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Scattering and radiation of water waves by permeable barriers

M. M. Lee and A. T. Chwang®
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong

(Received 5 October 1998; accepted 9 September)1999

The two-dimensional problems of scattering and radiation of small-amplitude water waves by thin
vertical porous plates in finite water depth are considered using the linear water wave theory.
Applying the method of eigenfunction expansion, these boundary value problems are converted to
certain dual series relations. Solutions to these relations are then obtained by a suitable application
of the least squares method. For the scattering problem, four different basic configurations of the
barriers are investigated, namel(}), a surface-piercing barrietll) a bottom-standing barrietill)

a totally submerged barrier, afilV ) a barrier with a gap. The performance of these types of barriers

as a breakwater are examined by studying the variation of their reflection and transmission
coefficients, hydrodynamic forces and moments for different values of the porous effect parameter
defined by ChwandJ. Fluid Mech.132 395-406(1983], or the Chwang parameter. For the
radiation problem, three types of wavemakers, which resemble tipeél), and (lll) of the
above-mentioned configuration, are analyzed. The dependence of the amplitude to stroke ratio on
other parameters is also investigated to study the features of these wavemak@@00 @merican
Institute of Physicg.S1070-663(100)00201-4

I. INTRODUCTION mission through a gap in a vertical barrier in deep water.
Meanwhile, many researchers have engaged in general-

The problems of scattering and radiation of water waveszing and developing various methods from time to time to
by vertical barriers have drawn the attention of many resolve these problems in deep water, for example, Stoker,
searchers since the early works of UrgéllSolutions of Levine and Rodemich Lewin© and Meill
these problems are important in engineering applications It is generally recognized that these problems in finite
such as breakwaters and wavemakers. In principle, twowater depth do not have explicit solutions and thus numerical
dimensional problems involving thin vertical barriers in deepor semianalytical methods have been used for their solutions.
water can be solved analytically in closed form with the re-A considerable number of works have been done by these
flection and transmission coefficients being expressed imethods such as Liu and Abbaspéﬁrl_osada et al, 13
terms of known functions or definite integrals. Because ofabul-Azm,** and Porter and Evaris.
the complexity of the problems, few explicit solutions have For radiation problems, Urs@luised the Havelock wave-
been derived. Numerical or semianalytical methods, such asaker theory to obtain an explicit solution for the wave ra-
the boundary integral equation method, the variationabiation due to the small oscillation of a partially submerged
method, matched eigenfunction expansions and the Galerkivertical plate in water of infinite depth. Later, Evahsolved
approximation, have to be used to obtain approximate solusoth scattering and radiation problems for a completely sub-
tions for problems of finite water depth. merged thin vertical plate in infinitely deep water.

For scattering problems, Detnsed the complex vari- Explicit solutions to these problems in finite water depth
able technique to solve the submerged barrier problemare extremely difficult to obtain. Evans and Lintérused
Ursell" utilized an integral equation procedure based onmatched eigenfunction expansions to obtain the hydrody-
Havelock’s expansion of the wave potential to obtain thenamic characteristics of a submerged thin plate hinged about
solution. William¢ exercised a simple reduction method to its point of attachment to the bottom of a constant depth
obtain the transmission and reflection coefficients withoufluid. Evans and Port&t showed how to use a Galerkin ap-
going into details of obtaining the velocity potentials. Evans proximation and a judicious choice of expansion functions to
applied the complex variable method to study the wave scaisolve the radiation problem of a thin rolling plate in water of
tering problem of a completely submerged finite verticalfinite depth.
plate in deep water. Tuflemployed the method of matched Al the works mentioned above are involved with imper-
asymptotic expansions to obtain an approximate transmisneable barriers. When a barrier is permeable, the problem
sion coefficient for a vertical wall with a gap. Poftésy  has not received much attention in the literature. Using
making use of the complex variable method as well asGreen’s integral theorem, Macaskilstudied the wave scat-
Green's integral theorem solved the problem of wave transtering problem of a permeable thin barrier by converting it to
integrodifferential equations. The equations were discretized
3Telephone: (852) 2859-2634; Fax:(852 2858-5415; electronic mail: and solved numerically for barriers consisting of discon-
atchwang@hkucc.hku.hk nected arcs. However, no full solution was given for a barrier
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with uniform fine-pores. Chwar§y developed a porous H He 4 Y He
wavemaker theory to study the generation of water waves by —> <— |
the harmonic oscillation of a thin porous plate, extended
from the free surface to the channel bottom, in water of finite a H
depth. Recently, Chwang and CRhgave a general review
on the interaction between porous media and wave motion. 9. h o,
The objective of the present paper is to study the scat-
tering and radiation of water waves by vertical permeable X
barriers in water of finite depth. The mathematical formula- v "
tion for both scattering and radiation problems is presented 2) Type I: a surface-piercing porous barrier
in Sec. Il. Numerical results on the transmission and reflec-
tion coefficients as well as the hydrodynamic forces and mo- H He A Y g
ments for various types of permeable barriers are given in % < |

