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Scattering and radiation of water waves by permeable barriers
M. M. Lee and A. T. Chwanga)

Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
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The two-dimensional problems of scattering and radiation of small-amplitude water waves by thin
vertical porous plates in finite water depth are considered using the linear water wave theory.
Applying the method of eigenfunction expansion, these boundary value problems are converted to
certain dual series relations. Solutions to these relations are then obtained by a suitable application
of the least squares method. For the scattering problem, four different basic configurations of the
barriers are investigated, namely,~I! a surface-piercing barrier,~II ! a bottom-standing barrier,~III !
a totally submerged barrier, and~IV ! a barrier with a gap. The performance of these types of barriers
as a breakwater are examined by studying the variation of their reflection and transmission
coefficients, hydrodynamic forces and moments for different values of the porous effect parameter
defined by Chwang@J. Fluid Mech.132, 395–406~1983!#, or the Chwang parameter. For the
radiation problem, three types of wavemakers, which resemble types~I!, ~II !, and ~III ! of the
above-mentioned configuration, are analyzed. The dependence of the amplitude to stroke ratio on
other parameters is also investigated to study the features of these wavemakers. ©2000 American
Institute of Physics.@S1070-6631~00!00201-4#
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I. INTRODUCTION

The problems of scattering and radiation of water wa
by vertical barriers have drawn the attention of many
searchers since the early works of Ursell.1,2 Solutions of
these problems are important in engineering applicati
such as breakwaters and wavemakers. In principle, t
dimensional problems involving thin vertical barriers in de
water can be solved analytically in closed form with the
flection and transmission coefficients being expressed
terms of known functions or definite integrals. Because
the complexity of the problems, few explicit solutions ha
been derived. Numerical or semianalytical methods, suc
the boundary integral equation method, the variatio
method, matched eigenfunction expansions and the Gale
approximation, have to be used to obtain approximate s
tions for problems of finite water depth.

For scattering problems, Dean3 used the complex vari
able technique to solve the submerged barrier probl
Ursell1 utilized an integral equation procedure based
Havelock’s expansion of the wave potential to obtain
solution. Williams4 exercised a simple reduction method
obtain the transmission and reflection coefficients with
going into details of obtaining the velocity potentials. Evan5

applied the complex variable method to study the wave s
tering problem of a completely submerged finite vertic
plate in deep water. Tuck6 employed the method of matche
asymptotic expansions to obtain an approximate transm
sion coefficient for a vertical wall with a gap. Porter7 by
making use of the complex variable method as well
Green’s integral theorem solved the problem of wave tra

a!Telephone: ~852! 2859-2634; Fax:~852! 2858-5415; electronic mail:
atchwang@hkucc.hku.hk
541070-6631/2000/12(1)/54/12/$17.00
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mission through a gap in a vertical barrier in deep water
Meanwhile, many researchers have engaged in gene

izing and developing various methods from time to time
solve these problems in deep water, for example, Stok8

Levine and Rodemich,9 Lewin,10 and Mei.11

It is generally recognized that these problems in fin
water depth do not have explicit solutions and thus numer
or semianalytical methods have been used for their solutio
A considerable number of works have been done by th
methods such as Liu and Abbaspour,12 Losada et al.,13

Abul-Azm,14 and Porter and Evans.15

For radiation problems, Ursell2 used the Havelock wave
maker theory to obtain an explicit solution for the wave r
diation due to the small oscillation of a partially submerg
vertical plate in water of infinite depth. Later, Evans16 solved
both scattering and radiation problems for a completely s
merged thin vertical plate in infinitely deep water.

Explicit solutions to these problems in finite water dep
are extremely difficult to obtain. Evans and Linton17 used
matched eigenfunction expansions to obtain the hydro
namic characteristics of a submerged thin plate hinged ab
its point of attachment to the bottom of a constant de
fluid. Evans and Porter18 showed how to use a Galerkin ap
proximation and a judicious choice of expansion functions
solve the radiation problem of a thin rolling plate in water
finite depth.

