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Effects of kinetic sorptive exchange on solute
transport in open-channel flow

By C H I U - O N N G AND T. L. Y I P
Department of Mechanical Engineering, The University of Hong Kong,

Pokfulam Road, Hong Kong

(Received 1 August 2000 and in revised form 1 May 2001)

A theory is presented for the transport in open-channel flow of a chemical species
under the influence of kinetic sorptive exchange between phases that are dissolved in
water and sorbed onto suspended sediments. The asymptotic method of homogeniz-
ation is followed to deduce effective transport equations for both phases. The transport
coefficients for the solute are shown to be functions of the local sediment concentration
and therefore vary with space and time. The three important controlling parameters
are the suspension number, the bulk solid–water distribution ratio and the sorption
kinetics parameter. It is illustrated with a numerical example that when values of
these parameters are sufficiently high, the advection and dispersion of the solute cloud
can be dominated by the sorption effects. The concentration distribution can exhibit
an appreciable deviation from Gaussianity soon after discharge, which develops into
a long tailing as the solute cloud gradually moves ahead of the sediment cloud.

1. Introduction
The transport of solutes in streams is affected by a suite of physical, chemical

and biological processes, with the relative importance of each depending on the geo-
environmental setting and properties of the solutes. For many species, chemical and
biological reactions are just as influential as the physical processes of advection and
dispersion in controlling their movement in an aquatic system like a stream. Rathbun
(2000) has recently reviewed the characteristics of the various biogeochemical pro-
cesses (namely volatilization, sorption, wet and dry deposition, microbial degradation,
hydrolysis, aquatic photolysis, oxidation, bioconcentration, and so on) that can affect
the fate and transport of volatile organic compounds in streams. Though chemical
reactions and phase exchange mechanisms have now been incorporated into some
applied transport models (e.g. Onishi 1981; Runkel et al. 1996; Wörman 1998), the-
oretical studies into these chemical effects on the physical transport have been very
limited. There lacks, for example, a systematic understanding of the effects of sorption
kinetics on the longitudinal dispersion: dispersion is conventionally considered to be
affected by physical and hydrodynamic processes only.

Mass transport in streams or long open channels is typically described by a one-
dimensional advection–dispersion equation, in which the longitudinal dispersion co-
efficient is the combination of various section-averaged hydrodynamic mixing effects.
The classical work of Taylor (1953, 1954) established the fact that the primary cause
of dispersion in shear flow is the combined action of lateral diffusion and differential
longitudinal advection. Dispersion in two-dimensional turbulent open-channel flow
was first studied by Elder (1959), whose dispersion coefficient was however found to be
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too low compared with measurements. Taking account of transverse instead of vertical
velocity variations, Fischer (1967) developed a more accurate expression for the coeffi-
cient of longitudinal dispersion in natural streams. McQuivey & Keefer (1974) and Liu
(1977) further proposed simpler formulae for predicting dispersion in natural streams.
Many others also studied the effects due to buoyancy, curvature, dead-zone, channel
irregularities, and unsteady flow (see for example Fischer 1973; Fischer et al. 1979;
Smith 1979a; and the references therein). Only a few works (Smith 1983, 1986) have
considered effects such as boundary absorption and reaction on the longitudinal dis-
persion in shear flows. There exist even fewer theoretical developments in which reac-
tive chemistry involving phase exchange of the solute is specifically taken into account.

The significance of phase exchange for solute transport in open-channel flow was
recently examined by Ng (2000a, b). Ng (2000a) presented an analytical study on the
transport of a chemical pollutant resulting from the discharge of polluted fine particles
into a two-dimensional stream, where local equilibrium partitioning between dissolved
and sorbed phases is assumed. Because of sorption, the transport of the dissolved
phase is affected by that of the suspended particulates. In particular, the advection
velocity and dispersion coefficient of the solute will change in space and time according
to the local sediment concentration. Ng (2000b) also investigated the effects of kinetic
sorptive exchange on the dispersion of a sorbing solute in a stream which is laden
with a steady uniform streamwise distribution of suspended sediments. As a result,
the dispersion coefficient is composed of a modified Taylor dispersion coefficient and
a component due to the finite rate of mass exchange between the dissolved phase
in the water column and the sorbed phase on suspended sediments. Following these
works, it is the intention here to advance a more general theory for the transport
of a sorbing solute under the influence of sediment transport. While essentially an
extension of Ng (2000a), the present work is more general by taking into account the
kinetics of sorptive exchange and a finite fall velocity of particulates, which will lead to
non-trivial effects on the transport of the solute, both quantitatively and qualitatively.

The present study formulates a theory for the transport in open-channel flow of a
chemical species which is partitioned between a dissolved phase in the water column
and a sorbed phase onto suspended solid particles. It features original results due to
the sorption kinetics, by which the advection and dispersion of the solute cloud are
functions of that of the particle cloud. For non-buoyant particles such as dissolved
substances, the mean advection velocity is essentially equal to the discharge velocity
(Elder 1959). For heavy particles, the mean advection velocity is however the fluid
velocity weighted by the particle concentration profile, which in general is smaller
than the discharge velocity. Also, because of greater shear near the bed, the dispersion
is enhanced by gravitational settling. Therefore, heavy particles tend to move more
slowly but are subject to a larger extent of dispersion compared with non-buoyant
particles. These results have been confirmed experimentally (Sayre & Chang 1968;
Granata & Horne 1985), and verified by theory (Sayre 1968; Sumer 1974). It is
of fundamental interest to find out how these two kinds of transport behaviour
will combine to affect the transport of a sorbing chemical pollutant that has been
discharged into a sediment-laden stream.

In contrast with the Aris (1956) method of moments, the method of homogen-
ization (see its engineering applications in a recent review by Mei, Auriault & Ng
1996) is an efficient and direct method of deducing effective governing equations
for the concentration distributions. The deduced advection velocity and dispersion
coefficients, which can be functions of the longitudinal coordinate and time, are
in general expressible in terms of some sectional averages of the flow and mixing
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characteristics. For sufficiently simple velocity and diffusivity profiles, these coefficients
can be found analytically. The homogenization method is based on the asymptotic
technique of multiple scales, and therefore the orders of physical variables need to be
stated a priori. The advantage is that the range of validity of the deduced equations is
clearly defined. Following Ng (2000a, b), the method of homogenization is also used
in the present work.

The problem is further defined in § 2. The basic assumptions and the orders
of variables are also stated in this section in order to facilitate the subsequent
perturbation analyses. The homogenization method is followed in § 3 and § 4, where
the effective transport equations for sediments and a chemical species are deduced,
respectively. The advection velocity and dispersion coefficients for the chemical are
shown to depend on the sediment concentration via effects of sorption partitioning
and kinetic phase exchange. A numerical example is presented in § 5, where transport
of a contaminant resulting from a pulse input of contaminated sediments into a
wide stream is considered. The sorption effects become strong when the fraction
of mass in the sorbed phase is high and when the sorption exchange is slow to
attain equilibrium. Under these conditions, the sorption effects are shown to be very
influential in controlling the characteristics of the concentration distributions of the
chemical.