Sec. lll. Discussion on results and the effects of important
parameters are also presented in Sec. Ill. Finally, conclusions
are given in Sec. IV.

A 4

IIl. MATHEMATICAL FORMULATION

A. Scattering problems b) Type II: a bottom-standing porous barrier

Cartesian coordinates, as shown in Fig. 1, are chosen
with the mean-free surface gt=h. The fluid, which occu-
pies 0<y<h and—»<x<w, is divided into two regions: a H, Hp 4
negative regionx<<0, with velocity potentiatb ~ and a posi- —
tive region, x>0, with velocity potential®, . The porous
barriers are located at

(@ Type I: x=0, (h—a)<y<h (a surface-piercing bar- o W |d E
rier);

(b) Type ll: x=0, 0<y<(h—a) (a bottom-standing bar- N
rier);

(¢ Type lll: x=0, (h—a—d)<y<(h—a) (a totally sub-
merged barrier ¢) Type III: a totally submerged porous barrier

(d) Type IV: x=0, 0<y<(h—a—d), (h—a)<y<h (a
barrier with a gap H Hr &Y Hy

—> <~ | —

o

N

In the following discussion, the barrier itself is denoted by
Ly, and the gap is denoted ty, so thatL,UL4 is[Oh]. a
The fluid is inviscid and incompressible, and the flow is ir-
rotational. Under the assumption of the linear wave theory, 0. h ! o
the wave field is represented by a velocity potentigk,y,t)
which satisfies the Laplace equation, X

V2P =0. ) -

d) Type IV: a porous barrier with a single gap

v

Because of the periodicity in time, the velocity potendal

can be expressed as FIG. 1. Definition sketch for four types of porous barriefs. Type I: a
surface-piercing porous barrigh) Type Il: a bottom-standing porous bar-
d(x,y,1)= qg(x,y)e—iwt ) rier. (c) Type llI: a totally submerged porous barriéd) Type IV: a porous

barrier with a single gap.
in which w is the angular frequency.
The linearized boundary conditions for the spatial veloc-

ity potential ¢»(x,y) in the regions can be expressed as %z%on x=0, yelg, (58

(1) The free Sl;rface boundary condition, é_=¢, on x=0, yel,. (5b)
(9ldy)—(w°plg)=0 (for y=h). ()

(2) The bottom boundary condition, (4) Let W(y,t) be the normal velocity of the flow inside the
(play)=0 (for y=0). 4 porous barrier. According to ChwaRgW(y,t) is lin-

(3) The horizontal velocity and pressure must be continuous early proportional to the pressure difference across the
across the gap, barrier, which is based on the assumption that the thin
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porous plate is made of material with fine and uniformcientsA,, andB,, are unknown complex numbers to be de-
pores so that the resistance effect dominates over thiermined. It should be noted that gesy(n=1,2,...) forms a
inertial effect and the flow through the plate is linearly complete orthogonal set with

proportional to the pressure difference between the two

. h

sides of the porous plat@aylor?), j COSy CoSpy - dy= 8- N2, (119
b 0

W(y,t)=—[P,(0y,t)—P_(0y,t)] on x=0, Ly, ,

0 ,u[ +0y.1) (0y.0] on x yeto where 8, is the Kronecker delta and

(6a) .
where u is the coefficient of dynamic viscosity ardis sinh Zkoh+2koh (for n=0)
a material constant. Assuming that the hydrodynamic ) 4k
pressureP and the porous flowV are all periodic func- N (pn) = i (11b
; sin 2k,h+2k,h

tions and have a time facter'“!, — (for n>0).
W=w(y)e " and P.=p.(x,y)e ', (6b) "

and relating the hydrodynamic pressure with the velocity ~ BY using the condition that the horizontal velocity,
potentials through the linearized Bernoulli equation, we(?¢/dx), is continuous along=0 and making use of the

have fact that the cog,y functions are orthogonal, it can be
b shown that
W(y):;[p+(01y)_ p—(O,y)] A0+ BO: 1 and An+ Bn:0 (12)

iwpb Substituting(10) and (12) into (7), we have
= [6.(0y) = 4-(0y)] for yely. (60