All the works mentioned above are involved with impe
meable barriers. When a barrier is permeable, the prob
has not received much attention in the literature. Us
Green’s integral theorem, Macaskill19 studied the wave scat
tering problem of a permeable thin barrier by converting it
integrodifferential equations. The equations were discreti
and solved numerically for barriers consisting of disco
nected arcs. However, no full solution was given for a barr
© 2000 American Institute of Physics
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55Phys. Fluids, Vol. 12, No. 1, January 2000 Scattering and radiation of water waves by permeable barriers
with uniform fine-pores. Chwang20 developed a porous
wavemaker theory to study the generation of water waves
the harmonic oscillation of a thin porous plate, extend
from the free surface to the channel bottom, in water of fin
depth. Recently, Chwang and Chan21 gave a general review
on the interaction between porous media and wave moti

The objective of the present paper is to study the s
tering and radiation of water waves by vertical permea
barriers in water of finite depth. The mathematical formu
tion for both scattering and radiation problems is presen
in Sec. II. Numerical results on the transmission and refl
tion coefficients as well as the hydrodynamic forces and m
ments for various types of permeable barriers are given
Sec. III. Discussion on results and the effects of import
parameters are also presented in Sec. III. Finally, conclus
are given in Sec. IV.

II. MATHEMATICAL FORMULATION

A. Scattering problems

Cartesian coordinates, as shown in Fig. 1, are cho
with the mean-free surface aty5h. The fluid, which occu-
pies 0,y,h and2`,x,`, is divided into two regions: a
negative region,x,0, with velocity potentialF2 and a posi-
tive region,x.0, with velocity potentialF1 . The porous
barriers are located at

~a! Type I: x50, (h2a),y,h ~a surface-piercing bar
rier!;

~b! Type II: x50, 0,y,(h2a) ~a bottom-standing bar
rier!;

~c! Type III: x50, (h2a2d),y,(h2a) ~a totally sub-
merged barrier!;

~d! Type IV: x50, 0,y,(h2a2d), (h2a),y,h ~a
barrier with a gap!.

In the following discussion, the barrier itself is denoted
Lb , and the gap is denoted byLg , so thatLbøLg is @0,h#.
The fluid is inviscid and incompressible, and the flow is
rotational. Under the assumption of the linear wave theo
the wave field is represented by a velocity potentialF(x,y,t)
which satisfies the Laplace equation,

¹2F50. ~1!

Because of the periodicity in time, the velocity potentialF
can be expressed as

F~x,y,t !5f~x,y!e2 ivt ~2!

in which v is the angular frequency.
The linearized boundary conditions for the spatial velo

ity potentialf(x,y) in the regions can be expressed as

~1! The free surface boundary condition,
~]f/]y!2~v2f/g!50 ~for y5h!. ~3!

~2! The bottom boundary condition,
~]f/]y!50 ~for y50!. ~4!

~3! The horizontal velocity and pressure must be continu
across the gap,
Downloaded 02 Nov 2006 to 147.8.21.97. Redistribution subject to AIP 
y
d
e

.
t-
e
-
d
-
-

in
t

ns

en

,

-

s

]f2

]x
5

]f1

]x
on x50, yPLg , ~5a!

f25f1 on x50, yPLg . ~5b!

~4! Let W(y,t) be the normal velocity of the flow inside th
porous barrier. According to Chwang,20 W(y,t) is lin-
early proportional to the pressure difference across
barrier, which is based on the assumption that the t

FIG. 1. Definition sketch for four types of porous barriers.~a! Type I: a
surface-piercing porous barrier.~b! Type II: a bottom-standing porous bar
rier. ~c! Type III: a totally submerged porous barrier.~d! Type IV: a porous
barrier with a single gap.
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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56 Phys. Fluids, Vol. 12, No. 1, January 2000 M. M. Lee and A. T. Chwang
porous plate is made of material with fine and unifo
pores so that the resistance effect dominates over
inertial effect and the flow through the plate is linear
proportional to the pressure difference between the
sides of the porous plate~Taylor22!,

W~y,t!5
b

m
@P1~0,y,t !2P2~0,y,t !# on x50, yPLb ,

~6a!
wherem is the coefficient of dynamic viscosity andb is
a material constant. Assuming that the hydrodynam
pressureP and the porous flowW are all periodic func-
tions and have a time factore2 ivt,
W5w~y!e2ivt and P65p6~x,y!e2 ivt, ~6b!

and relating the hydrodynamic pressure with the veloc
potentials through the linearized Bernoulli equation,
have

w~y!5
b

m
@p1~0,y!2p2~0,y!#

5
ivrb

m
@f1~0,y!2f2~0,y!# for yPLb . ~6c!

The normal velocity on the porous barrier surface is
lated to the normal velocity of the flow inside it by
]f2

]x
5

]f1

]x
52w~y! on x50, yPLb . ~7!

~5! At infinity, on both sides of the barrier,x→6`, the
scattered wave must be outgoing.

