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PHYSICS OF FLUIDS VOLUME 10, NUMBER 5 MAY 1998
Inviscid two dimensional vortex dynamics and a soliton expansion
of the sinh-Poisson equation

K. W. Chow,a) N. W. M. Ko, and R. C. K. Leung
Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong

S. K. Tang
Department of Building Services Engineering, Hong Kong Polytechnic University, Hunghom, Hong Kong

~Received 2 September 1997; accepted 23 January 1998!

The dynamics of inviscid, steady, two dimensional flows is examined for the case of a hyperbolic
sine functional relation between the vorticity and the stream function. The 2-soliton solution of the
sinh-Poisson equation with complex wavenumbers will reproduce the Mallier-Maslowe pattern, a
row of counter-rotating vortices. A special 4-soliton solution is derived and the corresponding flow
configuration is studied. By choosing special wavenumbers complex flows bounded by two rigid
walls can result. A conjecture regarding the number of recirculation regions and the wavenumber of
the soliton expansion is offered. The validity of the new solution is verified independently by direct
differentiation with a computer algebra software. The circulation and the vorticity of these novel
flow patterns are finite and are expressed in terms of well defined integrals. The questions of the
linear stability and the nonlinear evolution of a finite amplitude disturbance of these steady vortices
are left for future studies. ©1998 American Institute of Physics.@S1070-6631~98!01805-4#
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I. INTRODUCTION

The dynamics of vorticity plays an important role
fluid mechanics by providing a convenient, efficient and
structive perspective of the flow.1,2 Recently there has been
strong interest in studying two dimensional~2D! vortex
structures under various conditions. Such problems are
only of fundamental fluid dynamical interest but will als
provide relevant information on turbulent flows. Among t
various possible applications of such coherent vortices
geophysical flows,3 rotating and stratified fluids4 and fluid
layers excited by electromagnetic forces.5

For inviscid, steady 2D flows without body force, on
general solution of fluid motions is~v,c being the vorticity
and the stream function, respectively!:1,2

2v5¹2c5S ]2c

]x2 1
]2c

]y2 D5 f ~c!. ~1.1!

f needs to be differentiable but otherwise arbitrary. Po
vortices, vortex sheets and other singular distributions
vorticity have been studied extensively in the literature. T
goal of the present work is to derive new, globally smoo
exact solutions of ~1.1! for the special casef (c)
52sinhc. Solutions for f being constant are discussed
standard references.1,2 A vortex patch is a connected regio
of finite area containing uniform vorticity surrounded by
irrotational fluid. The evolution of a vortex patch can b
treated by the methods of contour dynamics and Schw
functions. A simple example of a vortex patch is a Rank
vortex, a circular region of vortical fluid of a fixed radius
an otherwise unbounded irrotational fluid. Kirchhoff e
tended the reasoning, and gave an expression for an ellip

a!Corresponding author. Electronic mail: kwchow@hkusua.hku.hk
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patch rotating with a steady angular velocity. Moore a
Saffman further generalized the solution to a vortex patch
a uniform straining field. Kida included the effect of tim
dependence in the straining field. An extensive discussio
the dynamics of these elliptical vortices is given b
Saffman.2

The stability of these configurations is not a trivial ma
ter and has also received extensive treatment.6,7 The proper-
ties and dynamics of a single, elliptical vortex patch ha
continued to attract attention recently. Indeed the Lagrang
trajectories around the vortex might become chaotic.8

Properties of two or an array of vortex patches are u
ally handled numerically. Critical questions include but a
not limited to

~i! the shape of the patches as the size of each individ
unit increases from being very small through a fin
measure, and finally to the case of touching patch

~ii ! the stability of such arrangements.2

The case of linearf has also received tremendous atte
tion lately. A Lamb dipole is the simplest example.2 An ex-
ternal irrotational flow with a suitably chosen free strea
speed encloses a fluid endowed with vorticity. The circu
boundary has a radius determined by the zero of a Be
function. Chaplygin probably investigated a similar proble
independently at about the same time as Lamb did, bu
considered the case where the interior flow is not symme
cal as well.9 Analogous calculations have been performed
the quasi-geostrophic system of equations. The resulting
lutions, the modons, constitute an active field of research3

Nonlinear cases documented in the literature include
~i! f (c)5exp(22c): the Liouville equation.10 The Stu-

art vortices constitute a cat-eye pattern, and represent a
1 © 1998 American Institute of Physics
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1112 Phys. Fluids, Vol. 10, No. 5, May 1998 Chow et al.
tinuous family of solutions from a shear layer to a rectiline
array of point vortices.