2]

dp_  J
The normal velocity on the porous barrier surface is re- ;ix: %:iko¢|(o,y)+ E MnAn COSuRY
lated to the normal velocity of the flow inside it by n=0
dp_ 9 =—w for Ly. 13
%=%=—W(y) on x=0, yely. (7) ) yeto (133
- : , By Egs.(60), (10), and(12),
(5 At infinity, on both sides of the barriexy— *oo, the
scattered wave must be outgoing. ) ”
w(y)=—ikoGo| 2>, A,cosuny| for yel,, (13b
n=0

A train of regular, small-amplitude progressive waves of
height H, and frequencyw propagates towards the barrier where Go=(pbw/uky) is the porous effect parameter de-
from the negative side. The incident waves are partially refined by Chwand® or the Chwang parameter.

flected with wave heighHg at x=0 and partially transmit- The continuity of pressure along the gap now gives
ted with wave heighH;. The velocity potential of the inci- B
dent waves is given by p+(0y)—p-(0y)=0
_ gH, coshkey | o or (14)
ﬁzme 0*= ¢, coshkpy - €"0%, (8)

wherek, is the wave number and is related to the angular znzo AnCOSuny=0 foryelg.

frequency through the dispersion relation
A dual series relatioriSneddof® can be constructed by re-

2_

w”=gko tanhkoh. (%3 writing (13) and (14) as

An appropriate solution for the potentials, which satisfies o
(1)—(4), can be written as ik 0 2 —2iknaG A -0

ikogi( 'y)+n:0 (Mn ikoGo)A, cosu,y

(ﬁ* = ¢| + nZO An COSuny - e+ﬂnx (10@ for ye Lb , (156)

and 2, Ancospy=0 foryel,. (15b)
n=0
b.=D B,cosuy-e (10b) The _solution of this dual series relation can b(_a obtainc_ed ap-
n=0 proximately by the least squares method, which requires to

where uo=—iky and u,=k, for n>0 andk, are the posi- minimize the value of the integral,

tive real roots of the dispersion relation
w?=—gk, tank,h. (9b)

The first term of(10g represents the incident wave, and thewith respect tdA,,. In Eq. (16) the functionsSy(y) andf(y)
summation terms represent the scattered waves. The coeffire given by

h
Isv—1l= [ IS - tlzay 19
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y=h

X

»
-

a) Type I: a surface-piercing porous wavemaker

X

»
»

b) Type II: a bottom-standing porous wavemaker

y
A
y=h

X
»
>

¢) Type III: a totally-submerged porous wavemaker

FIG. 2. Definition sketch for three types of porous wavemak@jsType I

a surface-piercing porous wavemaki). Type II: a bottom-standing porous

wavemaker(c) Type llI: a totally submerged porous wavemaker.

(pun—2ikoGg)A,cosuyy for yely

N
>
n=0

N
>
n=0

Sa(y)=
Ancosu,y for yelgq
(173
and
[ —ikog(0y) for yel,

f(y)—[o for yel, : (170
Therefore,

h 1%

J[SN—f]* SN(y)dy:O, (n=0,1,2,.), (18

0 (?An

where the superscript denotes the complex conjugate. An

Scattering and radiation of water waves by permeable barriers 57

small displacemens, about thex=0 axis. This oscillating
porous plate generates outgoing water waves. Cartesian co-
ordinates are chosen with the mean free surfage=dt. The
studying domain, which occupies<Oy<h and —oo<x

<o, is divided into two regions; a left-hand regiox< 0,

with velocity potential® _, and a right-hand region>0,

with velocity potential® , . The plates occupy the following
positions, respectively,

(@ Type I: x=0 and h—a)<y<h (a surface piercing
wavemaker,

(b) Type Il: x=0 and O<y<(h—a) (a bottom-standing
wavemaker,

(c) Type lll: x=0 and h—a—d)<y<(h—a) (a totally
submerged wavemaker

The wavemaker, which has a horizontal velocity
Uo(y,t)=—iwsye '“!, generates outgoing waves on both
sides. Boundary condition8)—(6) are still valid. However,
Eq. (7) should be replaced by

dp- dp+
ax OV

for yel,.
(19

At infinity, x— =, the radiation wave must be outgoing,
and the spatial velocity potentials of the generated waves can
be given by