A train of regular, small-amplitude progressive waves
height HI and frequencyv propagates towards the barri
from the negative side. The incident waves are partially
flected with wave heightHR at x50 and partially transmit-
ted with wave heightHT . The velocity potential of the inci-
dent waves is given by

f I5
gHI

2v

coshk0y

coshk0h
eik0x5z I coshk0y•eik0x, ~8!

wherek0 is the wave number and is related to the angu
frequency through the dispersion relation

v25gk0 tanhk0h. ~9a!

An appropriate solution for the potentials, which satisfi
~1!–~4!, can be written as

f25f I1 (
n50

`

An cosmny•e1mnx ~10a!

and

f15 (
n50

`

Bn cosmny•e2mnx, ~10b!

wherem052 ik0 andmn5kn for n.0 andkn are the posi-
tive real roots of the dispersion relation

v252gkn tanknh. ~9b!

The first term of~10a! represents the incident wave, and t
summation terms represent the scattered waves. The co
Downloaded 02 Nov 2006 to 147.8.21.97. Redistribution subject to AIP 
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cientsAn and Bn are unknown complex numbers to be d
termined. It should be noted that cosmn y(n51,2,...) forms a
complete orthogonal set with

E
0

h

cosmny cosmmy•dy5dnmN2, ~11a!

wherednm is the Kronecker delta and

N2~mn!5H sinh 2k0h12k0h

4k0
~ for n50!,

sin 2knh12knh

4kn
~ for n.0!.

~11b!

By using the condition that the horizontal velocit
(]f/]x), is continuous alongx50 and making use of the
fact that the cosmny functions are orthogonal, it can b
shown that

A01B051 and An1Bn50. ~12!

Substituting~10! and ~12! into ~7!, we have

]f2

]x
5

]f1

]x
5 ik0f I~0,y!1 (

n50

`

mnAn cosmny

52w~y! for yPLb . ~13a!

By Eqs.~6c!, ~10!, and~12!,

w~y!52 ik0G0 F2(
n50

`

An cosmnyG for yPLb , ~13b!

where G05(rbv/mk0) is the porous effect parameter d
fined by Chwang,20 or the Chwang parameter.

The continuity of pressure along the gap now gives

p1~0,y!2p2~0,y!50

or ~14!

2(
n50

`

An cosmny50 for yPLg .

A dual series relation~Sneddon23! can be constructed by re
writing ~13! and ~14! as

ik0f I~0,y!1 (
n50

`

~mn22ik0G0!An cosmny50

for yPLb , ~15a!

2(
n50

`

An cosmny50 for yPLg . ~15b!

The solution of this dual series relation can be obtained
proximately by the least squares method, which requires
minimize the value of the integral,

iSN2 f i5E
0

h

uSN~y!2 f ~y!u2dy, ~16!

with respect toAn . In Eq. ~16! the functionsSN(y) and f (y)
are given by
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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57Phys. Fluids, Vol. 12, No. 1, January 2000 Scattering and radiation of water waves by permeable barriers
SN~y!55 (
n50

N

~mn22ik0G0!An cosmny for yPLb

(
n50

N

An cosmny for yPLg

~17a!

and

f ~y!5 H 2 ik0f I~0,y! for yPLb

0 for yPLg
. ~17b!

Therefore,

E
0

h

@SN2 f #*
]SN~y!

]An
dy50, ~n50,1,2,...!, ~18!

where the superscript* denotes the complex conjugate. A
approximate solution can be obtained by truncating the i
nite series to a finite series ofN terms. There areN simulta-
neous equations withN unknowns. A complex matrix equa
tion of rankN can be obtained, which can then be solved
obtain the values ofAn .

B. Radiation problems

As shown in Fig. 2, a vertical porous plate is forced
oscillate horizontally with an angular frequencyv and a

FIG. 2. Definition sketch for three types of porous wavemakers.~a! Type I:
a surface-piercing porous wavemaker.~b! Type II: a bottom-standing porous
wavemaker.~c! Type III: a totally submerged porous wavemaker.
Downloaded 02 Nov 2006 to 147.8.21.97. Redistribution subject to AIP 
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small displacements0 about thex50 axis. This oscillating
porous plate generates outgoing water waves. Cartesian
ordinates are chosen with the mean free surface aty5h. The
studying domain, which occupies 0,y,h and 2`,x
,`, is divided into two regions; a left-hand region,x,0,
with velocity potentialF2 , and a right-hand region,x.0,
with velocity potentialF1 . The plates occupy the following
positions, respectively,

~a! Type I: x50 and (h2a),y,h ~a surface piercing
wavemaker!;

~b! Type II: x50 and 0,y,(h2a) ~a bottom-standing
wavemaker!;

~c! Type III: x50 and (h2a2d),y,(h2a) ~a totally
submerged wavemaker!.