2. Problem formulation
To avoid excessive mathematical complication, we study a problem that is simplified

but still sufficient to reveal the physics. As in Elder (1959) and Sumer (1974), a steady
and fully developed shear flow in a wide open channel on a plane mild slope is
considered. While the dispersion coefficient is materially affected by the configuration
of the channel, the basic mechanisms that lead to dispersion remain the same.
Therefore, it suffices to consider a two-dimensional transport problem in order to
demonstrate the importance of a certain process to the dispersion. A generalized
three-dimensional theory is of course required if one needs to evaluate the effect of
the process on the dispersion coefficient for a natural stream; this is not pursued in the
present study. Also, we shall focus our attention only on one phase exchange process,
namely sorption taking place in the water column. The purpose is to develop an
analytical tool by which one can estimate the contribution of the sorptive exchange,
as a modular component among various processes, to the overall physical transport.

For the uniform flow under consideration, the normal depth is h and the (x, z)
coordinates are such that x points downstream along the channel bottom and z in
the upward direction. Sediments, either naturally occurring or dumped by human
activities, are fine solid particles with a constant settling or fall velocity wf , and stay
in suspension in the main body of flow all the time. By this, mass exchange with the
bed is ignored; the bottom absorbency and entrainment rates are both assumed to
be zero. More general bottom conditions without these assumptions (e.g. Sayre 1968;
Smith 1986) can also be adopted, but are not considered in this work for simplicity.

The sediment particles are assumed to contain a sufficiently high content of sorbents
such as organic matter so that when a chemical pollutant is discharged into the flow,
an appreciable mass fraction of the chemical is sorbed onto the particles. The flow
characteristics are assumed to be unaffected by the presence of the dispersants. Fine
sediment particles and solutes typically have approximately equal turbulent mixing
coefficients or eddy diffusivities. A common practice (e.g. Sayre 1968), which is
adopted here, is to use exactly equal eddy diffusivities for both.
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Conservation of mass gives the following transport equation for the suspended
sediments:

∂ζ

∂t
+ u

∂ζ

∂x
− wf ∂ζ

∂z
=

∂

∂x

(
Ex
∂ζ

∂x

)
+

∂

∂z

(
Ez
∂ζ

∂z

)
, (2.1)

where t is the time, ζ(x, z, t) is the sediment concentration (mass of suspended particles
per bulk volume), u(z) is the time-smoothed fluid velocity, and Ex(z) and Ez(z) are
respectively the longitudinal and vertical components of the eddy diffusivity. The net
flux vanishes on the bottom and top of the channel, so the boundary conditions are

wfζ + Ez
∂ζ

∂z
= 0 at z = 0, h. (2.2)

For the chemical species that is partitioned between an aqueous phase and a
solid phase, the total mass concentration Ctot(x, z, t) (total mass of chemical per bulk
volume) is

Ctot = C + Csζ, (2.3)

where C(x, z, t) is the solute concentration (mass of dissolved phase of chemical
per bulk volume) and Cs(x, z, t) is the sorbate concentration (mass of solid phase
of chemical sorbed onto unit mass of suspended sediment). The transport of the
chemical is governed by

∂Ctot

∂t
+ u

∂Ctot

∂x
− wf ∂Csζ

∂z
=

∂

∂x

(
Ex
∂Ctot

∂x

)
+

∂

∂z

(
Ez
∂Ctot

∂z

)
, (2.4)

and the zero-flux boundary conditions

wfCsζ + Ez
∂Ctot

∂z
= 0 at z = 0, h. (2.5)

Sorption is a reversible reaction between aqueous and solid phases of the chemical.
As commonly assumed in transport modelling (e.g. Valocchi 1985; Bahr & Rubin
1987; Cvetkovic & Dagan 1994; Holmén 1995), the overall sorption rate can be
described by a first-order linear kinetics expression

∂Cs

∂t
= kfC − kCs, (2.6)

where kf and k are respectively the forward and reverse rate constants for the sorption
reaction. When the steady state is attained or the reaction is fast compared with other
processes, the two phases will be in chemical equilibrium. Then the ratio of their
concentrations will be given by

Cs/C = kf/k ≡ Kd, (2.7)

where Kd is termed the sorption partition coefficient. The first-order kinetics model
also assumes that the sorption isotherm is linear. The sorption coefficient Kd, which
can be estimated by established methods (e.g. Schwarzenbach, Gschwend & Imboden
1993), depends on the properties of both the chemical (sorbate) and the sorbing site
(sorbent). On substituting (2.7) into (2.6), the first-order kinetics can be written as

∂Cs

∂t
= k(KdC − Cs), (2.8)

or the rate of change of the sorbate concentration is linearly proportional to the
departure from local equilibrium. The reverse rate constant k will simply be referred
to as the sorption rate constant.
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Three important time scales are associated with transport in a wide channel:
T0 = h2/E for vertical diffusion across the depth of flow; T1 = L/u for advection
along the channel; and T2 = L2/D for longitudinal dispersion along the channel. In
these relations, L is the length scale in the longitudinal direction, h the flow depth,
u the discharge velocity, E the eddy diffusivity, and D the dispersion coefficient. It
was first pointed out by Taylor (1953) that three-dimensional mass transport in a
pipe can be modelled by a one-dimensional equation only at an asymptotic stage
when the dispersion time due to advective transport is long compared with that
required to remove lateral concentration variations through the action of diffusion,
or in the present context T0 � T1, T2. Smith (1979a) argued that a cloud needs to
have been advected by a distance O(10h) downstream before the dispersion can be
modelled by a depth-averaged equation. Computations by Sayre (1968) revealed that
for an initial plane source in a two-dimensional turbulent channel, the dispersion
coefficient reaches its limiting value when t/T0 > 0.5 while the skew coefficient
becomes negligibly small when t/T0 > 3. Many others also contributed to the
analysis of the early stage of dispersion along pipes or channels (e.g. Chatwin 1970,
1972, 1976, 1977; Sullivan 1971; Barton 1976; Smith 1979b). By and large, one
may conclude from these works that at a time scale much longer than T0 the
transport can be adequately described by a one-dimensional model. Specifically it is
assumed in this study that the three time scales are distinct: T0 � T1 � T2, and the
primary scales of concern are T1 and T2 only. With these assumptions, the present
asymptotic analysis (see § 3) will recover a series expansion of the solute concentration
as previously introduced by Chatwin (1970, equation 1.14). It is also shown that the
terms with the third and higher derivatives of the concentration in the transport
equation of Chatwin (1970, 1972) are actually subdominant if a time scale up to
O(T2) is considered.