(0y)=—iwsy—w(y)

- oHout C(.)shkoy
2ky sinhkgy
The general solutions for the velocity potentials in the

two regions satisfying the continuity of normal velocity,
d¢plox, alongx=0 are

etikox_ (20)

o0

¢, =Agcoshkoye "+ > A, cosk,ye X, (21a
n=1

é_=—Aycoshkpye kox— D' A cosk,ye*,  (21b)
n=1

wherek, andk,, satisfy the dispersion relations
w?= gk, tanhko,h= — gk, tank,h. 9

The pressure in both regions must match at the gap. Hence
by (5b),

Ao coshkoy + >, A,cosk,y=0 for yel,. (22)
n=1

By Egs.(60), (19), and(21), we have

©

approximate solution can be obtained by truncating the '”f"(—iko—ZikoGO)Ao coshk0y+n§=:1 (K, — 2ikoGg)A,, cOSk,y

nite series to a finite series dfterms. There ar&l simulta-
neous equations withl unknowns. A complex matrix equa-
tion of rankN can be obtained, which can then be solved to

obtain the values of\,.

B. Radiation problems

=iwsy for yely. (23

Equationg22) and(23) are known as dual series relations. In
order to determine the values of the coefficients, the relations
must be solved simultaneously. The least squares method is

As shown in Fig. 2, a vertical porous plate is forced toused to minimize the following integral with respect to the

oscillate horizontally with an angular frequeney and a

unknown coefficients:
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FIG. 3. T and R vs the dimensionless submergence depth for h/\ FIG. 4. T and R vs the dimensionless submergence depth for h/x

=0.44, Type |. =0.12, Type I
, [P ) the method to the present problem. Moreover, since the
ISv—fl*= 0 [Su—f(y)[*dy, (24) theory is applicable to all square integrable functions, the
o method can automatically deal with the square-root singular-
whereSy is given by(173 and ity at the tip of the thin barrier.
iws, for yel, _ The problem of convergence has been carefully taken
y)= (29  into account by examining certain test cases. Based on the
0 foryely i
test results, the convergence of the solution depends on the
The results are geometry and configuration of the barrier. By considering the
h ISy(Y) accuracy and computational time consumption, appropriate
J [Sy—f1* A dy=0, (n=0,1,2,.), (26)  value ofN has been chosen for each particular case consid-
0 " ered in the present paper.
where the superscript denotes the complex conjugate. The performance of the four types of porous barriers

There areN simultaneous equations witN unknowns, a used as breakwaters is discussed by considering the variation
complex matrix equation with dimensiddxX N can be ob- of their transmission and reflection coefficients. The trans-
tained, which can then be solved to obtain the value8,of mission coefficienT is defined as the ratio of the maximum
(Losadaet al1®). wave height of the transmitted waves to that of the incident
It can be noticed that the general form of the resultantvave (see Fig. 1,
dual series relationg22) and (23), is similar to those given H
. : T
in Sec. Il A. In fact, the results of the wave scattering prob- 7= —
lem can also be obtained by considering a special forcing H
function with the horizontal velocity distribution on the bar- whereas the reflection coefficient is defined as the ratio of the
rier opposite to that of the incident waves. This concept enmaximum wave height of the reflected waves to that of the
lightens us on considering the problem of an active breakwaincident wave,
ter or active wave control. Although in this paper only the
scattering and radiation problems of porous barriers are con-
sidered, the results revealing the performance of these three 7
types of barriers are still useful to the preliminary under- N
standing of the mechanisms involved in active wave control
problems.