~ii ! f (c)52sinhc : known either as the sinh-Gordon o
the sinh-Poisson~shP! equation.11,12

Mallier and Maslowe showed that a row of counter r
tating vortices constitutes a special solution of shP.11 Pas-
manter examined certain aspects of the controversies
rounding the precise relationship between the vorticity a
the stream function in decaying two dimension
turbulence.12 He also gave special axisymmetric solutions
shP in an unbounded fluid in terms of known different
equations. The stability of the Mallier-Maslowe configur
tion was investigated by Dauxoiset al.13

~iii ! f (c)5ac1bc3: There is a widely held belief in
the nonlinear science community that the two dimensio
nonlinear Schro¨dinger equation,

iAt1Axx1Ayy6A2A.50,

is not integrable. 2-soliton solution does not exist. Con
quently a time harmonic solutionA(x,y,t)5u(x,y)
3exp(2iVt),

uxx1uyy1Vu6u350,

should not possess any special property. Indeed the di
solution must be computed numerically.14 Numerical inte-
gration of the Euler equations shows that the dipole
unstable.14 However, the relation between the integrability
cxx1cyy5 f (c) and the stability of the associated vortic
patterns is unlikely to be simple.

Mathematically shP is closely related to the elliptic ve
sion of the sine-Gordon~sG! equation

cxx1cyy5sin c. ~1.2!

Studies of shP and sG actually have a long history in
literature of nonlinear waves. An expression for an arbitr
number of solitons for sG is available.15 Periodic solutions of
sG in terms of Riemann theta functions and the scatte
transform can be found.16 Travelling waves for the (211) ~2
spatial and 1 temporal! dimensional sG can be described
terms of classical elliptic functions.17 Some of these can re
duce to a steady state case and hence might correspo
solutions in inviscid vortex dynamics. For shP a period
solution in terms of theta functions and the inverse meth
is obtained for a square with homogeneous bound
conditions.18

Recently it has been shown that the Mallier-Maslo
vortices can be obtained as a 2-soliton solution of shP w
complex conjugate wavenumbers.19 A special solution from
a 3-soliton expansion of sG and some improved doubly
riodic solutions were also given. The goal of the pres
work is to present a special 4-soliton expansion of shP an
study the consequence in vortex dynamics.

For completeness the calculations reported earlier in
literature19 are reproduced here. The sinh-Poisson equati

cxx1cyy52sinh c ~1.3!

has a 2-soliton solution
Downloaded 10 Nov 2006 to 147.8.21.97. Redistribution subject to AIP 
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c54 tanh21S g2

f 2
D , g25exp~f1!1exp~f2!,

~1.4!
f 2511m exp~f11f2!,

fn5pnx1qny, pn
21qn

2521, n51,2,
~1.5!

m52
~p12p2!21~q12q2!2

~p11p2!21~q11q2!2 .

By choosingp15p2
!5 iA11k2, q15q25k, k real, one ob-

tains a form equivalent to the Mallier-Maslowe vortices.
the present notations this expression is

cxx1cyy52sinh c,
~1.6!

c54 tanh21F k cos~A11k2x!

A11k2 cosh~ky!
G .

For comparisons with the main results presented later Fi
shows the flow pattern associated with~1.6!.