To prepare the ground for subsequent perturbation analyses, the scalings of physical
variables are estimated as follows. These scaling relationships have largely been
established by Ng (2000a, b), and for completeness are repeated here.

(a) The shear dispersion coefficient D is expected to dominate over the eddy
diffusivity Ex in controlling the longitudinal spreading of the solute and sediments.
Elder (1959) has evaluated that for a two-dimensional turbulent open-channel flow

Ex = Ez = 0.07u∗h and D = 5.86u∗h, (2.9a, b)

where the overbar denotes the depth average, and u∗ is the shear velocity given by

u∗ ≡ (τb/ρ)1/2 = (gh sin θ)1/2, (2.10)

where τb is the bottom shear stress, ρ is the fluid density, g is the acceleration due
to gravity, and θ is the channel slope. It is clear from (2.9a, b) that the dispersion
coefficient D is much larger than the turbulent diffusivity E, and the small ratio

Ez/D ≡ ε� 1 (2.11)

will be used as the perturbation parameter. Accordingly, the longitudinal and vertical
rates of diffusion will be scaled by D and E respectively.

(b) The focus is on the mass transport after a sufficiently long time from discharge.
By then, the longitudinal length scale L for the spread of substances will be much
longer than the flow depth h. The length scale L can be defined by assuming that the
transport rate due to longitudinal dispersion is effectively two orders of magnitude
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smaller than that due to the vertical diffusion, or

∂

∂x

(
D
∂C

∂x

)/
∂

∂z

(
Ez
∂C

∂z

)
= O

(
ε2
)
. (2.12)

The above relation, on using (2.11), gives a ratio for the two length scales:

h/L = O(ε3/2). (2.13)

(c) The ratio of advection to vertical diffusion is a Péclet number, and on using
(2.9a) can be estimated as follows:

Pez ≡ uh/Ez = O
(
u/0.07u∗

)
, (2.14)

where u is the depth-averaged fluid velocity, and u∗ is the shear velocity given by
(2.10). Since typically u > u∗, the above number is much larger than unity. We
specifically assume that the transport rate due to longitudinal advection is effectively
one order of magnitude smaller than that due to the vertical diffusion, or

u
∂C

∂x

/
∂

∂z

(
Ez
∂C

∂z

)
= O(ε). (2.15)

On using (2.13), the above relation gives an estimate for the Péclet number:

Pez = O(ε−1/2). (2.16)

(d) The fall velocity wf of a sediment particle depends on the size and shape of the
particle. Grains of fine sand and silt have shape factor close to unity, and their fall
velocity can be determined from the diameter d of an equivalent spherical particle.
A graphical relation between the parameters wf/[(ρs/ρ− 1)gd]1/2 and (d/4ν)[(ρs/ρ−
1)gd]1/2, where ρs is the solid density, and ν is the fluid kinematic viscosity, has been
compiled by Madsen (1975). From this graph, one can readily determine that for fine
sands with 0.1 mm nominal diameter and unity shape factor, the fall velocity is on
the order of 0.01 m s−1. Typically, the stream velocity is on the order of 1–0.1 m s−1.
Therefore, it is reasonable to assume that

wf/u 6 O(ε1/2). (2.17)

This implies that, with (2.16),

Ez/wf > O(h), (2.18)

or the suspended particles fully distribute across the water column.
(e) The ratio of rate of sorption to rate of vertical diffusion is a Damköhler number,

which can be written as follows:

Da ≡ kh2/Ez = O
(
kh/0.07u∗

)
, (2.19)

where k is the first-order sorption rate constant. Given the aggregate nature of
suspended solids and sediments (Johnson 1974; Zabawa 1978; Chase 1979), sorption
kinetics are very often modelled with rate-limiting diffusion into a spherical particle.
By virtue of this model, the sorption rate constant can be estimated by (Wu &
Gschwend 1986; Schwarzenbach et al. 1993, p. 337):

k ' 23De/r
2, (2.20)

where r is the aggregate radius, and De is the effective aggregate diffusion coefficient



Effects of kinetic sorptive exchange on solute transport 327

given by

De =
φτ−1Dw

Kd(1− φ)ρs + φ
(2.21)

in which Dw is the chemical diffusivity in pure water, τ is the tortuosity factor of the
aggregate porous structure, φ is the aggregate porosity and ρs is the solid density. For
a strongly hydrophobic compound, the effective aggregate diffusivity can be as low as
De = O(10−8 cm2 s−1). Assuming an aggregate radius of r = 0.5 mm, the sorption rate
constant from (2.20) is then k = O(10−4 s−1). Further, using typical values h ' 5 m and
u∗ ' 0.01 m s−1, it follows from (2.19) that the Damköhler number is of order unity:

Da = O(1), (2.22)

or the sorption rate is comparable with the vertical turbulent diffusion rate.
(f) The fractions of chemical in the water and on the solid are assumed to be

comparable with each other so that both phases are important in the resultant
transport. The bulk solid–water distribution ratio, defined below, must therefore be
of order unity:

Kdζ = O(1), (2.23)

where Kd is the sorption partition coefficient and ζ is a scale of the sediment
concentration. Typically the suspended sediment concentration is in the range 10−4–
10−5kg l−1. Even for such low concentrations, the solid–water distribution ratio can
still be of order unity if the chemical is sufficiently hydrophobic and has a high
value of sorption partition coefficient Kd. For example, Wu & Gschwend (1986) have
found that for a number of natural bed sediments the sorption partition coefficient
can be as high as 4700 l kg−1 where the sorbates are chlorobenzenes. Heavy metals
and polychlorinated biphenyls also have very high values of Kd on the order of
104–106 l kg−1. Schnoor (1996, p. 427) has calculated that the fraction of lead (II)
adsorbed on suspended sediments can exceed 0.5 at pH 7 or above in a lake where the
suspended solid concentration is only 10−6 kg l−1. In short, it is possible for (2.23) to
be realistic provided that both the sediment concentration and the sorption partition
coefficient are sufficiently large.

(g) Recall the three time scales T0, T1 and T2 which correspond respectively to
the time scales for diffusion across the flow, longitudinal advection and longitudinal
dispersion. It is now clear that these time scales are of successively higher orders:

T0/T1 = h2u/LEz = O(ε), (2.24)

where (2.13) and (2.16) have been used, and

T1/T2 = D/Lu = O(ε), (2.25)

where (2.11), (2.13) and (2.16) have been used. Since the focus is on the longitudinal
transport, variations of concentrations over the shortest time scale T0 associated with
vertical diffusion will not be accounted for.

