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A contact cavity-biased method for grand canonical Monte 
Carlo, simulations 

Danny H. L. Yau, Steven Y. Liem, and Kwong-Yu Ghana) 
Department of Chemistry The University of Hong Kong, Po?$dam Road, Hong Kong 

(Received 18 May 1994; accepted 26 July 1994) 

A modification of the cavity-biased grand canonical Monte Carlo (GCMC) proposed by Mezei is 
introduced here. instead of on a fixed grid, test points of cavities are generated at the contact 
positions around the centers of existing particles. The increase in the probability or bias of finding 
a cavity is related to the radial distribution function and can hence be corrected. With this new 
cavity-biased implementation, an improved convergence to equilibrium is demonstrated and higher 
densities can be attained. Comparisons with the standard GCMC method, and the original 
cavity-biased scheme of Mezei are made. 

I. INTRODUCTION 

The grand canonical Monte Carlo (GCMC) method de- 
veloped over the past two decadeslA3 has been popular in the 
studies of fluids, in particular, for mixtures of fluids and 
phase equilibrium studies. In this method, the chemical po- 
tential is fixed and the system density is allowed to fluctuate 
with insertion and deletion of particles. Equilibrium is at- 
tamed when the number of successful insertion and deletion 
attempts balance each other. Application of this technique at 
high density states, however, is difficult because the prob- 
ability of finding a large enough cavity for particle insertion 
is small. Mezei4 proposed that this difficulty can be over- 
come by a biased-sampling method in which insertions are 
made at locations where cavities exist. The bias is corrected 
by reducing the insertion acceptance with a factor corre- 
sponding to the probability of finding a cavity. This probabil- 
ity of finding a cavity is determined by testing a number of 
locations in each Monte Carlo move and at the same time the 
cavities in each move are located. At moderate densities, this 
cavity bias scheme shows a marked improvement over the 
standard GCMC method5 and has been applied to several 
different systems.6*7 At high densities, say at reduced density 
p* larger than 0.6, the probability of finding a cavity is small 
and a large number of test points and a large amount of cpu 
time are required for the cavity-biased GCMC method. In the 
original scheme of cavity biased GCMC proposed by Mezei, 
a fixed grid of test points is used throughout the simulation. 
At high densities, if the test points all overlap with the par- 
ticle coordinates, it will take many MC moves before a cav- 
ity exists when the particles slowly translate away through 
the canonical MC moves. It is therefore advantageous to 
modify Mezei’s method by avoiding the centers of the par- 
ticles. By generating test points at a distance radially out- 
ward from the centers of the particles, we find an increased 
likelihood of tinding a cavity. Furthermore, the test points 
will change with each MC move and can minimize the situ- 
ation with a deadlock configuration. The probability of tind- 
ing a cavity as a function of the distance from the center of a 
particle correlates with the radial distribution function, ac- 
cording to the scaled-particle theory.8 Hence the radial bias 

can be estimated and corrected. The maximum likelihood of 
finding a cavity, as with the maximum of the pair radial 
distribution function, occurs at the distance a, the diameter 
of the particle. A contact-cavity biased GCMC method in 
which test points are at a distance (T away from the centers of 
existing particles, will have the highest efficiency. In this 
paper, we will discuss the motivation and some preliminary 
implementations of this contact cavity-biased GCMC 
method. Simulations of the hard sphere fluid at a wide range 
of chemical potentials are reported. Comparisons with the 
standard GCMC method, the original Mezei’s cavity biased 
method, and the Carnahan-Starling equation’ will be made 
wherever possible. 

II. CAVITY-BIASED GCMC 

A. Grand canonical Monte Carlo simulation 

In a GCMC simulation, the chemical potential (,u), tem- 
perature (T), and volume (V) are fixed and the number of 
particles or the density is allow to fluctuate. The grand ca- 
nonical ensemble partition function is 

Z=jo exp( z) I, exp[ - ~]&-NI(A3NN!), 

(1) 
where N is the number of particles, rN is the coordinate 
vector in the configuration space of N particles, V is the 
volume of the system, U(P) is the potential energy of the 
configuration rN, kB is the Boltzmann factor, T is absolute 
temperature, and A is the thermal deBroglie wavelength 
given by 

‘)Author to whom correspondence should be addressed. 