(27)

Il. RESULTS AND DISCUSSION 0.6

The method of solution described above has been ap-
plied to solve certain typical cases of scattering and radiation °#
problems. It seems appropriate and worthwhile at this point
to mention that the method of least squares approximation  ,
for dual trigonometric series was first developed by Kelman
and Kopef* to obtain solutions for general dual trigonomet-

UL L L L L

ric equations. The convergence of the dual orthogonal series ©°5— — 2 G T T
in Hilbert space was later established by Feinerman and ’
Kelman?® This provides the theoretical background to apply FIG. 5. T andR vs the Chwang paramet&,=pwb/ uk,.
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FIG. 6. T andR vs kh with a/h=0.5, Type I. FIG. 8. Overturning momentM/M,) vs kh with a/h=0.5, Type I.
Hr -
R= (28  the barrier is fully extended to the channel’'s bottom, the

H, incident waves are totally or partially reflected depending on
The characteristics of the three types of wavemakers are alghe values of the Chwang parame&y. Figure 5 shows the
examined by calculating their amplitude to stoke ratios.  variation of T andR vs G, for these fully extended barriers,

actually this result is the same as those given by Chwang and

A. Scattering problems Dong?® In general, the higher the values 6f, the lower
the values of the end point &-curves, which implies more
waves can be transmitted through the porous barrier to the

Figures 3 and 4 show the variations of the transmissiomther side for higher porosity factor. The general shape of the
coefficient T and the reflection coefficierR for different R-curves for different values dBO are of similar nature, but
values of the Chwang paramet&, and different values of seems to be compressed downwards. This result can be com-
water depth. Figure 3 is a graph for the case of dimensionlessrehended with the physical intuition that whe®y in-
water deptth/x=0.44, which in fact corresponds to a deep creases, the permeability is increased, which will allow more

water case. It can be seen that, wia¢h=0, all theT-curves  flyid and energy to pass through the barrier; and thus the
(curves for the transmission coefficientgart from 1 while  eflection coefficients decrease.

all the R-curves(curves for the reflection coefficientstart In Fig. 4, the dimensionless water deptii\ is de-
from 0. That means when there is no barrier, all the inCidenbreased to 012, which Corresponds to a shallow water case.
waves are transmitted to the other side and there is no rEfleq- can be seen that the genera] Shapes of the curves are dif-
tion. Whena/h is increased, th@-curves drop rapidly and ferent from those of the previous case. The result reveals that
R-curves rise accordingly. This observation agrees well withhe barrier needs to be immersed more deeply into the water
Ursell's" result, which states that for deep water waves mostn order to obtain the same reflection coefficient. This is
of the energy is confined near the free surface, so the trangecause the wave energy is more evenly distributed over the

mitted wave energy decreases drastically when the paranghannel. In general, the effect of a porous barrier is to reduce
eter, 2ral/\, is greater than one. Whalh=1, that means

1. A surface-piercing barrier

1 2

C G,=0 E
I — — —o02s 1.5
o8l ———-— 0.5 C
L 1 1B
r 0s5F
0.6 - £
L F/Fg - C
- . — —_— - 04
C - I C
- — E
o4r - e T T 05F
L /- - C
- //’/ ..... N
02— Va -
L : 15F
F E

P R N T K SN T SRS S S N SO TR N NN SO SO S SN H DUN Y T - T T T S T A T S T T A T S S

% 1 2 kh 3 4 5 0 1 2 kh 3 4 5
FIG. 7. Horizontal force E/Fg) vs kh with a/h=0.5, Type |I. FIG. 9. Phase angle and 6, vs kh with a/h=0.5, Type I.
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FIG. 10. T andR vs kh with a/h=0.25, Type II. FIG. 12. Overturning momentM/M;) vs kh with a/h=0.25, Type II.

the reflection coefficient and to cause tReurves to move
downwards.

It should be noted that whe@,=0, there is no energy Jh 0 ov)1d
loss in the barrier. Therefore, by conservation of energy, M "M, Ap-(0y)=p+(0y)]dy
R2+T2=1. However, wherG,>0, some of the wave en-
ergy, depending on the value of the porosigee Fig. 5, _

(2 The dimensionless overturning momevif M ¢,

1 h

7¢+(0y) 9¢-(0y)|,

would be dissipated by the barrier, that med&fs- T><1. M S| at ot v
On the other hand, when the porosity of a barrier is in-  whereM, is the moment per unit width for the full re-
creased, the permeability of the barrier is increased corre- flection case.
spondingly. As the flow passing through the barrier in-(3) The phase angle of the transmitted and reflected waves,
creases, more wave energy can be transmitted through the ¢, and¥, .
barrier to the other side and thus causing the reflection coef-
ficient R to decrease. As a result, it is possible for two Figures 6—9 show the variation of the paramet&rand
T-curves with different values dB, to intersect each other, R, F/F5, M/Mg, 6, and 6,, vs the dimensionless water
while the correspondinB-curves do not intersect each other. depthkh for different values oiG,. It can be observed that