With the above scalings, the order of magnitude of individual terms in the governing
equations and boundary conditions (2.1), (2.2), (2.4), (2.5) and (2.8) can be estimated.
These equations are repeated below, with the ordering parameter ε now inserted to
indicate the relative order of the associated term. The sediment transport equation is

ε
∂ζ

∂t
+ εu

∂ζ

∂x
− wf ∂ζ

∂z
= ε2 ∂

∂x

(
Ex
∂ζ

∂x

)
+

∂

∂z

(
Ez
∂ζ

∂z

)
, (2.26)
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with the boundary conditions

wfζ + Ez
∂ζ

∂z
= 0 at z = 0, h. (2.27)

The chemical transport equation is

ε
∂Ctot

∂t
+ εu

∂Ctot

∂x
− wf ∂Csζ

∂z
= ε2 ∂

∂x

(
Ex
∂Ctot

∂x

)
+

∂

∂z

(
Ez
∂Ctot

∂z

)
, (2.28)

with the boundary conditions

wfCsζ + Ez
∂Ctot

∂z
= 0 at z = 0, h. (2.29)

The sorption kinetics equation is

ε
∂Cs

∂t
= k(KdC − Cs). (2.30)

Perturbation equations are obtainable on substituting the following multiple-scale
expansions into the above equations:

(ζ, C, Cs)→ (ζ0, C0, Cs0) + ε(ζ1, C1, Cs1) + ε2(ζ2, C2, Cs2) + O(ε3), (2.31)

∂/∂t→ ∂/∂t1 + ε∂/∂t2. (2.32)

A depth-average is denoted by an overbar. For example, for any function F(z),

F ≡ 1

h

∫ h

0

Fdz. (2.33)

3. Transport of suspended sediments
The leading-order sediment concentration ζ0 is governed by

∂

∂z

(
wfζ0 + Ez

∂ζ0

∂z

)
= 0 in 0 < z < h, (3.1)

with the boundary conditions

wfζ0 + Ez
∂ζ0

∂z
= 0 at z = 0, h. (3.2)

Clearly, ζ0 satisfies wfζ0 + Ez∂ζ0/∂z = 0 for 0 < z < h, which gives

ζ0(x, z, t) = ζb(x, t)f(z), (3.3)

where ζb = ζ0(z = 0) is the sediment concentration at the bed level, and f(z) is the
sediment distribution factor resulting from a balance between turbulent mixing and
sedimentation:

f(z) = exp

(
−
∫ z

0

wf

Ez
dz′
)
. (3.4)

This factor, which decreases monotonically upward with z for a positive fall velocity
wf , governs the distribution of the sediment concentration in the water column.

At O(ε), the perturbation equation after substituting (3.3) is

f
∂ζb

∂t1
+ fu

∂ζb

∂x
=

∂

∂z

(
wfζ1 + Ez

∂ζ1

∂z

)
in 0 < z < h, (3.5)
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and the boundary conditions are

wfζ1 + Ez
∂ζ1

∂z
= 0 at z = 0, h. (3.6)

On taking an average over the depth and using the boundary conditions, (3.5) yields
the leading-order transport equation for the suspended sediments

∂ζb

∂t1
+ us

∂ζb

∂x
= 0, (3.7)

where ζb(x, t) is the sediment concentration at the bed level, and

us = fu/f (3.8)

is the effective advection velocity of the sediments, which is a depth-averaged velocity,
weighted by the sediment distribution factor f. As expected, only advection appears
in this equation.

One can easily show that

u− us = −(f − f)(u− u)/f. (3.9)

Hence the difference between the velocities of discharge and sediment advection is
related to the depth covariance between the sediment concentration and the fluid
velocity. For heavy particles whose concentration increases monotonically towards
the bottom, the covariance is negative and therefore us < u, or the advection speed of
the sediment cloud is lower than the discharge velocity. In the limiting case of very
fine particles such that the settling velocity is wfh/Ez � 1, the sediment distribution
factor in (3.4) can be approximated by

f ∼ 1−
∫ z

0

wf

Ez
dz′ as wfh/Ez � 1. (3.10)

Then one can also show that

u− us ∼ (u− u)
∫ z

0

wf

Ez
dz′ as wfh/Ez � 1, (3.11)

as previously obtained by Ng (2000a). On adopting a logarithmic velocity profile and
a parabolic diffusivity profile, Ng further found that the right-hand side of (3.11)
equals π2wf/6κ

2 where κ = 0.4 is von Kármán’s constant. Therefore, as the sediments
become sufficiently fine-grained, their centre of mass is being advected more slowly
than the discharge velocity by a speed of approximately ten times the fall velocity.

On eliminating the unsteady term from (3.7) and (3.5), we get

f(u− us)∂ζb
∂x

=
∂

∂z

(
wfζ1 + Ez

∂ζ1

∂z

)
. (3.12)

By linearity, it follows from (3.12) and (3.6) that the following form for the first-order
sediment concentration ζ1(x, z, t) can be suggested:

ζ1 = N
∂ζb

∂x
, (3.13)

where N(z) is a cell function that is governed by the following boundary value
problem:

d

dz

(
wfN + Ez

dN

dz

)
= f(u− us) in 0 < z < h, (3.14)

wfN + Ez
dN

dz
= 0 at z = 0, h. (3.15)
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The problem can be solved by the method of integrating factor, and has the solution

N(z)− fN0 = f

∫ z

0

dz′

fEz

∫ z′

0

f(u− us)dz′′ (3.16)

where us is given by (3.8), and N0 = N(0) is undetermined unless a uniqueness
condition for N is specified. Uniqueness conditions will be specified in § 4. Note
that N(z) describes the vertical variation for the O(ε) correction to the sediment
concentration, and is a function of the fall velocity through its dependence on the
distribution factor f given by (3.4).

At O(ε2), the perturbation equation is

f
∂ζb

∂t2
+
∂ζ1

∂t1
+ u

∂ζ1

∂x
=

∂

∂x

(
fEx

∂ζb

∂x

)
+

∂

∂z

(
wfζ2 + Ez

∂ζ2

∂z

)
, (3.17)

and the boundary conditions are

wfζ2 + Ez
∂ζ2

∂z
= 0 at z = 0, h. (3.18)

Using the boundary conditions, the depth-average of (3.17) gives

f
∂ζb

∂t2
+
∂ζ1

∂t1
+ u

∂ζ1

∂x
=

∂

∂x

(
fEx

∂ζb

∂x

)
. (3.19)

Further, replacing ζ1 by (3.13) and ∂ζb/∂t1 by (3.7), we obtain an O(ε) equation that
describes longitudinal diffusion of sediments on the long time scale T2:

∂ζb

∂t2
= Ds

∂2ζb

∂x2
, (3.20)

where the diffusion coefficient Ds is composed of

Ds = fEx/f + DTs. (3.21)

While the first component of Ds is a depth-averaged longitudinal eddy diffusivity
weighted by the sediment distribution factor f, the second component DTs is a
dispersion coefficient, which after substituting (3.16) can be further developed as
follows:

DTs = −N(u− us)/f = −(N − fN0)(u− us)/f

= −f(u− us)
∫ z

0

dz′

fEz

∫ z′

0

f(u− us)dz′′
/
f (3.22)

= (fEz)
−1

[∫ h

z

f(u− us)dz′
]2/

f, (3.23)

where integration by parts has been used in the final step (Ellison 1960). We remark
that DTs does not depend on the yet undetermined constant N0. Being always positive,
this coefficient is virtually a Taylor dispersion coefficient, where the flow quantities
have been weighted by the sediment distribution factor f. Smith (1996) has obtained
similar weighted-square formulae for the Taylor dispersion coefficient for rising and
sinking particles in wind-affected shear currents.