The wavemaker, which has a horizontal veloc
U0(y,t)52 ivs0e2 ivt, generates outgoing waves on bo
sides. Boundary conditions~3!–~6! are still valid. However,
Eq. ~7! should be replaced by

]f2

]x
~0,y!5

]f1

]x
~0,y!52 ivs02w~y! for yPLb .

~19!

At infinity, x→6`, the radiation wave must be outgoin
and the spatial velocity potentials of the generated waves
be given by

f56
vHout

2k0

coshk0y

sinhk0y
e6 ik0x. ~20!

The general solutions for the velocity potentials in t
two regions satisfying the continuity of normal velocit
]f/]x, alongx50 are

f15A0 coshk0yeik0x1 (
n51

`

An cosknye2knx, ~21a!

f252A0 coshk0ye2 ik0x2 (
n51

`

An cosknyeknx, ~21b!

wherek0 andkn satisfy the dispersion relations

v25gk0 tanhk0h52gkn tanknh. ~9!

The pressure in both regions must match at the gap. He
by ~5b!,

A0 coshk0y1 (
n51

`

An coskny50 for yPLg . ~22!

By Eqs.~6c!, ~19!, and~21!, we have

~2 ik022ik0G0!A0 coshk0y1 (
n51

`

~kn22ik0G0!An coskny

5 ivs0 for yPLb . ~23!

Equations~22! and~23! are known as dual series relations.
order to determine the values of the coefficients, the relati
must be solved simultaneously. The least squares metho
used to minimize the following integral with respect to th
unknown coefficients:
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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iSN2 f i25E
0

h

uSN2 f ~y!u2dy, ~24!

whereSN is given by~17a! and

f ~y!5 H ivs0 for yPLb

0 for yPLg
. ~25!

The results are

E
0

h

@SN2 f #*
]SN~y!

]An
dy50, ~n50,1,2,...!, ~26!

where the superscript* denotes the complex conjugat
There areN simultaneous equations withN unknowns, a
complex matrix equation with dimensionN3N can be ob-
tained, which can then be solved to obtain the values ofAn

~Losadaet al.13!.
It can be noticed that the general form of the result

dual series relations,~22! and ~23!, is similar to those given
in Sec. II A. In fact, the results of the wave scattering pro
lem can also be obtained by considering a special forc
function with the horizontal velocity distribution on the ba
rier opposite to that of the incident waves. This concept
lightens us on considering the problem of an active break
ter or active wave control. Although in this paper only t
scattering and radiation problems of porous barriers are c
sidered, the results revealing the performance of these t
types of barriers are still useful to the preliminary und
standing of the mechanisms involved in active wave con
problems.

III. RESULTS AND DISCUSSION

The method of solution described above has been
plied to solve certain typical cases of scattering and radia
problems. It seems appropriate and worthwhile at this po
to mention that the method of least squares approxima
for dual trigonometric series was first developed by Kelm
and Koper24 to obtain solutions for general dual trigonome
ric equations. The convergence of the dual orthogonal se
in Hilbert space was later established by Feinerman
Kelman.25 This provides the theoretical background to app

FIG. 3. T and R vs the dimensionless submergence deptha/h for h/l
50.44, Type I.
Downloaded 02 Nov 2006 to 147.8.21.97. Redistribution subject to AIP 
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the method to the present problem. Moreover, since
theory is applicable to all square integrable functions,
method can automatically deal with the square-root singu
ity at the tip of the thin barrier.

The problem of convergence has been carefully ta
into account by examining certain test cases. Based on
test results, the convergence of the solution depends on
geometry and configuration of the barrier. By considering
accuracy and computational time consumption, appropr
value ofN has been chosen for each particular case con
ered in the present paper.

The performance of the four types of porous barrie
used as breakwaters is discussed by considering the vari
of their transmission and reflection coefficients. The tra
mission coefficientT is defined as the ratio of the maximum
wave height of the transmitted waves to that of the incid
wave ~see Fig. 1!,

T5
HT

HI
, ~27!

whereas the reflection coefficient is defined as the ratio of
maximum wave height of the reflected waves to that of
incident wave,

FIG. 4. T and R vs the dimensionless submergence deptha/h for h/l
50.12, Type I.