In a normal GCMC simulation, there are three types of 
moves; (i) a displacement move to displace a particle from 
its original position; (ii) a random deletion move where a 
particle is randomly selected and destroyed; and (iii) a ran- 
dom insertion move where a particle is created at a random 
position in the system. From Eq. (I), a random insertion 
attempt is accepted with the probability 
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PI=min(l,V exp{[p+U(F) 

- U(rN+‘)]lkgT}lh3(N+ 1)) (3 
and a random deletion attempt is accepted with probability 

Pd=min(l,N exp{[-,u+U(rN) 

- U(rN-‘)]lkgT}A3/V), (3)‘ 
where N is the number of particles before the insertion/ 
deletion attempt. Even though GCMC offers a significant 
advantage over simulation in the canonical ensemble, the 
efficiency of this approach decreases with the increase of the 
system’s density. At high densities, insertion attempts are re- 
jected because of the high occurrence of overlapping con- 
figurations. For hard core and repulsive potentials, this prob- 
lem is more pronounced and there are many rejections of 
insertion attempts at high densities. For a hard sphere fluid, 
this difficulty is encountered at p*>O.6. 

B. Cavity-biased GCMC 

A modified GCMC method which can be used to study 
systems at higher density was proposed by Mezei in the early 
1980s. He suggested a modification of the insertion process 
which allows for insertion only at points where a cavity of 
suitable radius exists (R,%r/2). In this case the acceptance 
probabilities for insertion and deletion, Pi and P, will be 
modified as the following: 

PFB = min( 1, VP, exp([ p + U( rN) 

- U(rN+‘)]lkgT}lh3(N+ l)), (4) 
P,CB=min(l,N exp{[-,u+U(+“) 

- U(rN-*)]lkgT}A3/( VP,)), (5) 
where P, is the probability of finding a cavity of radius R, or 
larger in a system of N particles. The realization of the pro- 
posed sampling thus requires the computation of P, and the 
finding of a point that is the center of a cavity of radius R, or 
larger. By generating a number of uniformly distributed test 
points, and finding the fraction of those are in a suitable 
cavity, one obtains both an estimate for P, and also a definite 
point where a new particle can be inserted1 As the simulation 
proceeds, the estimate of P, will necessarily improve. In the 
event where no cavity exists at any of the test points, the 
standard GCMC method will be applied where a random 
deletion or insertion is attempted with the GCMC acceptance 
probability in Eqs. (2) or (3). 

The cavity-biased GCMC method yields a high accep- 
tance ratio of insertion and deletion of particles and can 
sample higher density states. The success of this method de- 
pends on finding at least one cavity in the system and there- 
fore a larger Ntest will be needed at higher densities. 

According to the Widom’s equation,tO*” the chemical 
potential of a test particle in a system of N particles is 

,u=kgT ln(PN-tA’)-knT ln(exp(-AU,,,lksT)) (6) 

therefore, 

peX= - ksT In{exp( - AUtestIkB’O), (7) 

where A Utest is the potential energy change which would 
result from the addition of a particle at random to the system. 
Considering the term exp(- A U,,,,Ik,T) in a hard sphere sys- 
tem, A Utest is equal to zero when there is no overlap or 
infinity when there is an overlap. Therefore the term 
exp(-A U,,,Ik,T) is equal to 1 or 0. Accordingly, in the 
cavity biased method with Ntest test points, 

,u”= -ksT ln(N,,/Ntest), 

P== - kBT In P,, (8) 

where P, is the probability of finding a cavity and N,, is the 
number of cavities found. This result is the same as reported 
in de Souza et a1.r’ The excess chemical potential is related 
to the density by the Camahan-Starling equation 

,dx=kT[-3+(3-~)/(1-~)3]. (9) 
The above equation is derived by integrating the pressure to 
obtain the free energy, A. The pressure, according to the 
Camahan and Starling expression,9 is 

PV/NkT=(l+~+~2-~3)(1-~j~“, i@ 
where 17 is the packing fraction, ~=(~/6)pa. Therefore the 
probability of finding a cavity, as a function of density is 

h(P,)=3-(3-g)/(l-vj3. iw 
At a high density, say p*=O.8, P, is O(lO-‘) which means 
that a minimum value of Ntest= 100 000 is needed before a 
cavity can be found. This places a heavy demand of cpu 
time. 