It is clear that the above results recover the case of dispersion of non-buoyant fluid
particles when wf = 0 or f = 1, by which (3.22) reduces to the well-known expression
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for the Taylor dispersion coefficient (see for example Fischer et al. 1979):

DT = −(u− u)
∫ z

0

dz′

Ez

∫ z′

0

(u− u)dz′′. (3.24)

The integral expression (3.24) was first explicitly obtained by Elder (1959, equation
9). Elder however made a mistake on extending this expression to buoyant and
heavy particles. He suggested that (3.24) could be used for such particles by simply
replacing the mean fluid velocity u by the particle advection velocity us = fu/f. It is
now obvious from (3.23) that Elder has omitted to take into account the distribution
factor f in several other places in the integral. This explains why Sayre (1968) and
Sumer (1974) found their computed results in wide disagreement with predictions by
Elder’s expression. The reason for the discrepancy seems not to have been correctly
pointed out before. The issue is further discussed by Ng (2001).

To compare with Chatwin (1970), let us also find a formal expression for the O(ε2)
sediment concentration ζ2, which can be found by eliminating ∂ζb/∂t2 from (3.17)
and (3.20):

ζ2 = M
∂2ζb

∂x2
, (3.25)

where the function M(z), which describes the vertical variation for the O(ε2) correction
to the sediment concentration, satisfies the following boundary value problem:

d

dz

(
wfM + Ez

dM

dz

)
= (u− us)N − (f/f)(u− us)N − fEx + (f/f)fEx

in 0 < z < h, (3.26)

and

wfM + Ez
dM

dz
= 0 at z = 0, h. (3.27)

Putting (3.3), (3.13) and (3.25) into (2.31), we have the following expansion series for
the sediment concentration:

ζ(x, z, t) = fζb + εN
∂ζb

∂x
+ ε2M

∂2ζb

∂x2
+ O(ε3). (3.28)

Again, considering the limiting case of non-buoyant particles, wf = 0 or f = 1, one
can easily find that the functions N and M, as defined in (3.14)–(3.15) and (3.26)–
(3.27), are not different from the functions g(1) and g(2) introduced by Chatwin (1970,
equations 1.10 and 2.12). Therefore, the expansion (3.28) has the same meanings as the
expansion (1.14) of Chatwin (1970), but the order of each term is now more clearly
stated. It is important to realize that the effects of ζ2 that lead to a term proportional
to ∂3ζb/∂x

3 (Chatwin 1970, 1972) will not show up in the depth-averaged transport
equation until O(ε2). In this study, it suffices to consider a time scale no longer than
T2, and therefore the higher-order diffusion terms need not be sought.

Finally, we may combine (3.7) and (3.20) to get the effective transport equation for
the sediment concentration ζb(x, t), which is correct to O(ε):

∂ζb

∂t
+ us

∂ζb

∂x
= Ds

∂2ζb

∂x2
, (3.29)

in which us and Ds are constants and given by (3.8) and (3.21) respectively.
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4. Transport of chemical species
Let us now focus our attention on the transport of the chemical species. The formal

procedure of deduction resembles that in the preceding section, and therefore only
the key results are presented below. From (2.30), the chemical partitioning between
the dissolved and sorbed phases is in local equilibrium only at the leading order:

Cs0 = KdC0, (4.1)

where Cs0 and C0 are respectively the leading-order sorbate and solute concentrations,
and Kd is the equilibrated sorption partition coefficient. Hence the O(1) total chemical
concentration can be written as

Ctot0 = C0(1 +Kdζ0) = RC0, (4.2)

where

R(x, z, t) = 1 +Kdζ0 = 1 +Kdζb(x, t)f(z) > 1 (4.3)

is the retardation factor resulting from the chemical partitioning. A retardation factor
is so termed because in groundwater mass transport it is the ratio of the water
seepage velocity to the transport speed which is diminished by phase partitioning.
The terminology is adopted here since the form is the same. Physically the factor is
the ratio of the total concentration to the solute concentration, and reflects the extent
of sorption.

It follows from the O(1) terms of (2.28) and (2.29) that C0 is independent of z, and
therefore

C0 = C0(x, t) and Cs0 = Cs0(x, t) = KdC0(x, t). (4.4)

At leading order, the solute and sorbate concentrations are uniformly distributed
locally across the water column.

At O(ε), (2.30) gives

∂Cs0

∂t
= k(KdC1 − Cs1), (4.5)

where k is the rate constant for the first-order sorption kinetics. Hence the rate of
change of the sorbate concentration is driven by the departure from local equilibrium
between the O(ε) concentrations. The leading-order transport equation for the solute
is obtained after taking a depth-average of the O(ε) terms of (2.28):

∂C0

∂t1
+ uc

∂C0

∂x
= 0, (4.6)

where C0(x, t) is the leading-order solute concentration, and

uc(x, t) = Ru/R (4.7)

is the leading-order effective advection velocity in which R(x, z, t) is given by (4.3).
This is essentially an average velocity weighted by the retardation factor R. One
may find from (3.7) and (4.6) that the sediment and the solute clouds are in general
advected at different speeds, since

uc = us + (u− us)/R = u− (R − 1)(u− us)/R. (4.8)

As discussed earlier, u− us > 0 for settling particles, R > 1 and therefore u > uc > us.
In other words the advection speed of the solute is larger than that of sediments, but
will be smaller than the discharge velocity in the presence of sediments.
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Similar to ζ1 in (3.13), the following form for C1 can be suggested:

C1(x, z, t) = P
∂C0

∂x
. (4.9)

The function P (x, z, t), which describes the vertical variation for the O(ε) correction
to the solute concentration, is given by

P − P0 =

∫ z

0

dz′

REz

∫ z′

0

R(u− uc)dz′′, (4.10)

where R(x, z, t) is the retardation factor given by (4.3), and P0 = P (z = 0) is also
undetermined unless a uniqueness condition is specified for the above problem. Now,
we may obtain from (3.13), (4.1), (4.5), (4.6) and (4.9) the following expressions for the
O(ε) correction to the sorbate concentration and the total chemical concentration:

Cs1(x, z, t) = Kd(P + uc/k)
∂C0

∂x
(4.11)

and

Ctot1 = (RP +Kdζ0uc/k)
∂C0

∂x
+KdN

∂ζb

∂x
C0. (4.12)

Recall that we still have the freedom to choose uniqueness conditions for N and P
in order to determine their boundary values. With a view to simplifying the advection
terms in the effective transport equations, we add the condition that

Ctot1 = 0, (4.13)

which can be satisfied if, evident from (4.12),

RP +Kdζ0uc/k = 0 and N = 0. (4.14)

These constraints ensure that Ctot0 and ζ0 are correct to O(ε) since their first-order
corrections are zero: Ctot1 = ζ1 = 0. Conditions similar to (4.14) have also been
applied by Chatwin (1970), Mei (1992) and Ng (1999).