In fact, there are other important design-factors in regardhese parameters rise or change quickly wkieis increased
to breakwaters. They are given as follows: from 0 to 2. This observation agrees with the physical intu-
ition that a surface-piercing barrier is not so good to obstruct
long waves. Long waves can pass through the barrier without

(30

(1) The dimensionless hydrodynamic pressure fd¥¢Es,

E:iﬁ [p_(0y)—p.(0y)]dy too much reflection. However, whekh is large, which
’ A means that the water depth is large relative to the wave-
1 (h [ad.(0y) dd_(0y) length, most of the.incoming waves are reflected by the
= F_s h7ap P ot Y, (29 surface-piercing barrier. Therefore, all the parameters change

] o ~ rapidly fromkh=0 tokh=2. The porous effect in general is

case.

1 2
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FIG. 11. Horizontal force K/Fg) vs kh with a/h=0.25, Type II. FIG. 13. Phase angle and 6, vs kh with a/h=0.25, Type II.
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FIG. 14. T andR vs kh for a/h=0.25 andd/h=0.5, Type llI. FIG. 16. Amplitude to stroke ratio vish for a porous wavemaker.

figure, it can be seen that this barrier is not good for both

shallow and deepwater cases. The optimal performance oc-
curs for the case of intermediate water depth. It should be
noted that theR-curves drop when the water depkih is

2. A bottom-standing barrier

Figures 10—-13 show the variations of the different pa-
rameters vs the dimensionless water defth,for the spe-

cific case of a bottom-standing barrier whetih=0.25. It is . L

. . . . . greater than 2. This observation is similar to the results for a

interesting to note from Fig. 10 that tlecurves increase in A . .
type Il barrier in Fig. 10. It is remarkable, as compared with

mg (:)?)Elr:(tasr f;ae?/ebgsitnwtgegetzregarsiac.?hci:rg%gerpvﬁ:;nnu?afr&ge results of the type Il barrier in Fig. 10 that for the same
explained by the following argument. When the valuekbf arrier length the effectiveness of a type Il barrier is better

. . . . than that of a type Ill barrier. In general, an increase in the
is very small, it means that the wavelength of the incomin . . . :

. orosity of the barrier can reduce the reflection coefficient
waves is very long. These long waves are almost totall
transmitted. Wherkh increases, the effect of the barrier be- 4 4 parrier with a single gap
gins to operate and thus the reflection coefficRinicreases.

But when the value okh becomes large, it means that the less water deptkhwith a/h=0.3 andd/h=0.4. The general
wavelength is short, the effectiveness of the barrier decreas%%ape of the curves is similar to that of a éurface—piercing
as the wave motion is now confined near the free surfacefn

Figure 15 shows how andR vary with the dimension-

Similar observation can be found in graphs for the horizonta arrier given in Fig. 6. Wherkh is smaller than 3, which
grap eans the wavelength of the incident waves is much larger

force,F, and the overturning momert, but the curves now than the water depth, most of the incident waves can pass

decregse much slolvver.after the turning points. Increase I{}wough the barrier’s slit and thus the transmission is high.
porosity of the barrier, in general, reduces the reflecion But, whenkh is large, most of the wave energy of the inci-

the horizontal force, the overturning moment and the dif- : . L
dent waves is now confined near the free surface, which is

ference between the phase anglesind ¢, . then obstructed by the upper portion of the barrier and re-
flected back. Therefore, the transmission is low. In general,

3. A totally-submerged barrier . ) - ;
increasing the porosity of a barrier can reduce the wave re-

Figure 14 shows the variation df andR vs the dimen-

. . flection.
sionless water deptkh for a/h=0.25 andd/h=0.5. In this
2 —
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FIG. 15. T andR vs kh for a/h=0.3 andd/h=0.4, Type IV.

FIG. 17. Amplitude to stroke ratio uh for different values of the dimen-
sionless submergen@éh with G,=0, 0.5, 1, Type | wavemaker.