Ill. MODIFIED CAVITY-BIASED GCMC 

A. Radial correlation of cavities 

In order to study hard sphere fluids at high reduced den- 
sities, a modification of the cavity-biased GCMC method is 
investigated in this paper. In this modification, the test points 
are not uniformly distributed within the system and change 
as the simulation proceeds. Each test point is generated at a 
distance away from a randomly selected particle in the sys- 
tem. This distance of insertion can be chosen by conve- 
nience. The probability of tinding a cavity, P, depends on 
the distance from the central particle where the insertion is 
attempted. According to the scaled particle theory,’ the radial 
distribution of the probability of finding a cavity, given a 
hard sphere in the center, is just the hard sphere pair distri- 
bution function, 

P,(rVP,(~)=gtr), (12) 
where PC(w) is the probability of finding a cavity at infinite 
distance from the central hard particle. The highest P,, is 
therefore, at the contact position of each particle. 

To compare the cavity probabilities at various density 
states, canonical (NVT) MC runs are made with 1000 hard 
spheres. For each simulation, the probability of finding a 
cavity is estimated using Mezei’s method as well as the ra- 
dial sampling method. The value of P, according to Mezei’s 
method is calculated on an evenly spaced 10X 10X 10 lattice 
points. This value of P, is equivalent to P,(m) in the radial 
sampling scheme. P,(r) in the radial cavity search scheme is 
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TABLE I. Probabilities of finding a cavity, P, at 1.000 01~ and 5~ away from a particle and that on a fixed 
grid. 

(4 (b) (4 
Radial Contact Mezei’s 

p” sampling (5~) (1.000 016, method ib)lic) g(1.000 OOcr) 

0.2 0.358 895 0.461706 0,357 75 1 1.290 58 1.292 07 
0.3 0.177 419 0.266 069 0.176 566 1.506 91 1.513 15 
0.4 0.733 781X 10-l 0.128 344 0.728 188X IO-’ 1.76251 1.769 39 
0.5 0.225 41 x10-l 0.483 685X 10-l 0.225 118X10-’ 2.148 58 2.133 82 
0.6 0.507 189X lo-* 0.133 763X10-’ 0.504 416X lo-’ 2.65 1 84 2.48 1 56 
0.7 0.637 9X 10F3 0.218 19X1O-2 0.594 905x 10-3 3.667 64 3.377 72 
0.8 0.448 OX lo+ 0.151 6OX1O-3 0.323 855X1O-4 4.681 11 4.563 50 
0.9 0.120 0x10-s 0.537 5x 10-s 0.100x 1o-5 5.375 0 5.541 64 

evaluated by generating one test point at a fixed distance r, 
but at a randomly chosen angle, around each particle with a 
total of 1000 test points for each insertion attempt. The cav- 
ity probabilities near contact P, (1.000 Oh), the P, at 5a, 
and the P, on a grid (Mezei’s method) are compared in Table 
I. The results are averaged over 10 million MC moves after 
equilibration. Except at high densities (p*>O.7), the P, at 5a 
and the P, on a grid (Mezei’s method) agree within 1% 
equivalent. Figure 1 shows the comparison of these prob- 
abilities as well as the prediction according to Carnahan- 
Starling equation and the Widom’s equation as in Eq. (11). 
The discrepancies at high densities may be due to poor sta- 
tistics of insufficient cavities but it seems that in general, the 
radial cavity probability at long range is larger than that on a 
grid. The results of Table I shows that the increase in prob- 
ability near contact is directly proportional to the distribution 
function. At p* =0.9, it is 5 times more likely to find a cavity 
near contact. To test Eq. (12) and the radial dependence of 
the likelihood of a cavity, P,(r), more canonical (NW’) MC 
simulations were made for 256 hard spheres at two reduced 
densities p*=O.5 and 0.7...Four test points at a distance r 
around each particle are used with a total of 1024 test points 
for each insertion attempt. The P, at various radial distances 