If conditions (4.14) are chosen, we may obtain, after some algebra, from the O(ε2)
terms of (2.28) a higher-order transport equation for the solute:

∂C0

∂t2
+ u′c

∂C0

∂x
=

∂

∂x

(
Dc
∂C0

∂x

)
, (4.15)

where

u′c(x, t) = −Kdf

R
(Ds + Dc)

∂ζb

∂x
(4.16)

is the O(ε) correction to the advection velocity in which Ds is given by (3.21), and

Dc(x, t) = REx/R + DTc + DKc (4.17)

is the effective dispersion coefficient. Similar to Ds, the first component of Dc is a
depth-averaged longitudinal eddy diffusivity, but now weighted by the retardation
factor R. The other components, DTc and DKc, are dispersion coefficients formally
given by

DTc(x, t) = (REz)
−1

[∫ h

z

R(u− uc)dz′
]2/

R, (4.18)
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and

DKc(x, t) = −Kdζbuc

kR
2

(f − f )(u− u ). (4.19)

Like (3.23), DTc does not depend on the value of P0, and hence is not affected by
the uniqueness condition. Also, it is always positive and virtually a Taylor dispersion
coefficient, where the flow quantities have been weighted by the retardation factor R.

The other coefficient DKc, which was first obtained by Ng (2000b), is an additional
dispersion coefficient due to the kinetics of solid–water sorptive exchange. It is
proportional to the bulk solid–water distribution ratio Kdζb and the depth covariance
between the sediment concentration and the fluid velocity, and inversely proportional
to the sorption rate constant k. For settling particles, the covariance is negative and
therefore the dispersion coefficient DKc is always positive as well. Also, the stronger
the kinetics of sorptive exchange, the larger the value of DKc. See Ng (2000b) for
further discussion on this coefficient.

We may now combine (4.6) and (4.15) to get an effective transport equation for the
solute with an error of O(ε2):

∂C0

∂t
+
(
uc + u′c

) ∂C0

∂x
=

∂

∂x

(
Dc
∂C0

∂x

)
, (4.20)

where uc, u
′
c and Dc are respectively given by (4.7), (4.16) and (4.17). It is remarkable

that despite the strictly uniform flow both the advection velocity and dispersion
coefficient are functions of x and t via dependence on the local sediment concentration.

One may readily show that as the fall velocity wf becomes an order of magnitude
smaller, the above theory reduces to the case presented by Ng (2000a). In this limiting
case, the sediment distribution factor f approaches unity by which us ∼ uc ∼ u,
Ds ∼ DT and DKc ∼ 0.

At this point, we have completed applying the homogenization method to the
development of effective transport equations for suspended sediments and a sorbing
solute. Advection velocities and dispersion coefficients now show up as explicit func-
tions of the hydrodynamic and sorption effects. The present problem is not amenable
to analysis by the method of moments at all. For easy reference, the formulae for the
advection velocities and dispersion coefficients that have been derived in this work
are summarized in table 1.

For simplicity, we shall from here on drop the subscript zero from the leading-order
variables (e.g. C0). Also, as the longitudinal eddy diffusivities are in general much
smaller than the dispersion coefficients, the first components of Ds and Dc in (3.21)
and (4.17) will no longer be considered in the following discussion.

5. Numerical example – a plane source of polluted sediments
For illustration, let us revisit an example previously considered by Ng (2000a).

This is a case in which fine solid particles and a chemical pollutant are discharged
simultaneously at the same point in a stream as a pulse input (i.e. a mathematically
instantaneous plane source of both substances). By virtue of the one-dimensional
equation (3.29) with constant coefficients, the sediment concentration can be described
by a Gaussian distribution in the frame ξ = x− ust which moves at the speed of the
centre of mass of the sediment cloud:

ζb(ξ, t) =
m

f(4πDst)1/2
exp

(
− ξ2

4Dst

)
, (5.1)
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Material Transport coefficient Formula

sediment advection velocity us = fu/f

Taylor dispersion coefficient DTs = (fEz)
−1
[∫ h

z
f(u− us)dz′

]2

/f

chemical zeroth-order advection velocity uc = Ru/R

first-order advection velocity u′c = −[Kdf(Ds + Dc)/R ]∂ζb/∂x

Taylor dispersion coefficient DTc = (REz)
−1
[∫ h

z
R(u− uc)dz′

]2

/R

sorption-kinetics-induced DKc = −Kdζbuc(f − f )(u− u )/kR
2

dispersion coefficient

Table 1. Summary of formulae for the advection velocities and dispersion coefficients, where u is
the fluid velocity, Ez is the vertical eddy diffusivity, Kd is the sorption partition coefficient, ζb is the
sediment concentration at the bed level, k is the sorption rate constant, and f, R, Ds and Dc are
respectively given by (3.4), (4.3), (3.21) and (4.17)

where m is the total mass of sediment divided by the cross-sectional area of the
stream. Transforming from (x, t) to (ξ, t) and using (4.8), the chemical transport
equation (4.20) becomes

∂C

∂t
+

[
u− us
R

+ u′c

]
∂C

∂ξ
=

∂

∂ξ

(
Dc
∂C

∂ξ

)
. (5.2)

Note that because of the apparent advection (inside the square brackets), the centre
of mass of the aqueous phase of the chemical will be gradually drifting away from
that of the sediment.

Physically we assume that before discharge the particles are completely dry and a
chemical pollutant is uniformly sorbed onto the solid with a sorbate concentration
CsI . Immediately after discharge into the stream, dissolution happens instantaneously
and the aqueous chemical distribution can be found from (2.3):

C =
CsIζ

1 +Kdζ
=

CsIζbf

1 +Kdζbf
as t→ 0+. (5.3)

Note that at all times the conservation of mass requires that∫ ∞
−∞
ζbdξ = m/f and

∫ ∞
−∞
Ctotdξ = CsIm for t > 0, (5.4)

where Ctot = (1 +Kdζbf)C = RC is the total mass of chemical per bulk volume.
Let us now introduce the following normalized quantities (distinguished by a caret):