Due to the restrictionpn
21qn

2521, eitherpn or qn must
be complex. To ensure real solutions the wavenumb
(pn ,qn) must be taken in complex conjugate pairs. Hen
only solitons of even orders are viable solutions of vort
dynamics. In contrast, the dispersion relation for the si
Gordon equation ispn

21qn
2511, and thus multi-soliton of

all orders are possible candidates. However, in view of
importance and relevance of shP in earlier experimental
computational works in fluid dynamics, we shall focus
shP in this paper. Although one can argue that solutions
sG and shP are related by the mapping

uxx1uyy5sin u, vxx1vyy5sinh v, v5 iu. ~1.7!

The purely imaginary nature of this transformation does
allow any known solution of sG to translate directly in
flow patterns. A Ba¨cklund transformation exists between re
solutions of sG and shP.12 However, it is a highly nontrivial
task to generate solutions of shP from the known mu

FIG. 1. Streamlines for the Mallier-Maslowe pattern~1.6!, A11k25p/2.
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1113Phys. Fluids, Vol. 10, No. 5, May 1998 Chow et al.
soliton solutions of sG through this transformation. Con
quently, one might have to start from first principles in d
riving solutions for shP.

Besides vortex dynamics a very important application
shP is the theory of 2D turbulence. The dynamics of t
dimensional line vortices can be treated by the method
statistical mechanics. The sinh Poisson equation is satis
by the most probable state of a system of point vortices
thermal equilibrium. Hence~1.3! will provide relevant infor-
mation on the relaxed state of 2D, high Reynolds num
turbulence.20

The picture now is that the lowest permissible mem
of the shP hierarchy, the 2-soliton, reproduces the Mall
Maslowe pattern. We shall derive a special 4-soliton exp
sion in Sec. II and study the associated flow patterns in S
III.

II. A SPECIAL 4-SOLITON EXPANSION

The search for multi-soliton of nonlinear evolution equ
tions is by now a well established discipline.15 For the
present purpose we shall employ the Hirota bilinear oper

Dx
mDt

ng. f 5S ]

]x
2

]

]x8D
mS ]

]t
2

]

]t8D
n

3g~x,t ! f ~x8,t8!ux5x8,t5t8 . ~2.1!

shP~1.3! can now be rewritten in the bilinear format:

c54 tanh21S g

f D52 logS f 1g

f 2gD , ~2.2!

~Dx
21Dy

2!~g.g1 f . f !50, ~Dx
21Dy

2!g. f 52g f .
~2.3!

The identity

2~ log F !xx5
Dx

2F.F

F2 ~2.4!

has been used.D is a linear operator. Appropriate function
forms for the expansion of this type of bilinear equations
known.15 The key to the search is to ensure that the exp
sion actually truncates at one particular level, e.g.,~1.4!,
~1.5! satisfy ~2.3! through the identity

Dx
mDy

n exp~ax1ry !.exp~bx1sy!

5~a2b!m~r 2s!n exp@~a1b!x1~r 1s!y#. ~2.5!

Tedious and oppressive algebra is usually involved in
higher order search, but that difficulty is largely mitigat
currently by the widespread use of commercial computer
gebra software, e.g.,MATHEMATICA . Since the dispersion re
Downloaded 10 Nov 2006 to 147.8.21.97. Redistribution subject to AIP 
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lation ~1.5! dictates that complex conjugate wavenumb
must eventually be used, one searches only for this spe
style of 4-soliton expansion. The appropriate expansion
shP ~2.1!–~2.3! that will form the central theme of the
present work is

f 511m12 exp~f11f2!1m13 exp~f11f3!

1m14 exp~f11f4!1m23 exp~f21f3!

1m24 exp~f21f4!1m34 exp~f31f4!

1m12m13m14m23m24m34 exp~f11f21f31f4!,

~2.6!

g5exp~f1!1exp~f2!1exp~f3!1exp~f4!

1x1 exp~f21f31f4!1x2 exp~f11f31f4!

1x3 exp~f11f21f4!1x4 exp~f11f21f3!.

~2.7!

Phase factors must occur in complex conjugate pairs

f15f5p1x1q1y, f35f!,

f25c5p2x1q2y, f45c!.