0 

a -8 
B 
.5 

-10 - - -- - - Carnahan Starling and Widom 
-12 

-16 
0.0 0.4 0.6 

reduced density, p* 

FIG. 1. ProbabiIities of finding a cavity, P, according to Camahan-Starling 
and Widom’s equation, radial cavity biased GCMC (at 5~) tid Mezei’s 
cavity biased GCMC. 

are shown in Figs. 2 and 3 for the low and’high densities, 
respectively. It is shown that Eq. (12) is accurate in predict- 
ing the radial dependence of P, . 

B. Frequency correction factor 

Comparing the cavity probabilities in Table I, attempting 
insertion near contact is easier to succeed in GCMC. The 
same acceptance probabilities of Eqs. (4) and (5) can be 
used. In using these equations, the value of P; should be the 
noncontact biased value and can be obtained by Eq. (12) 
since both P,(a) and g(cr) are available in the simulation. 
Theoretically, if the value of PC(a) is known,.e.g., by Eq. 
(ll), there is no need to find more than one cavity in each 
insertion attempt and the more efficient way. of finding a 
cavity, e.g., the contact-cavity biased scheme, the better. This 
will be true if there is more than one cavity in each insertion 
attempt. At high densities, however, PC(a) can be as low as 
10e6 and it will not be possible to find a cavity in each 
insertion move. The contact-insertion scheme will then have 
a bias over the long range insertion scheme when the former 
method finds a cavity more often than the latter. To correct 
for this bias, the probability of finding at least one cavity, 

-r I 

I 

FIG. 2. Comparison of radial distribution function, g(r) with P,(r)/P,(@=) 
at 0.5 reduced density. 
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r/a 

FIG. 3. Comparison of radial distribution functibn, g(r) with P,(r)/P,(m) 
at 0.7 reduced density. 

P,,&(r) which’depends on the number of test points, is cal- 
culated. This is equal -to one minus the probability of not 
finding any cavity in Ntest trials, 

P,l+(~j=i-[i-P,(~)]Ntest. (13) 
This bias of finding’at least one cavity more often can be 
corrected by introducing a frequency correction factor in the 
acceptance probability expressions of Eqs, (4) and (5), 

PFB=min( l,Vf,P, exp{[p+ U(rN) , 

- U(P+1)]lkBT}lA3(N+ l)), (14) 

P$B=min(l,N exp{[-p++(rN) 

- U(F’)]/k,T}A3i( Vf,P,)), .- y (15) 

where f, is equal to the ratio of the probabilities of finding at 
least one cavity, 

fc=P,l+(~VP,l+(4* Ml 
At low densities or high P, , or Ntest is large, f, is close to 
unity. At high densities, this factor is less than one and if 
omitted, will lead to errors in the final density. 

From the results of some test runs, the dependence of the 
frequency correction factor on density and Ntest is illustrated 
in Figs. 4 and 5, respectively. The individual Pcl+ -at 1.01 (+ 
is compared with that of Mezei’s method at different densi- 
ties. At low densities, the two probabilities are identical and 
the frequency correction factor is cIose to one. At .densities 
above 0.6, the frequency correction factor is much below 
unity. In Fig. 5, increase in the number of test points will 
help to narrow the difference of insertion near contact and 
insertion at 4.0 ff. 

C. Test of the algorithm 

The contact-biased GCMC algorithm is implemented 
with the acceptance probability of Eqs. (14) and (15). Com- 
parisons are made with Mezei’s method of insertion on a 
regular grid. To compare the two methods on the same basis, 
insertions and deletions are made only at the end of a cycle, 
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+ 
6 o 

a 0.1 contact cavity biased GCMC(l.Olsigma) 
x Mazei’s cavity biased GCMC 

0.01 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 

reduced density, p* 

FIG. 4. Comparison of the probabilities of finding at least one cavity, P,, + 
between contact cavity biased GCMC (1.01 sigma) and Mezei’s cavity bi- 
ased GCMC method. 