ξ = Lξ̂, z = hẑ, t = (L2/u∗h)t̂, ζb = (m/fL)ζ̂b,

(C,Ctot) = (CsIm/L)(Ĉ, Ĉtot), (Ez, Ds, Dc) = u∗h(Êz, D̂s, D̂c),

(u, u, us, uc, u
′
c) = u∗(û, û, ûs, ûc, û′c),

 (5.5)

where u∗ is the shear velocity given by (2.10), and L is a longitudinal length scale
for the transport, which according to (2.11) and (2.13) is of the order (D/Ez )3/2h. In
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terms of the normalized quantities, the equations can be expressed as follows. The
sediment concentration distribution is

ζ̂b(ξ̂, t̂ ) = (4πD̂st̂ )
−1/2 exp

(
−ξ̂2/4D̂st̂

)
, (5.6)

while the sediment distribution factor is

f(ẑ) = exp

(
−κα

∫ ẑ

0

Ê−1
z dẑ′

)
(5.7)

where κ is von Kármán’s constant, and the retardation factor is

R(ξ̂, ẑ, t̂ ) = 1 + βfζ̂b/f and R(ξ̂, t̂ ) = 1 + βζ̂b. (5.8)

Transport of the aqueous phase of chemical is governed by

∂Ĉ

∂t̂
+ ûd

∂Ĉ

∂ξ̂
=

∂

∂ξ̂

(
D̂c
∂Ĉ

∂ξ̂

)
, (5.9)

where ûd is the drifting velocity given by

ûd(ξ̂, t̂ ) = − L

hf R
(f − f )(û− û )− β

R

(
D̂s + D̂c

) ∂ζ̂b
∂ξ̂
. (5.10)

Ignoring the components due to the longitudinal eddy diffusivity, the dispersion
coefficients can be expressed as

D̂s =
(
fÊz

)−1
[∫ 1

ẑ

f(û− ûs)dẑ′
]2/

f, (5.11)

and

D̂c(ξ̂, t̂ ) = D̂Tc + D̂Kc, (5.12)

where

D̂Tc(ξ̂, t̂ ) =
(
RÊz

)−1
[∫ 1

ẑ

R(û− ûc)dẑ′
]2/

R, (5.13)

and

D̂Kc(ξ̂, t̂ ) = −βγ ζ̂bûc
f R

2
(f − f )(û− û ). (5.14)

The normalized initial condition (5.3) is

Ĉ =
ζ̂b

1 + βζ̂b
as t̂→ 0+, (5.15)

while the far-field boundary conditions are

Ĉ → 0 as ξ̂ → ±∞. (5.16)

Also, the integrals in (5.4) now become∫ ∞
−∞
ζ̂bdξ̂ = 1 and

∫ ∞
−∞
RĈdξ̂ = 1 for t̂ > 0. (5.17)

In the above equations, the following dimensionless parameters have been intro-
duced:

α = wf/κu∗, β = Kdm/L and γ = u∗/kh. (5.18)
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Case α γ β

1 0.05 10 1
2 0.05 10 5
3 0.05 10 10

4 0.1 50 1
5 0.1 50 5
6 0.1 50 10

Table 2. Values of α (suspension number), γ (sorption kinetics parameter) and β (bulk solid–water
distribution ratio) for six cases of computation, where cases 1–3 correspond to fine-grained sediments
and cases 4–6 correspond to coarser-grained sediments

The parameter α is a form of the suspension number (Rouse 1937), which typically
is less than unity when most particles in suspension reside above the constant-stress
layer (Sumer 1974). The second parameter β is the bulk solid–water distribution
ratio of the chemical, which has been assumed to be of order unity when (2.23) is
introduced. The third parameter γ is the sorption kinetics parameter, which according
to (2.19) and (2.22), should be of order unity or greater.

For turbulent open-channel flows, the following logarithmic velocity and parabolic
eddy diffusivity (Reynolds analogy is supposed to hold) profiles are commonly adopted
in practice:

û(ẑ) = 2.5 ln(30ẑ/ε̂s) and Êz(ẑ) = 0.4ẑ(1− ẑ) (5.19)

where von Kármán’s constant κ = 0.4 has been used, and ε̂s = εs/h is the bottom
roughness size normalized with respect to the flow depth. Note that by the above
profile the velocity vanishes at ẑ = ε̂s/30 (the actual bed) instead of ẑ = 0 (the
theoretical bed). In addition, the parabolic diffusivity profile leads to the following
sediment distribution factor, which is widely used in the literature (e.g. Vanoni 1975;
van Rijn 1984, 1986, 1993):

f(ẑ) =

[
â(1− ẑ)
ẑ(1− â)

]α
, (5.20)

where â � 1 is a small distance above the theoretical bed at which the reference
concentration of suspended sediment is defined. In this example, we also choose to
use the above relations. The suspended sediment concentration at the bed level is now

ζ̂b = ζ̂(ẑ = â), and the section of flow is virtually within â 6 ẑ 6 1. For a bottom
without bedform, an empirical relationship a = 2d where d is the sediment particle
diameter has been suggested by Madsen (1975).

Equation (5.9) is solved numerically using a standard second-order implicit scheme
of forward-time and centred-space differences. With approximation by implicit finite
differences, the one-dimensional equation yields a tridiagonal linear system which can
be solved with a simple routine. The conditions in (5.17) are checked by numerical
integrations at each time step to ensure that mass conservation is observed throughout

the computation. Sufficiently small spatial discretizations (∆ξ̂ = 0.01, ∆ẑ = 0.0005)
and time step (∆t̂ = 0.002) have been used so that the maximum error is kept below
1%. To see the various effects, results have been generated for six cases of parameters
as listed in table 2. Two sets of values for α and γ are considered. The smaller values,
as in cases 1–3, correspond to rather fine-grained sediments, while the larger values,
as in cases 4–6, correspond to coarser-grained sediments. We have assumed from
(2.20) that a slower sorption rate is associated with a coarser particle. Values of β
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Figure 1. Distributions of the sediment concentration ζ̂b, chemical Taylor dispersion coefficient D̂Tc,

sorption-kinetics-induced dispersion coefficient D̂Kc and drifting velocity ûd for case 1 (fine-grained
sediments and a unity bulk solid–water distribution ratio).

are varied from 1 to 10, corresponding to an increasingly large fraction of mass in
sorbed form. Other parameters have the following values in all cases of computation:
L/h = 100, ε̂s = 0.002 and â = 0.004.

Let us first examine the coefficients that control the transport of the chemical
pollutant. Recall that D̂Tc and D̂Kc are the components of the dispersion coefficient
due to shear flow and sorption kinetics respectively, and ûd is the apparent advection
velocity as viewed from the centre of mass (or centroid) of the sediment cloud.
These coefficients are functions of the sediment concentration, and therefore vary
with distance along the channel and time. Figures 1–3 show their spatial distributions
at instants t̂ = 0.1, 1.0, 2.0 and 3.0 for cases 1, 3 and 6 respectively. In the absence of

sediments at large |ξ̂|, D̂Tc reduces to the Taylor dispersion coefficient for clear water

(i.e. DT given by equation (3.24)), while D̂Kc drops to zero. From these figures the
following observations can be made.

