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Electronic transport and magnetic properties of 1-8Big 1948 3IMNO; have been experimentally
studied. Different resistive behaviors are observed in the cooling and warming processes. The
system first stays at a high resistive state, and switches to a state of lower resistivity when it is
cooled below a critical temperature. However, keeping the sample at a temperature~g&osy

a relaxation to the high resistive state takes place. This process is current dependent, and the
application of a large current slows down the relaxation greatly. There is a strong competition
between the two resistive states, which causes a switch of the system between sta?€82 ©

American Institute of Physics[DOI: 10.1063/1.1494109

LaysCa,sMn0O; is a typical colossal magnetoresistance
(CMR) material, in which a paramagnetic-to-ferromagnetic
transition takes place accompanied by an insulation-to-metal
(MI) transition, and the application of a magnetic field de-
presses the resistivity nedr, greatly, causing the CMR
behavior™ However, partially replacing La by Pr or Nd
produces a much more complex behaVibin addition to
the progressive suppression of the magnetic order, character-
ized by the reduction off. and magnetization, a two-step
magnetic behavior occurs after a critical doping of Pr/Nd.
Accordingly, the overall resistivity increases and the Ml tran-
sition shifts to lower temperatures. Meanwhile, a visible re-
sistivity jump develops in the(T) curve with the increase
of Pr/Nd content, indicating the occurrence of charge order-
ing (CO) that localizes the charge carrier. Metallic conduc-
tion disappears after a critical doping.

The rich and varied behavior of the Pr/Nd-doped com-
pound can be understood in the scenario of phase separation
due to the incorporation of Pr/Nd that causes a coexistence
of the charge-ordered and ferromagnetic phases. A common
feature of Pr_,CaMnO; and Nd_,CaMnO; is the CO
transition’ Bi;_,CaMnOj; is similar to the above two sys-
tems in the sense that it also shows a strong tendency tb CO.
However, when replacing part La of § gCa, 33MnO; by Bi,
we observed completely different behaviors. First, the com-
pound stays at two definitely different resistive states for the
warming and cooling runs. The system stays at the high re-
sistive state near room temperature, and switches to the low
resistive state during cooling. Second, a re-entrance of the
high resistivity state takes place when the sample was kept at
a low temperature, showing a strong tendency to CO.

A polycrystalline sample of Lgu;Big.19£a 3dMN0;
(LBCM51) was prepared by the solid-state reaction method

FIG. 1. Temperature-dependent resistivity measured under different applied
currents. Current-dependent thermal hysteresis appears for a cooling—
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T, indicates the temperature for charge ordering.
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] Resistivity increases exponentially vs time in the initial stage of the relax-
102 1 J ation with the rate depending on the applied current.
101_' 1 the system to the high resistivity state again. On warming,
the system first goes back to the original state, from which it
] ] deviates due to the resistive transition-at00 K, via an
10° LBCM55 3 intermediate plateau, then runs along &) trajectory of

— 7T —T T that state, displaying a significant thermal hysteresis.
0 50 100 150 200 250 300 The rigid transition at~-100 K could be intrinsic for that
Temperature (K) it is repeated and a similar behavior is also observed when
the applied current changes. It may not be the ordinary Mi
FIG. 2. Back and forth switching between different resistive statestransition occurring in La ,,(Pr/Nd),CaMnOs. The lat-
of  LagsBig1easMnO;  (LBCM51, top  panel and  ter is much softer and gentler. This behavior is usually ex-

Lag 47Bi0 1048 3MNo 981001405 (bottom panel Dashed lines show the epected when the system experiences a switch between two
most favorable behaviors for a cooling—warming cycle. Inset displays th

magnetization of LBCM51 measured under a field of 0.1 T. Arrows indicateStales- _SL_lbsequent eXpe”ment_ dO?S suggest the presence of
the temperatures where the transitions occur. two resistive states. As shown in Figbl, p(T) goes along