i.e., when attempted displacements of all the particles have _.~ 
been ma&The starting initial configuration is at p*=O.2 
with 256 particles. The total number of cavity test points is 
1006. This corresponds to ten grids on each side of the simu- 
lation box in Mezei’s method or 1 to 4 test points per particle 
in the new method. At a reduced activity of 100 and 100 000, 
both algorithms converge to the same final density after the 
same number of insertion attempts. From-Figs. 6 and 7, the 
contact insertion algorithm tends to have a larger overshoot 
in number of particles before converging to the ljnal number. 
It appears that contact cavity bias is not more efficient and I 
requires the same number of insertion moves. However, one 
additional advantage of the contact cavity bias is that inser- 
tion attempts can be made many times in a MC cycle before 
every particle is displaced. In cavity sampling on a fixed 
grid., there is not much change in the sampling until most of 
the particles are disptaced. Accordingly, more insertion at- 
tempts can be made with the new algorithm. Subsequently, 
extra runs are made with more insertions.per cycle for the .: 

I”““““““““1 

““‘1 
n l.Olsigma .i _ 

o.so! , . / . , , . , , I,, . , , ( ,I 
4 6 8 IO 12 111 16 w 20 22 

Ntest/N 

FIG. 5. The dependence of the frequency correction factor on the number of 
cavity test points per particle, NtestlN sampling at 1.01 u and 4.0 (T. 
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1000 
t 1 I / 1 

E 900 

1 
g 800 
(u 

5 700 
.E 

1 600 
.o 
r 
g 500 

'is -contact sampling (1 insertionlcycle~ 
cj 400 

z ‘...-. grid sampling (1 insertion/cycle) 

300/- , , . .,.,,, , , , ,,,,;I , ( , ,*.,,, 

100 1000 10000 100000 

No. of insertion moves 

FIG. 6. Approach to equilibrium at z’= 100 for the two cavity-biased meth- 
ods. 

contact cavity biased algorithm. With more frequent inser- 
tion attempts per cycle, the contact biased method appears to 
converge much faster on the basis of total MC moves as 
shown in Fig. 8. The total number of MC moves is 100 times 
less than the fixed grid algorithm. 

In Mezei’s method, a finer grid is required at higher 
densities? It is reported that grids less than 0.2 sigma apart 
are required. In the runs of Figs. 7 and 8, the grids are about 
one sigma apart and could have led to the inefficiency and 
errors of the Mezei’s method (especially at the final density). 
A simulation run with a finer grid is thus performed. The 
starting density is p*=O.7 and the final density is about 
p*=O.95. There are 28 grids on each side of the simulation 
box. To implement a fine grid, the cpu time required in- 
creases in proportion to the increased number of grid points. 
Hence, a smaller system of 120 particles at the starting den- 
sity of p*=O.7 is used. The grids are about 0.18 sigma apart 
at the final density. In comparison, a parallel run using new 
method was made with the same number of cavity test 
points. The number of test points for contact cavities in- 

I - . *~.~‘~I * * I.‘..‘, * * I**-’ 

/ 
---contact sampling(1 insertion/cycle 

/ 
,..,-..,grid sampling(1 insertion/cycle) 

I . . . * I...4 I * . * 31111 . * 9  . .a 

1000 10000 100000 IC 

No. of insertion moves 
DO 
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~ grid sampling 

Total no. of MC moves 

FIG. 8. Approach to equilibrium at ~‘=I00 000 in terms of total MC 
moves. 

creased to about 180 per particle. The results in Fig. 9 show 
a smaller disparity between the two methods in the onset of 
density increase probably due to a higher starting density. 
The slope of density increase of the contact sampling method 
seems to be steeper and it outperforms the grid method in 
Figs. 8 and 9. The grid method converges slower and have a 
lower final density of p*=O,928 compared to p*=O.944 in 
the contact sampling method. The corresponding cpu time is 
plotted in Fig. 10 and it shows that the grid method is about 
10 times slower in reaching convergence. 