By repeated use of the identity~2.5! our contribution is to
prove that the expansion~2.6!, ~2.7! will actually truncate at
this level at least for the special case ofq15a ~real!, q2

5b ~real!. Through these intermediate calculations the
maining parameters can now be determined:

pn
21qn

2521, n51,2, p15 iA11a2, q15a,
~2.8!

p25 iA11b2, q25b,

mi j 5
Si j 11

Si j 21
, Si j 5pipj1qiqj ,

~2.9!

x15x35n15m12m14m24, x25x45n25m12m13m23.

Straightforward algebra now reveals a concrete final ans
for the stream function and the vorticity:

g52H exp~ay!cos~A11a2x!1exp~by!cos~A11b2x!

1S a2b

a1b D 2

exp~~a1b!y!

3F S 11
1

b2Dexp~by!cos~A11a2x!

1S 11
1

a2Dexp~ay!cos~A11b2x!G J , ~2.10!
f 511S 11
1

a2Dexp~2ay!1S 11
1

b2Dexp~2by!12Fab2A11a2A11b211

ab2A11a2A11b221Gexp~~a1b!y!cos~~A11a21A11b2!x!

12Fab1A11a2A11b211

ab1A11a2A11b221Gexp~~a1b!y!cos~~A11a22A11b2!x!1S 11
1

a2D S 11
1

b2D S a2b

a1b D 4

exp~2ay12by!.

~2.11!
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1114 Phys. Fluids, Vol. 10, No. 5, May 1998 Chow et al.
c~x,y,a,b!54 tanh21S g

f D ,
~2.12!

cxx1cyy52v52sinh c.

~2.10!, ~2.11! constitute the main result of the present wo
Note that~2.10!, ~2.11! reduce to~1.6! for the special case o
a5b, provided that a simple translation

y→y81
1

a
logS a

2A11a2D ~2.13!

is made~and primes are dropped!.
Furthermore~2.10!, ~2.11! possess a number of symm

tries:

c~x,y,a,b!5c~x,y,b,a!, ~2.14!

c~x,y,a,b!5c~x,2y,2a,2b!, ~2.15!

c~x,y,a,b!5c~2x,y,a,b!. ~2.16!

~2.14! implies that it is sufficient to considerb.a in the
subsequent discussion. Apart from illustrating the reflect
properties of~2.10!, ~2.11!, ~2.15!, ~2.16! can be used to
classify the~a,b! parameter plane. More precisely,~2.15!
implies that one only needs to consider two cases:a.0,b
.0 anda.0,b,0. The variation of the flow patterns wit
respect to changes inb is documented in Sec. III.

Confirmation. Exact solutions are generally rare in flu
mechanics, and~2.10!, ~2.11! are certainly not intuitively
obvious solutions of the equations of motion. Hence it
worthwhile to confirm the validity of~2.10!, ~2.11! by an
independent procedure. We shall in fact prove that~2.12! is
satisfied by direct differentiation. Such lengthy calculatio
are handled by the softwareMATHEMATICA . We shall verify
that

F4 tanh21S g

f D G
xx

1F4 tanh21S g

f D G
yy

52
4 f g~ f 21g2!

~ f 22g2!2

S 52sinhF4 tanh21S g

f D G D . ~2.17!

We first perform the differentiation on the left symbolical
usingg, gx , gy , gxx , gyy and the counterparts forf . The
common denominator (f 22g2)2 is then removed. The pre
cise forms for the derivatives off andg are now computed
in terms of exponential functions iny and trigonometric
functions in x. The computations are again performed
MATHEMATICA utilizing ~2.10!, ~2.11!. These well defined
expressions are then substituted into the numerators of
sides of~2.17!.

Finally, we expand each side in terms of the pow
UmVn, whereU5exp(ay), V5exp(by), m,n integers. How
an arbitrary piece of commercial software will deal wi
complex trigonometric formulas in general is uncertain, a
unwise applications of the compound angle formulas m
actually increase the execution time of the program. Henc
might be advisable to reduce all intermediate calculation
a purely algebraic nature by using well known expressio
e.g.,
Downloaded 10 Nov 2006 to 147.8.21.97. Redistribution subject to AIP 
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cos~A11a2x!5
1

2 S P1
1

PD , P5exp~ iA11a2x!,

~2.18!

sin~A11b2x!5
1

2i S Q2
1

QD , Q5exp~ iA11b2x!,

~2.19!

sin@~A11a22A11b2!x#5
1

2i S P

Q
2

Q

P D . ~2.20!