FIG. 5. T andR vs the Chwang parameterG05rvb/mk0 .
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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59Phys. Fluids, Vol. 12, No. 1, January 2000 Scattering and radiation of water waves by permeable barriers
R5
HR

HI
. ~28!

The characteristics of the three types of wavemakers are
examined by calculating their amplitude to stoke ratios.

A. Scattering problems

1. A surface-piercing barrier

Figures 3 and 4 show the variations of the transmiss
coefficient T and the reflection coefficientR for different
values of the Chwang parameter,G0 , and different values of
water depth. Figure 3 is a graph for the case of dimension
water depthh/l50.44, which in fact corresponds to a de
water case. It can be seen that, whena/h50, all theT-curves
~curves for the transmission coefficients! start from 1 while
all the R-curves~curves for the reflection coefficients! start
from 0. That means when there is no barrier, all the incid
waves are transmitted to the other side and there is no re
tion. Whena/h is increased, theT-curves drop rapidly and
R-curves rise accordingly. This observation agrees well w
Ursell’s1 result, which states that for deep water waves m
of the energy is confined near the free surface, so the tr
mitted wave energy decreases drastically when the par
eter, 2pa/l, is greater than one. Whena/h51, that means

FIG. 6. T andR vs kh with a/h50.5, Type I.

FIG. 7. Horizontal force (F/Fs) vs kh with a/h50.5, Type I.
Downloaded 02 Nov 2006 to 147.8.21.97. Redistribution subject to AIP 
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the barrier is fully extended to the channel’s bottom, t
incident waves are totally or partially reflected depending
the values of the Chwang parameterG0 . Figure 5 shows the
variation ofT andR vs G0 for these fully extended barriers
actually this result is the same as those given by Chwang
Dong.26 In general, the higher the values ofG0 , the lower
the values of the end point ofR-curves, which implies more
waves can be transmitted through the porous barrier to
other side for higher porosity factor. The general shape of
R-curves for different values ofG0 are of similar nature, but
seems to be compressed downwards. This result can be
prehended with the physical intuition that whenG0 in-
creases, the permeability is increased, which will allow m
fluid and energy to pass through the barrier; and thus
reflection coefficients decrease.

In Fig. 4, the dimensionless water depthh/l is de-
creased to 0.12, which corresponds to a shallow water c
It can be seen that the general shapes of the curves are
ferent from those of the previous case. The result reveals
the barrier needs to be immersed more deeply into the w
in order to obtain the same reflection coefficient. This
because the wave energy is more evenly distributed over
channel. In general, the effect of a porous barrier is to red

FIG. 8. Overturning moment (M /Ms) vs kh with a/h50.5, Type I.

FIG. 9. Phase anglesu t andu r vs kh with a/h50.5, Type I.
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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60 Phys. Fluids, Vol. 12, No. 1, January 2000 M. M. Lee and A. T. Chwang
the reflection coefficient and to cause theR-curves to move
downwards.

It should be noted that whenG050, there is no energy
loss in the barrier. Therefore, by conservation of ener
R21T251. However, whenG0.0, some of the wave en
ergy, depending on the value of the porosity~see Fig. 5!,
would be dissipated by the barrier, that meansR21T2,1.
On the other hand, when the porosity of a barrier is
creased, the permeability of the barrier is increased co
spondingly. As the flow passing through the barrier
creases, more wave energy can be transmitted through
barrier to the other side and thus causing the reflection c
ficient R to decrease. As a result, it is possible for tw
T-curves with different values ofG0 to intersect each other
while the correspondingR-curves do not intersect each othe

In fact, there are other important design-factors in reg
to breakwaters. They are given as follows:

~1! The dimensionless hydrodynamic pressure forceF/Fs ,
F

Fs
5

1

Fs
E

h2a

h

@p2~0,y!2p1~0,y!#dy

5
1

Fs
E

h2a

h

rF]f1~0,y!

]t
2

]f2~0,y!

]t Gdy, ~29!

whereFs is the force per unit width for the full reflection
case.

FIG. 10. T andR vs kh with a/h50.25, Type II.

FIG. 11. Horizontal force (F/Fs) vs kh with a/h50.25, Type II.
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~2! The dimensionless overturning momentM /Ms ,
M

Ms
5

1

Ms
E

h2a

h

y@p2~0,y!2p1~0,y!#dy

5
1

Ms
E

h2a

h

ryF]f1~0,y!