Further test runs are made for a range of excess chemical 
potential. The link cell13 method is used to reduce the cpu 
time by 3 to 4 times. In these runs, 1000 test points are used 
for cavities sampling and the starting configuration is 
N=256 at p*=O.2 for all the runs. More insertions are made 
in each cycle in the contact cavity biased method. The results 
are tabulated in Table II and plotted in Fig. 11. The reduced 
activity is the input variable in the simulation but is con- 
verted to excess chemical potential with P$X=ln(z’/p*) in 
Fig. 11. The contact insertion method requires about the 

170 . . .."'$ 3 a'...q . "l.aq . ....aq . .....T . . . ..'.'.W I .."a.Y 

3 150 

.r 

t 

;__._: 

8 ..^ 

B 1 . . 4-n 

Z’,” 2 [ 
5 IU” 
* i 

,,’ / u,,u uca,1q.#““y 
3 ._^ . *a ..1 T-1:: c0ntact sampl’ng .i I IO' 108 

IZ” - .““‘- - .““‘- “..aeJ *****-*C 
100 IO' loz 10s 104 105 IO' 

Total no. of MC moves 

FIG. 7. Approach to equilibrium at z’= 100 000 for the two cavity-biased 
methods. 

FIG. 9. Approach to equilibrium for a nm with grid lines 0.18 r~ apart and 
180 test points per particle at 2’ rle7. 
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E 160 
Q, 

b 

27 

'2 150 

.e 

83 140 

9 

ii % 130 -..-.... contact sampling 

P 
120 

100 IO' 102 103 IO' 105 

CPU time (sec.) 

FIG. 10. cpu time from starting configuration to equilibrium for the two 
cavity-biased methods at z’= la7. 

same number of insertion attempts to converge but many less 
MC moves. Furthermore, at high excess chemical potential, 
the contact cavity biased scheme will converge to a density 
in agreement with the Camahan and Starling equation of 
state. The grid method fails to reach a density higher than 
0.9340 despite further increase of ,u”“. The contact method 
also fails to reach density higher than 0.9880. At this density, 
it may be near or actually inside the solid-liquid transition 
region.‘4”5 From the distribution function obtained, however, 
the simulation runs have not reached the state with solid state 
structures. 

The pressure in each run is calculated from the contact 
value of g(r). The resulting compressibility factors are plot- 
ted in Fig. 12. The agreement with the Camahan and Starling 
equation of state is good. 

2 0.8 
0 
E 

4 0.6 

f 0.4 

ISI 
0.2 

-Carnhan & Starling eqn. of state 
v conventional GCMC 
x Mezei’s cavity biased GCMC 
0 contact cavity biased GCMC 

-I 
0 5 10 15 20 25 

excess chemical potential (p$‘) 

FIG. 11. The results of final reduced densities (p*) against excess chemical 
potential for the three GCMC methods and the Carnahan and Starling equa- 
tion of state. 

From the test runs of this work, the contact cavity biased 
algorithm is as accurate and efficient as the grid method at 
moderate- densities. At high densities, it appears to be supe- 
rior in efficiency and accuracy. in all the tests runs, both g(c) 
or P,(r) are obtained during the simulation. If a prior knowl- 
edge of g(a) or P,(w) is assumed, e.g., using the Verlet- 
Weis algorithmt6 or Eq. (1 l), much saving in cpu time can be 

.achieved since cavity sampling can stop with the first cavity 
found. The new method and the grid method both suffer the 
potential problem of an approximate assumption in the mi- 
croscopic reversibility of the insertion and deletion steps. 
The insertions are made into specific cavities but deletions 
can occur anywhere: This imperfectness, however, is less 
severe in the new method because the cavities positions are 

TABLE II. Test runs to compare conventional GCMC, Mezei’s cavity biased GCMC, and contact cavity biased 
GCMC methods, where z’ =zd and z is the activity [z=exp(&)/A3, ~$x=ln(z’/pQ)], and final p* is the final 
reduced densities of the corresponding z’. Insertion moves is the number of insert/delete attempts to reach the 
final p*. Total MC moves is the number of insertion+displacement attempts to reach the final p*. The starting 
configuration is p*=O.2 with 256 particles. 