(a) In all cases D̂Tc is only modestly enhanced by the presence of sediments; the
increase is typically less than 10%.

(b) The distribution and magnitude of D̂Kc strongly depend on the cases. In case
1, its significance is limited to early times and localized near the centre of mass of the
sediment cloud. However, it dominates over D̂Tc as the solid–water distribution ratio
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Figure 2. As figure 1 but for case 3 (fine-grained sediments
and a large bulk solid–water distribution ratio).

β becomes larger (case 3), and as the sorption kinetics parameter γ becomes greater
(case 6). In these two cases there exist two off-centre maxima at initial times in the
distributions of D̂Kc. While the coefficient continues to maintain a high value in the
neighbourhood of the centre, its effect reaches farther upstream and downstream as
the sediment cloud spreads out more extensively. It is remarkable that the maximum
value of D̂Kc is comparable with that of D̂Tc in case 3, but many times that of D̂Tc in
case 6. Therefore, when sorptive exchange becomes highly kinetic, the dispersion of
the chemical cloud will be strongly influenced by D̂Kc.

(c) The apparent drifting velocity ûd obviously is larger when the sediments are
heavier. More noteworthy is its association with the sediment concentration gradient.
The distribution of ûd exhibits a peak and a trough, respectively, immediately down-
stream and upstream of the centroid of the sediment cloud. The minimum of ûd can
even be negative at early stages in cases 3 and 6. Physically, it means that the chemical
is being advected at a faster rate if it is downstream of the sediment cloud centroid
but at a slower rate (even in the opposite direction) if upstream. These differential
advection rates will effectively induce additional dispersion, which is unsymmetrical

about ξ̂ = 0, on the spreading of the chemical cloud, thereby leading to enhanced
broadening and skewness of the chemical concentration distribution at an early stage.

Snapshots of the concentration distributions for Ĉ (solid curves) and ζ̂b (dashed
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Figure 3. As figure 1 but for case 6 (coarse-grained sediments
and a large bulk solid–water distribution ratio).

curves) are plotted in figures 4 and 5 for the six cases. In order to better analyse
the evolving characteristics of these distributions, the following statistical parameters
are also presented as functions of time in figures 6–8: (i) the location of the centre

of mass ξ̂c, (ii) the variance σ2, and (iii) the skew coefficient χ. These parameters are
computed according to their usual definitions:

ξ̂c ≡ µ1

µ0

, (5.21)

σ2 ≡ 1

µ0

∫ ∞
−∞

(ξ̂ − ξ̂c)2Ĉdξ̂ =
µ2

µ0

− µ2
1

µ2
0

, (5.22)

and

χ ≡ 1

(σ2)3/2µ0

∫ ∞
−∞

(ξ̂ − ξ̂c)3Ĉdξ̂ =
1

(σ2)3/2

[
µ3

µ0

− 3
µ1

µ0

µ2

µ0

+ 2
µ3

1

µ3
0

]
, (5.23)

where µn is the nth integral moment of Ĉ:

µn =

∫ ∞
−∞
ξ̂nĈdx̂ for n = 1, 2, 3, · · · . (5.24)

Chatwin (1972) has shown that a higher-order term that is omitted in a heat-
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Figure 4. Snapshots of the distributions of the solute concentration Ĉ(ξ̂, t̂ ) (solid lines) and the

sediment concentration ζ̂b(ξ̂, t̂ ) (dashed lines) for cases 1, 2 and 3. The degree of asymmetry of the
solute concentration distribution increases with the solid–water distribution ratio.
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Figure 5. As figure 4 but for cases 4, 5 and 6. The solute concentration distribution can exhibit a
marked tailing at large times when sorption effects are strong.
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Figure 6. The location of the centre of mass ξ̂c of the aqueous chemical cloud, relative to that of
the sediment cloud, as a function of time for cases 1–6.
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Figure 7. The variance σ2 of the concentration distribution of the aqueous chemical as a
function of time for cases 1–6.

conduction-type equation like (5.9) is required in order to correctly predict the
long-term behaviour of the skewness due to asymmetry in the initial distribution.
Such skewness tends to zero as (t/T0)

−1/2 where T0 is the time scale for diffusion
across the channel. We are however examining skewness of the solute concentration
distribution that is caused by sorptive exchange and occurs on a much longer time
scale T2 � T0. Any effects of the omitted higher-order term on the skewness can
therefore be ignored as long as a time scale longer than T0 is considered.
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Figure 8. The skew coefficient χ of the concentration distribution of the aqueous chemical as a
function of time for cases 1–6.

From figures 4–8, one may draw the following conclusions.
(a) As expected, the chemical cloud drifts more rapidly ahead of the sediment

cloud in cases 4–6 where sediments are heavier than in cases 1–3 (figure 6). Also, for
the same settling velocity the retardation to the chemical advection speed is larger
for a higher bulk solid–water distribution ratio β. Owing to phase exchange, which is
substantial only when the sediment and chemical clouds are overlapping, the rate of

increase of ξ̂c is initially nonlinear but tends to a constant at larger times when the
two clouds are mostly separated.

(b) The rate of increase of the variance, which amounts to the dispersion coefficient
averaged over the stretch of the distribution, also changes nonlinearly with time
in the initial stages (figure 7). The rate of increase eventually becomes constant,
corresponding to the coefficient of dispersion in clear water. This happens the soonest
in case 1 and the latest in case 6. As discussed earlier the dispersion is the largest
in case 6, owing to the highest values of the bulk solid–water distribution ratio β
and sorption kinetics parameter γ. It is however obvious from figures 4 and 5 that
the differences in the extent of spreading among the cases only lie in the portion of
distributions behind the peak concentrations. There are remarkably long tailings in
cases 3, 5 and 6; the distributions in these cases are highly unsymmetrical about their
peaks. Tailing means a very slow decay of the concentration, which is often due to non-
equilibrium phase partitioning. Kinetic sorptive exchange in this example can indeed
lengthen the time of impact of the pollutant on a particular point in the stream; the
pollution persists even though the maximum concentration has long passed the point.

(c) The asymmetry of the concentration distributions is confirmed by the skew co-
efficient (figure 8), which in each case starts from a value of zero (Gaussian) initially,
and decreases (as the tailing is developing) until it reaches a maximum negative value
at a certain point before diminishing back to zero in the long term. In cases 4–6
(figure 5), the non-Gaussianity of the chemical distribution is very conspicuous even
at an early stage of spreading. The distribution in case 4 however recovers symmetry
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much sooner than those in cases 5 and 6. For a pulse input of a passive fluid disper-
sant in a shear flow, the skew coefficient tends to zero according to (t/T0)

−1/2 (Aris
1956; Sayre 1968; Chatwin 1970). It is shown here that because of sorptive exchange
the deviation from normality of the concentration distribution can be more extensive
and last much longer.
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