There are about twenty terms of the formUmVn with coef-
ficients as lengthy, but well defined, algebraic functions oP
and Q. We verify that identical powers from both side
match exactly. About ten calculations require somewh
from 10 to 20 min of computer time. The validity of~2.10!,
~2.11! is thus confirmed.

III. RESULTS

To perform a comprehensive search on the propertie
~2.10!–~2.12! in the ~a,b! plane will be a difficult exercise.
An additional constraint is that real, physical solutions a
obtained only forugu,u f u due to the inverse hyperbolic tan
gent. We focus on several extensions of known solutions

A. Vortices in a channel

~1! A11a25p/2 (a51.21136), A11b253p/2 (b
54.60506). The vertical linesx5N, N5an odd integer, are
streamlines, as there is no horizontal~normal! component of
velocity along such lines. Hence they can be replaced
rigid walls if necessary. Only pictures for the streamlin
will be shown, as diagrams for the vorticity contours a
basically identical. Note that fluids carrying vorticity of dif
ferent signs protrude into the original Mallier-Maslowe pa
tern ~Fig. 2!.

This might be one form of the phenomenon of ‘filame
tation’ studied earlier,2 but now the intruding fluids assum

FIG. 2. Streamlines for~2.10!, ~2.11! for A11a25p/2, A11b253p/2,
b.0.
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1115Phys. Fluids, Vol. 10, No. 5, May 1998 Chow et al.
an oval shape rather than an elongated finger. Furtherm
fluids on both sides of the boundary are endowed with v
ticity.

The relationship between the number of solitons and
external appearance of the flow is subtle, and pictures f
the low wavenumbers regime can be deceptive. In
Mallier-Maslowe solution there are two types of clos
streamlines~one withc.0, one withc,0! before the pat-
tern repeats itself~Fig. 1!. In the present case there a
clearly four kinds of recirculation regions in Fig. 2~by the
shape and sign of the streamlines!. One is tempted to link the
number of families of closed streamlines with the order
the soliton expansion. That such a correlation might not e
~or at least, not a simple one! is illustrated next.

~2! A11a25p/2 (a51.21136), A11b255p/2 (b
57.79006). The linesx5N ~N5odd integer! are again
streamlines. However, there are now five recirculating
gions inside a lemon shaped streamline~Fig. 3!.

~3! A11a25Mp/2, A11b25Np/2, M ,N odd inte-
gers. As pointed out earlier it is now sufficient to consid
M,N. For comparison we present

~i! M51, N57 ~Fig. 4!,
~ii ! M51, N59 ~Fig. 5!,
~iii ! M53, N55 ~Fig. 6!,
~iv! M53, N57 ~Fig. 7!,
~v! M55, N57 ~Fig. 8!,
~vi! M55, N59 ~Fig. 9!.

By examining these figures we suggest a rule wh
might govern the dynamics.

A mathematical conjecture. The lines x561 remain
streamlines for the choiceA11a25Mp/2, A11b2

5Np/2, M ,N odd integers. Obviously the flow patterns w
get increasingly complex asM andN become larger.~2.14!
implies that it is sufficient to considerM,N. For the pur-
pose of the present discussion we define a fundamenta
circulation region~FRR! in the following manner. A FRR
consists of a sequence of closed streamlines with stri

FIG. 3. Streamlines for~2.10!, ~2.11! for A11a25p/2, A11b255p/2,
b.0.
Downloaded 10 Nov 2006 to 147.8.21.97. Redistribution subject to AIP 
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monotonic increasing~or decreasing! c as the area enclose
by the streamlines shrinks to zero.

Consider Fig. 3 as an example. The eddy in the cen
qualifies as a fundamental recirculation region, sincec in-
creases strictly from about 3 as each streamline decreas
size. The family of streamlines enclosing all five eddies, e
the c51 to c52 sequence close to the wallsx561, must
be rejected. The reason is that both regions of increasing
decreasing values ofc are enclosed, and hence the variati
of c is not monotonic.