]t
2

]f2~0,y!

]t Gdy, ~30!

whereMs is the moment per unit width for the full re
flection case.

~3! The phase angle of the transmitted and reflected wa
u t andu r .

Figures 6–9 show the variation of the parameters,T and
R, F/Fs , M /Ms , u t and u r , vs the dimensionless wate
depthkh for different values ofG0 . It can be observed tha
these parameters rise or change quickly whenkh is increased
from 0 to 2. This observation agrees with the physical in
ition that a surface-piercing barrier is not so good to obstr
long waves. Long waves can pass through the barrier with
too much reflection. However, whenkh is large, which
means that the water depth is large relative to the wa
length, most of the incoming waves are reflected by
surface-piercing barrier. Therefore, all the parameters cha
rapidly fromkh50 to kh52. The porous effect in general i
to reduce the values of different parameters.

FIG. 12. Overturning moment (M /Ms) vs kh with a/h50.25, Type II.

FIG. 13. Phase anglesu t andu r vs kh with a/h50.25, Type II.
license or copyright, see http://pof.aip.org/pof/copyright.jsp



a

ur

in
al
e-

e
as
c
ta

e

f-

oth
oc-
be

r a
ith

e
ter
the

ing

ger
ass

gh.
i-
h is
re-
ral,
re-

61Phys. Fluids, Vol. 12, No. 1, January 2000 Scattering and radiation of water waves by permeable barriers
2. A bottom-standing barrier

Figures 10–13 show the variations of the different p
rameters vs the dimensionless water depth,kh, for the spe-
cific case of a bottom-standing barrier whena/h50.25. It is
interesting to note from Fig. 10 that theR-curves increase in
the earlier stage, but when they reach certain maximum t
ing points they begin to decrease. This observation can
explained by the following argument. When the value ofkh
is very small, it means that the wavelength of the incom
waves is very long. These long waves are almost tot
transmitted. Whenkh increases, the effect of the barrier b
gins to operate and thus the reflection coefficientR increases.
But when the value ofkh becomes large, it means that th
wavelength is short, the effectiveness of the barrier decre
as the wave motion is now confined near the free surfa
Similar observation can be found in graphs for the horizon
force,F, and the overturning moment,M, but the curves now
decrease much slower after the turning points. Increas
porosity of the barrier, in general, reduces the reflectionR,
the horizontal forceF, the overturning moment and the di
ference between the phase anglesu t andu r .

3. A totally-submerged barrier

Figure 14 shows the variation ofT andR vs the dimen-
sionless water depthkh for a/h50.25 andd/h50.5. In this

FIG. 14. T andR vs kh for a/h50.25 andd/h50.5, Type III.

FIG. 15. T andR vs kh for a/h50.3 andd/h50.4, Type IV.
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figure, it can be seen that this barrier is not good for b
shallow and deepwater cases. The optimal performance
curs for the case of intermediate water depth. It should
noted that theR-curves drop when the water depthkh is
greater than 2. This observation is similar to the results fo
type II barrier in Fig. 10. It is remarkable, as compared w
the results of the type II barrier in Fig. 10 that for the sam
barrier length the effectiveness of a type II barrier is bet
than that of a type III barrier. In general, an increase in
porosity of the barrier can reduce the reflection coefficientR.

4. A barrier with a single gap

Figure 15 shows howT andR vary with the dimension-
less water depthkh with a/h50.3 andd/h50.4. The general
shape of the curves is similar to that of a surface-pierc
barrier given in Fig. 6. Whenkh is smaller than 3, which
means the wavelength of the incident waves is much lar
than the water depth, most of the incident waves can p
through the barrier’s slit and thus the transmission is hi
But, whenkh is large, most of the wave energy of the inc
dent waves is now confined near the free surface, whic
then obstructed by the upper portion of the barrier and
flected back. Therefore, the transmission is low. In gene
increasing the porosity of a barrier can reduce the wave
flection.

FIG. 16. Amplitude to stroke ratio vskh for a porous wavemaker.

FIG. 17. Amplitude to stroke ratio vskh for different values of the dimen-
sionless submergencea/h with G050, 0.5, 1, Type I wavemaker.
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B. Radiation problems

1. A surface-piercing wavemaker

The effectiveness of this type of wavemaker is examin
by studying the variation of the amplitude to stroke rat
with respect to the dimensionless water depth,kh, for differ-
ent values of the Chwang parameter,G0 . Figure 16 shows
how the amplitude to stroke ratios change with the wa
depth for the case of a piston-type porous wavemaker, wh
has been studied theoretically by Chwang.20 The results
shown are obtained by the present method as a limiting c
which is in good agreement with the theoretical solution.