Total 
Final 

Reduced 
Insertion MC 

activity 
P* moves moves 

z’ a b C a b C a b C 

0.1 0.071 0.071 0.071 1x10s 1x104 1x104 1x10s 1.6~10~ 1x10s 
1 0.2516 0.2518 0.2509 lX105 IX104 1x104 1x10s 2.9X IO6 1x105 

10 0.4438 0.4435 0.4430 1x10s 1x104 1x104 1x10s 8.6X106 1x10s 
100 0.5884 0.5886 0.5860 1x105 1x104 1x104 IX105 1.1x107 1x10s 

1000 0.6914 0.6922 0.6959 1x10’ 1x104 1X104 1x10s 1.4x 107 1x10s 
le4 0.7767 0.7742 0.7780 2x105 1x104 1x104 2x 10s 1.8x107 1x10s 
le5 0.8252 0.8407 0.8422 1.2x lo7 3x105 3x105 1.2x107 3.1x108 3x106 
le6 0.8500 0.8964 0.8964 1.2x 107 4x105 4x105 1.2x107 4.1x108 4x106 
le7 0.8500 0.9289 0.9440 1.2x107 5x10s 5X106 1.2x10’ 5.5x 109 sx107 
le8 0.8500 0.9340 0.9773 1.2x lo7 6X lo6 6X106 1.2x 107 6.7X 10’ 6X107 
le9 0.8500 0.9340 0.9880 1.2x lo7 6X106 6X lo6 1.2x lo7 6.7X10’ 6X107 
1elO 0.8500 0.9340 0.9880 1.2x 107 6X106 6X lo6 1.2x 107 6.7X10’ 6X107 

‘Results of conventional GCMC method. 
bResults of the Mezei’s cavity biased GCMC method with 1000 cavity test points. 
CResults of the contact cavity biased GCMC method with insertion position at 1.0001 sigma for 1000 cavity test 
points. 

.I. Chem. Phys., Vol. 101, No. 9, 1 November 1994 
Downloaded 09 Nov 2006 to 147.8.21.97. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



7924 Yau, Liem, and Chan: Monte Carlo simulations 

I ’ 1 ’ I * I I ’ 1 I 

16 

i 

----Camahan & Starling eqn. of state 
v wwxtional GCMC 

14 x Mezei’s cavity biased GCMC 
0 contact cavity biased GCMC with factors 

12 (1.0001 sigma) 

& 

IO 

z 8 
R 
v 

> 
a 6 

1 

/ 

4 rl I 

01 3 ’ * ’ * ’ ’ ’ s ’ ’ 0.0 0.2 0.4 0.6 0.8 i.0 

reduced density, p* 

FIG. 12. Comparison of cdmpressibilitj factors (PVINkT) against reduced 
densities (p*) for the three GCMC methods and the Camahan and Starling 
equation of state. 

relative to particles’ coordinates which will change through- 
out the simulation and eventually cover the entire space. The 
cavities will be uniformly ‘distributed given adequate statis- 
tics. In the grid method, the cavities are on a prefixed grid 
and not uniformly distributed over the coordinate space of 
the simulation box. It may also be attractive to test the con- 
tact cavity bias further for mixtures of hard spheres and in 
inhomogeneous systems. For systems with other intermo- 
lecular potentials, correlation of cavities may not follow the 
radial distribution functions. Modification of the contact cav- 
ity biased algorithm for these systems will be necessary. 
While we notice the contact peak of pair distribution can be 
high at high densities. It will be even higher for a contact 
triplet. Insertion at positions contacting existing contact pairs 
may have a very high probability of success. An algorithm 
taking advantage of this may have even higher efficiency. 

IV. CONCLUSIONS 

Modifications of the cavity sampling method in the 
cavity-biased GCMC simulation can lead to possible im- 
provements. Abandoning a fixed grid of cavity test points 
allow more frequent sampling of cavities between displace- 
ment cycles. By taking advantage of the radial correlation of 
cavities, insertion at positions contacting existing particles 
will be easier to succeed. Comparisons of these variations of 
GCMC methods show the contact cavity-biased scheme to 
be slightly advantageous and is open to further improve- 
ments. 
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