two definitely different routes for a cooling—warming cycle
) o . in the casd =50 nA. In addition to the ordinary high resis-
following a similar procedure described elsewh%o&ra_y tivity state observed previouslynarked by IV}, a state with
diffraction shows that the sample is single phase with an, m,ch smaller semiconducting slope appears below 220 K
orthorhombically distorted perovskite structure. The 'att'ceduring cooling(l). The difference between these two states is
parameters ara=5.453 A, b=5.451 A, andc=7.691A, 5,55 ghvious from the derivative of with respect to 7.
slightly smaller than that of Lg;/Cay sMnO; (5.484, 5.471, A sharp maximum appears at180 K in the warming run,
and 7.728 5-4'5 . indicating the enhancement of activation energy of the con-
The resistance was measured by the conventional fougyction due to the appearance of CO. This result is consistent
probe technique as a function of temperature. Indium soldefith the neutron diffraction data that confirm the appearance
was used for the connection of the lead lines to the sampleyf a charge-ordered antiferromagnetic structure betel80
Figure 1 shows the temperature-dependent resisfipitf)] K (not shown. In contrast, no obvious resistive anomaly is
of LBCM51. The resistivity was first measured under an appbhserved on coolinginset to Fig. 1b)]. From the above
plied current ofl =5 nA. As expected, an activation-type analysis, it becomes clear that the system stays at the high
conduction is observed when the sample was cooled belovesistivity state initially, and transits to a low resistivity state
room temperature. There is a small kick in th€T) curve, when it is cooled.
which is especially obvious in the warming run and is a sign  Competition between the two states could be strong,
of CO. All these are behaviors similar to those observed inwhich is apparent from the back and forth switching of the
the Pr/Nd-doped compound, and can be understood in theystem between states. Repeating f#{&) measurements
picture of the emergence and development of the resistivander an applied current ¢f=50 A, occasionally we ob-
charge-ordered phase. The insulating behavior is interrupteserved two subsequent resistive transitions during cooling,
at ~100 K by an abrupt turn, and a steady resistivity de-although the most frequently occurring behaviors are those
crease occurs with further cooling unfi=7 K, the lowest presented in Fig. (b). As shown in the top panel of Fig. 2,
temperature for the present experiment. Keeping the samptbe transition at~200 K shows a strong tendency of the
at 7 K, however, a relaxation process appears, which drivesystem to the low resistivity state. However, the succeeding
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ture. Though both 5 and 50A are small currents, they cause

4'01 C ' ' T o] different relaxation rates. The latter slows down the relax-
3.5 4 . ation significantly(Fig. 3. Thel -V relation is a direct mea-
3.0 ] sure of the current effects. Figure 4 exemplifies thev
2 25 characteristics at different stages of the resistivity relaxation
o 7] B at 50 K. Thel -V dependence is linear when the resistivity is
2 20 . small. A nonlineard —V relation emergences wher{T) ex-
S 15 ] ceeds~170  cm. In this case, an irreversible resistivity
> : change takes place. The significantly depressed resistivity
1.04 1 does not recover after removal of the current.
0.5 0 i As a supplement, we would like to point out that the
0.0 A relaxation takes place at temperatures below 60 K, and the
' -_— relaxation rate depends exclusively on the initial resistivity.
0.000 0.003 0.006 0.009 -0.012 By applying a large current, we can depre$3), and study
Current (A) the relaxation starting at different initia(T). We found that
. , . , , e ———— all the resistivity—time relations collapse into a master curve
after a proper shift of the starting time for the relaxation.
_ 1500+ . This is an amazing observation considering the fact that a
g filament-like path is usually possible when the current
o pushes its way through the charge-ordered background.
g 1000+ t (min) In summary, the transport and magnetic properties of
B 0 50 100 150 200 | L:.ao,477Bi0,193C.:aQ.33l\/ln03 h_ave been experimentally stgdied.
:*Z o Different resistive behaviors are observed in the cooling and
% 5004 £ /— : warming processes. The system first stays at a high resistiv-
o ; 0 ity state, and switches to a state of lower resistivity when it is
= / cooled below a critical temperature. However, keeping the
0+ 10 r sample at a temperature belows0 K, relaxation to the high

resistive state takes place. This process is current dependent,

] . and the application of a large current slows down the relax-
Time (min) ation greatly. The system shows a tendency to switch be-

FIG. 4. Current—voltage characteristics foryaBio 10, 2MnO, at dif- tween different states, which implies strong competition be-

ferent stages of the resistivity relaxation at 5atsp panel and the effects tWeen the two resistive states.

of current on resistivitybottom panel Inset in the bottom panel is a plot . .
showing the universality of the relaxation behavior. Numbers in the figure ~ This work was supported by the State Key Project for

indicate the times of thé-V measurement. Elementary Research of China and the National Science
Foundation of China.
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