From Figs. 17–19, it can be seen clearly how the de
of submergence and the porosity of a type I wavemaker
fect the performance of the corresponding wavemaker.
remarkable to note that the behavior of the surface-pierc
wavemaker witha/h50.5 is just slightly poorer than that o
the fully extended one. Whenkh is small, it means that the
wavemaker is oscillating very slowly and thus the lo
waves are generated; whereas whenkh is large, it means for
the case of high frequency short waves. Not surprisingly,
amplitude to stroke ratios are reduced if we decrease
depth of submergence of the surface-piercing wavemake

FIG. 18. Amplitude to stroke ratio vskh for different values of the dimen-
sionless submergencea/h with G050, 0.5, 1, Type I wavemaker.

FIG. 19. Amplitude to stroke ratio vskh for different values of the dimen-
sionless submergencea/h with G050, 0.5, 1, Type I wavemaker.
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physical terms, this can be easily explained by the fact t
since the forcing plate is now smaller, it can only exc
smaller amount of water. Moreover, it should be noted t
all the curves withG050 seem to converge to 2 whenkh
tends to infinity. This result suggests that the effectivenes
produce high frequency short waves with a surface-pierc
wavemaker, whether it is slightly or deeply immersed,
generally good.

These figures also present how the Chwang parame
G0 , affects the variation of the amplitude to stroke ratios
different settings of surface-piercing wavemakers. In th
figures, it can be observed that increasing the Chwang
rameter,G0 , results in smaller amplitude to stroke ratio
Not unexpectedly, largerG0 means higher permeability an
larger permeability will allow more fluid to pass through th
barrier, which means that the forced oscillation of the wa
maker exert lesser force on the fluid and thus smaller amo
of water gets excited. The general behavior of the curve
these three different cases,a/h50.8, 0.5, 0.2 seems to b
similar. All the curves for the impermeable wavemake
G050 seem to converge to 2. While the curves forG0

50.5 andG051 seem to converge to 1 and 2/3, respectiv

FIG. 20. Amplitude to stroke ratio vskh for different values of the dimen-
sionless gap lengtha/h with G050, 0.5, 1, Type II wavemaker.

FIG. 21. Amplitude to stroke ratio versuskh for different values of the
dimensionless positiona/h and plate lengthd/h with G050, 0.5, 1, Type III
wavemaker.
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which are the corresponding limiting values for the case
fully extended porous wavemakers. These results are equ
lent to saying that the effectiveness of a surface-piercing
rous wavemaker is as good as that of a fully extended po
wavemaker in producing high frequency short waves.

2. A submerged bottom-standing wavemaker

Figure 20 illustrates the effect of the gap size of type
wavemakers on the variation of the amplitude to stroke ra
versus the dimensionless water depth,kh. It can be seen tha
the curves now behave differently from those in the previo
cases for type I wavemakers. The curves now seem to
verge to 0 whenkh tends to infinity. It means that a bottom
standing wavemaker is not effective in producing high f
quency surface waves, which is in contrast to type I surfa
piercing wavemakers. Moreover, it can be noted that a li
increase in the gap length, asa/h50 to 0.2, reduces sharpl
the performance of this type of wavemakers. Whena/h
50.5, the maximum amplitude to stoke ratio is now on
about 0.4; whereas a surface-piercing wavemaker of
same length and same frequency can produce waves
amplitude to stroke ratio greater than 1.5. For even sho
bottom-standing wavemakers,a/h50.8 or larger, the result
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ing amplitude to stroke ratios are extremely low, which h
an order of only about 0.07. Physically, surface waves
disturbances on the free surface, an oscillating plate in
bottom of the channel produces oscillatory flow near
plate with decreasing amplitude in the vertical direction.
a result, only a little bit of disturbances on the free surfa
are produced and thus type II wavemakers are not effec
in generating surface waves.

Figure 20 also illustrates how the porosity of the pla
affects the behavior of the variation of amplitude to stro
ratios vs the water depth. Not surprisingly, the porous eff
in case ofa/h50.2 is higher than the other two case,a/h
50.5, 0.8. The spacing between theG050 and G050.5
curves for the casea/h50.2 is larger than that in the othe
two cases. This can easily be explained by the fact that
length of plate in the first case,a/h50.2, is longer than tha
in the other two cases. This is equivalent to saying that m
fluid is able to pass through the porous plate and thus
porous effect is larger.