Downloaded 02 Nov 2006 to 147.8.21.97. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



62 Phys. Fluids, Vol. 12, No. 1, January 2000 M. M. Lee and A. T. Chwang

2 2
a/h=1 e a/h=0
LETAC T U 0.5 G,=0 T 1.75 . _ _o2
T Houd2s, - .. 05
1.5 /,—/G0= 1.5 & —_———— 0.8
=
H,,/2s /
1.25 our=2o / 1.25

~
—
IlI|I|I||KIII|I|II|I\Ik||III|II\I|IIII|

-
||||I|II|(III|III[‘1!II|!|I||k4|||||||

/ 05 T
0.75 / I 3
, - | -
/ - R
0.5 b /’,/ R ;
S -
S ,/ ‘/__
. - 0.25
A
N
I R B S E S I B A B, 0
%% 1 2 3 . 4 L | 0

FIG. 18. Amplitude to stroke ratio vih for different values of the dimen-  FIG. 20. Amplitude to stroke ratio vigh for different values of the dimen-
sionless submergenegh with G,=0, 0.5, 1, Type | wavemaker. sionless gap length/h with G,=0, 0.5, 1, Type Il wavemaker.

B. Radiation problems physical terms, this can be easily explained by the fact that
since the forcing plate is now smaller, it can only excite
smaller amount of water. Moreover, it should be noted that
The effectiveness of this type of wavemaker is examinedy|| the curves withG,=0 seem to converge to 2 whe
by studying the variation of the amplitude to stroke ratiostends to infinity. This result suggests that the effectiveness to
with respect to the dimensionless water dejth for differ-  produce high frequency short waves with a surface-piercing
ent values of the Chwang paramet€y,. Figure 16 shows wavemaker, whether it is slightly or deeply immersed, is
how the amplitude to stroke ratios change with the wategenerally good.
depth for the case of a piston-type porous wavemaker, which  These figures also present how the Chwang parameter,
has been studied theoretically by Chwéfigihe results G, affects the variation of the amplitude to stroke ratios for
shown are obtained by the present method as a limiting casgifferent settings of surface-piercing wavemakers. In these
which is in good agreement with the theoretical solution.  figures, it can be observed that increasing the Chwang pa-
From Figs. 17-19, it can be seen clearly how the depthameter,G,, results in smaller amplitude to stroke ratios.
of submergence and the porosity of a type | wavemaker afNot unexpectedly, largeB, means higher permeability and
fect the performance of the corresponding wavemaker. It isarger permeability will allow more fluid to pass through the
remarkable to note that the behavior of the surface-piercingarrier, which means that the forced oscillation of the wave-
wavemaker witha/h=0.5 is just slightly poorer than that of maker exert lesser force on the fluid and thus smaller amount
the fully extended one. Whekh is small, it means that the of water gets excited. The general behavior of the curves in
wavemaker is oscillating very slowly and thus the longthese three different cases/h=0.8, 0.5, 0.2 seems to be
waves are generated; whereas whhns large, it means for  similar. All the curves for the impermeable wavemakers
the case of high frequency short waves. Not surprisingly, th& =0 seem to converge to 2. While the curves 18

amplitude to stroke ratios are reduced if we decrease the 0.5 andG,=1 seem to converge to 1 and 2/3, respectively
depth of submergence of the surface-piercing wavemaker. In

1. A surface-piercing wavemaker

2 C
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FIG. 21. Amplitude to stroke ratio versug for different values of the
FIG. 19. Amplitude to stroke ratio vish for different values of the dimen-  dimensionless positioa/h and plate lengtll/h with Go=0, 0.5, 1, Type lll
sionless submergenegh with G,=0, 0.5, 1, Type | wavemaker. wavemaker.
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which are the corresponding limiting values for the case oing amplitude to stroke ratios are extremely low, which has
fully extended porous wavemakers. These results are equivan order of only about 0.07. Physically, surface waves are
lent to saying that the effectiveness of a surface-piercing podisturbances on the free surface, an oscillating plate in the
rous wavemaker is as good as that of a fully extended porousottom of the channel produces oscillatory flow near the

wavemaker in producing high frequency short waves. plate with decreasing amplitude in the vertical direction. As
a result, only a little bit of disturbances on the free surface
2. A submerged bottom-standing wavemaker are produced and thus type Il wavemakers are not effective

in generating surface waves.
Figure 20 also illustrates how the porosity of the plate
cts the behavior of the variation of amplitude to stroke

