € depend oney. Except near contact
hs(R) is stronger at lower values @y (R=0), g<(R) is only weakly dependent op. The angular
Because of the absence of a strong system size depefimctions,hp(R) andh,(R), and e are only weakly depen-
dence ofh,(R) found in the conducting boundary condition dent oney. This agrees with predictions of the MSA.
(err—) applied, we used 256 particles in the simulations  Hence, the errors in the MSA are most apparent in the
tabulated in Table I. values ofgg(a ). If the MSA were exactgs(o™) would be
independent of.. As seen in Table I, the changeda(a*),
IV. SUMMARY AND CONCLUSION with Bey=1, for Bu?/o® changing from 0 to 2 is not greater

; = o 21 3
In this paper, we have obtained the solution of the msathan with Gey=0 for the same change jiu“/o™. Thus, the
for the DYF. The main feature of the solution is that the MSA error for the DYF is not worse than that for the DHSF.

radial distribution functiorgg(R) and the angular correlation ) As.opposed to the DHSF, the I.iquid—.vapor equilibrium
functions hp(R) and hy(R) are decoupled. The function eX|st§ in the DYF. The MSA and simulation results for.thfa
g<(R) depends on the strength, of the Yukawa potential coexistence curve ha; been compared. The MSA prediction
and not on the dipole moment, whereasp(R) andh, (R) agrees well with the simulation results.
depend onu and not oney . The DYF seems as useful as the DHSF was once thought
The MSA values ofy(R), hp(R), andh,(R) are com- to be and the DYF is, under most circumstances, free of
pared with our simulatiosns for t?le DYE. AI?hough the MsA chain-like structures seen in the DHSF. Such structures are
thermodynamic functions are quite reasonable for the DHSF)Ot present in the STMF if the Q|sper3|on force is strong
these distribution functions are known to be in error for the€NPUgh. This is true for the DYF iy is large enough rela-

ive to u. Variation of A may also affect the existence of

1.4
0.20 T
T —— - WNS'e)=0
HT pup—— ‘M\M E— uz/(cssY)=1
12 2 ‘ . 015 - —— N=108
il ﬁﬂ ---- N=256
MWM ............
< fin: i = O0lor
S , S
e o/ -
» =
? = 005
. =
0.8 I S B Y BN -
‘ ' 0.00
0.6 L L L L —0.05 1 L !
0 0.2 0.4 \ 0.6 0.8 1 1.0 20 3.0 4.0 5.0
po Ric

FIG. 4. Vapor-liquid coexistence curves for the DYF %/ 0°=0 and 1
obtained from simulatioripoint9 and the MSA(curves.

FIG. 6. hp(R) andh,(R) of the DHSF Bey=0) atBu? o°=1 for various
numbers of particles.

Downloaded 13 Nov 2006 to 147.8.21.97. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 110, No. 15, 15 April 1999 Henderson et al. 7353

chain-like structures in the DYF. This question and further M. S. Wertheim, J. Chem. PhyS5, 4291(19713).

work on the thermodynamic properties for the DYF are un- “L. Onsager, J. Am. Chem. SaB8, 1486(1936.
der study L. Blum, J. Chem. Phys51, 2129(1974.

. . 4J. M. Caillol, J. Chem. Phy€18, 9835(1993; M. E. van Leeuwen and B.
The fact that the properties of the DYF can be obtained gt phys. Rev. Letf71, 3991(1993: J. J. Weis and D. Levesquidjd.

from analytic formulas using the MSA is an important ad- 71, 2729(1993.

vantage of the DYF as compared to the similar STMF. For°G- Stfell,fl C. Rasaiah, and ’\;{- ’;‘agangv Mol. P18&.393(1972; A full
P set of references Is given in Ref. 6.

example,_ the DYF could be used as _a reference ﬂu_ld "_1 % . Kronome, J. Liszi, and |. Szalai, J. Chem. Soc., Faraday T&®s.

perturbation theory. To use the STMF in such an application 3053(1997).

requires the use of some numerical fit of the STMF proper-7D. Henderson and W. Schmickler, J. Chem. Soc., Faraday T92n3839

ties that involves a large number of parameters. Furthermore, (1996. _ _

the range parameter of the YF can be varied rather easily.zD‘ilH(ig‘;%rsm' E. Waisman, J. L. Lebovitz, and L. Blum, Mol. Ptfs.

The counterpart of this in the _STMF fluid is to change one orog, Waisman, Mol. Phys25, 45 (1973.

more of the indices 12 and 6 in the Lennard—Jones potential®J. S. Hye and G. Stell, Mol. Phys32, 195(1976; M. Ginoza,ibid. 71,

the Consequences of Wh|Ch are not We” Studied_ 145(1990; D. Henderson, L. Blum, and J. P. Noworyta, J. Chem. PhyS.
102 4973(1995.
113, A. Barker and R. O. Watts, Chem. Phys. L&8, 789 (1973.
12C. Rey, L. J. Gallego, L. E. Gonlez, and D. J. Gonzaz, J. Chem. Phys.
ACKNOWLEDGMENTS 97,5121(1992; C. Rey, L. J. Gallego, and L. E. Goriea, ibid. 96, 6984

1992.
The research was supported by the Research Granl‘ . Levesque, G. N. Patey, and J. J. Weis, Mol. PI3¢.1077(1977).

Council of Hong Kong(HKU249/95B, by the National Sci- 12¢ N Patey, D. Levesque, and J. J. Weis, Mol. P73 (1982,
ence FoundatioiGrant CHE96-0197)1 and by the donors 5. Lomba, C. Martin, and M. Lombardero, Mol. Phy&, 1005(1992.
of the Petroleum Research Fund, administered by the Ameri=J. A. Barker and D. Henderson, Mol. Phy, 187 (1971.

can Chemical SocietyGrant No. ACS-PRF 31573-A09  ,0 goc® § oot 216 | 2% FAer, ey /308 (1101999

DH is a John Simon Guggenheim Memorial Foundation Fel4sg" gmit and D. ,:'renke,', Mol. p'hyg_;L 35 (159]); E Lomba and N. G.

low and is grateful for this support. Almarza, J. Chem. Phy4.00, 8367(1994.

Downloaded 13 Nov 2006 to 147.8.21.97. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