3. A totally submerged wavemaker

In Fig. 21, it is shown how the curves for the amplitud
to stroke ratios vary as the water depth changes for diffe
-
FIG. 22. The velocity vector field of a Type II wave
maker witha/h50.25,G050. ~a! time51/8 period;~b!
time52/8 period; ~c! time53/8 period; ~d! time
54/8 period;~e! time55/8 period;~f! time56/8 period;
~g! time57/8 period;~h! time58/8 period.
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FIG. 22. ~Continued.!
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settings of type III impermeable wavemakers. Whena/h
50 andd/h51, it represents the case of a piston-type wa
maker, which can be obtained by the classical wavema
theory. The second curve witha/h50.25 andd/h50.75 ac-
tually resembles a type II wavemaker, so the general sh
of this curve is similar to those shown in Fig. 20. For t
third curve witha/h50.25 andd/h50.5, the values of the
amplitude to stroke ratios are generally much lower th
those of the former case witha/h50.25 anda/d50.75. This
result is reasonable, as the length of the wavemaker is
smaller. If the length of the plate is further reduced, the a
plitude to stroke ratios get even smaller as shown in
curves witha/h50.25 andd/h50.25. It should be noted
that the curves for the cases,a/h50.25 andd/h50.5, a/h
50.25 andd/h50.25, a/h50.5 andd/h50.25 seem to be
flatter than that for the case witha/h50.25 andd/h50.75.

Figure 21 also demonstrates the porous effect on
variation of amplitude to stroke ratios versus water depth
different settings of type III wavemakers. Consider the c
when the positions of the plates are fixed ata/h50.25, while
the length of the plate is decreased fromd/h50.5 to d/h
50.25. As discussed earlier, decreasing the length of
wavemaker has two effects, the first one is to reduce
amplitude to stroke ratios and the second one is to reduce
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degree of the porous effect. These results can be observ
those curves for the two cases. The values for the curveG0

50, a/h50.25 andd/h50.5 are higher than those for th
case witha/h50.25 andd/h50.25. Also, the other curves
for the case witha/h50.25 andd/h50.5 are more scattere
than those for the case witha/h50.25 andd/h50.25.

Consider another case when the length of the wavema
is fixed atd/h50.25, while the positions of the plates a
changed froma/h50.25 to a/h50.5. Shifting the plate
downwards seems also to have two effects, the first one
reduce the amplitude to stroke ratios and the second one
reduce the effectiveness in generating high frequency wa
These are shown by two observations in the curves for
corresponding two cases. The values for the curves for
case witha/h50.25 andd/h50.25 are much larger than
those for the case witha/h50.5 andd/h50.25. Also, the
curves for the case witha/h50.5 andd/h50.25 seem to
drop much earlier than those for the case witha/h50.25 and
d/h50.25.

IV. CONCLUSIONS

The problems of scattering and radiation of surfa
waves by several types of permeable vertical porous barr
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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are studied for finite water depth. The variation of certa
useful parameters versus the dimensionless water depth
been obtained by applying the method of eigenfunction
pansions and a suitable application of the least squ
method. There is a strong relation between the scattering
radiation problems. Specifically, it is noted that for type
barriers and type-I wavemakers the reflection coefficient
the amplitude-to-stroke ratio give the same limiting ratio
kh tends to infinity for different values ofG0 . For example,
the reflection coefficient forG050.5 is half of that forG0

50 askh approaches infinity~see Fig. 6!, and the amplitude-
to-stroke ratio forG050.5 is also half of that forG050 as
kh tends to infinity~see Fig. 18!. Therefore, it is possible to
determine the porosity of a plate by measuring
amplitude-to-stroke ratio which is practically easier to o
tain.

It should be noted that although only real values of
Chwang parameterG0 have been considered in this paper
is possible to use complex values ofG0 ~see Yu27!. How-
ever, for a medium in which the resistance dominates
inertial effect, like the present study, the porous param
G0 becomes purely real.

Moreover, the solution obtained by the present metho
a full solution. Many useful information can further be ca
culated from the solution, for example, the wave force,
wave moment and the velocity vector field as shown in F
22 ~in which the circle and dot represent the phase of
moving plate!.

Based on the results obtained, a porous barrier can
duce the impinging hydrodynamic wave forces acting on
and, at the same time, maintain a reasonably good pe
mance when it is used as a breakwater or wavemaker.
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