Figure 20 illustrates the effect of the gap size of type I
wavemakers on the variation of the amplitude to stroke ratio%ff o

versus the d|menS|onIes§ water debth, It can k.)e seen th".it ratios vs the water depth. Not surprisingly, the porous effect
the curves now behave differently from those in the previous <o ofa/h=0.2 is higher than the other two casgh
cases for type | wavemakers. The curves now seem to CON-35 8 The épacing between t@&=0 and Gy=0.5
verge to 0 wherkh tengls to infinity.. I means thgt a bqttom- curve’s for the casa/h=0.2 is larger than that in t?le other
standing wavemaker is no_t ef_fe(_:twe in producing high 1Ere'two cases. This can easily be explained by the fact that the
guency surface waves, which is in contrast to type | surfacey,

- : ..“length of plate in the first casa/h=0.2, is longer than that
piercing wavemakers. Moreover, it can be noted that a little g P / g

increase in the gap length, ath—0 to 0.2, reduces sharply in the other two cases. This is equivalent to saying that more
the performance of this type of wavemakers. Whelh fluid is able to pass through the porous plate and thus the

=0.5, the maximum amplitude to stoke ratio is now only porous effect is larger.

about 0.4; whereas a surface-piercing wavemaker of the

same length and same frequency can produce waves with A otally submerged wavemaker

amplitude to stroke ratio greater than 1.5. For even shorter In Fig. 21, it is shown how the curves for the amplitude
bottom-standing wavemaker®,h= 0.8 or larger, the result- to stroke ratios vary as the water depth changes for different

a) time=1/8 period

FIG. 22. The velocity vector field of a Type Il wave-
maker witha/h=0.25,G,=0. (a) time=1/8 period;(b)
time=2/8 period; (c) time=3/8 period; (d) time
=4/8 period;(e) time=>5/8 period;(f) time=6/8 period;
(g) time=7/8 period; (h) time=8/8 period.

b) time=2/8 period

¢) time=3/8 period

A N
Ed [
I P

d) time=4/8 period
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¢) time=5/8 period

f) time=6/8 period
FIG. 22.(Continued.

2) time=7/8 period

h) time=8/8 period

settings of type lll impermeable wavemakers. Wheftn degree of the porous effect. These results can be observed in
=0 andd/h=1, it represents the case of a piston-type wavethose curves for the two cases. The values for the cGye
maker, which can be obtained by the classical wavemake+0, a/h=0.25 andd/h=0.5 are higher than those for the
theory. The second curve with=0.25 andd/h=0.75 ac- case witha/h=0.25 andd/h=0.25. Also, the other curves
tually resembles a type Il wavemaker, so the general shager the case witta/h=0.25 andd/h=0.5 are more scattered
of this curve is similar to those shown in Fig. 20. For thethan those for the case widh=0.25 andd/h=0.25.
third curve witha/h=0.25 andd/h=0.5, the values of the Consider another case when the length of the wavemaker
amplitude to stroke ratios are generally much lower thars fixed atd/h=0.25, while the positions of the plates are
those of the former case width=0.25 anda/d=0.75. This changed froma/h=0.25 to a/h=0.5. Shifting the plate
result is reasonable, as the length of the wavemaker is nodownwards seems also to have two effects, the first one is to
smaller. If the length of the plate is further reduced, the amyeduce the amplitude to stroke ratios and the second one is to
plitude to stroke ratios get even smaller as shown in theeduce the effectiveness in generating high frequency waves.
curves witha/h=0.25 andd/h=0.25. It should be noted These are shown by two observations in the curves for the
that the curves for the casem,h=0.25 andd/h=0.5, a’h corresponding two cases. The values for the curves for the
=0.25 andd/h=0.25,a/h=0.5 andd/h=0.25 seem to be case witha/h=0.25 andd/h=0.25 are much larger than
flatter than that for the case witdh=0.25 andd/h=0.75.  those for the case with/h=0.5 andd/h=0.25. Also, the
Figure 21 also demonstrates the porous effect on theurves for the case wita/h=0.5 andd/h=0.25 seem to
variation of amplitude to stroke ratios versus water depth fodrop much earlier than those for the case veith=0.25 and
different settings of type Ill wavemakers. Consider the casa/h=0.25.
when the positions of the plates are fixec&t=0.25, while
the length of the plate is decreased fratth=0.5 to d/h
=0.25. As discussed earlier, decreasing the length of thIeV' CONCLUSIONS
wavemaker has two effects, the first one is to reduce the The problems of scattering and radiation of surface
amplitude to stroke ratios and the second one is to reduce theaves by several types of permeable vertical porous barriers
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