We now offer the following conjecture which consists
several parts:

~i! The special 4-soliton solution of the sinh Poiss
equation, ~2.10!, ~2.11!, will contain for A11a2

5Mp/2 andA11b25Np/2, N.M.1 being posi-
tive odd integers,M1N fundamental recirculation re
gions between the streamlinesx561.

FIG. 4. Streamlines for~2.10!, ~2.11! for A11a25p/2, A11b257p/2,
b.0.

FIG. 5. Streamlines for~2.10!, ~2.11! for A11a25p/2, A11b259p/2,
b.0.
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1116 Phys. Fluids, Vol. 10, No. 5, May 1998 Chow et al.
~ii ! If M51 andN.1, the number of fundamental reci
culation regions is reduced toN for a.0,b.0, or
one unit less than the case forM.1.

~iii ! If M51 andN.1, the number of fundamental reci
culation regions remainsN11 for a.0,b,0, due to
the appearance of a new unit below the main seque
of vortices~Figs. 10, 11!.

~iv! The Mallier-Maslowe pattern corresponds to the d
generate caseM51, N51, a5b.0, and there is
then exactly one family of closed streamlines betwe
x561.

Furthermore, there will be one single vortex attached
the wall~s! x561 ~or isolated from the main body of th
flow by a dividing streamline! if ( N2M )/2 is odd. If (N
2M )/2 is even, the number of these isolated vortices may
zero, two, or possibly a higher even integer. This appear
be true for bothb.0 andb,0 ~for a.0!.

FIG. 6. Streamlines for~2.10!, ~2.11! for A11a253p/2, A11b255p/2,
b.0.

FIG. 7. Streamlines for~2.10!, ~2.11! for A11a253p/2, A11b257p/2,
b.0.
Downloaded 10 Nov 2006 to 147.8.21.97. Redistribution subject to AIP 
ce

-

n

o

e
to

We are not able to prove these statements rigorously
the figures clearly support our claim.

B. Vortices in an unbounded fluid

When a,b are arbitrary real numbers,x5N ~N odd in-
teger! is no longer automatically a dividing streamline. Sin
one recovers the Mallier-Maslowe vortices for the case
a5b, one uses the method of continuation. For a small d
ference, say 1%, betweena andb, one might have a secon
row of counter rotating vortices. For a still larger differen
betweena andb more complicated patterns will appear. W
illustrate this trend fora51, b51.6 in Fig. 12. We expect
that the flow patterns will become increasingly complex
we continue to increaseb.

FIG. 8. Streamlines for~2.10!, ~2.11! for A11a255p/2, A11b257p/2,
b.0.

FIG. 9. Streamlines for~2.10!, ~2.11! for A11a255p/2, A11b259p/2,
b.0.
license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1117Phys. Fluids, Vol. 10, No. 5, May 1998 Chow et al.
C. Circulation and vorticity

Many physical properties of these systems of vortic
are of fluid dynamical interest. We shall again restrict t
attention to the case wherex561 are streamlines. The tota
x and y components of momentum of these vortices in
channel are zero:

E
2`

` E
21

1

rcydxdy52E
2`

` E
21

1

rcxdxdy50.

The kinetic energy is also bounded since the velocities de
exponentially for largey. Hence such configurations ca
theoretically be generated impulsively from a fluid at re
The total vorticity, however, is nonzero:

E E vdxdy52E E ~cxx1cyy!dxdy

5 R cydx2cxdy5 R udx1vdy. ~3.1!

In fact, one can consider a large rectangle with vertic
(61,6R) and letR→`. The contributions from the hori
zontal sides are neglected due to the exponential decay in
far field. A simple calculation now shows that

~1! for the Mallier-Maslowe pattern~~1.6! for A11k2

5p/2!

E E vdxdy52E
2`

`

vux51dy58kE
2`

` dy

coshky
58p,

~3.2!

~2! for ~2.10!, ~2.11!

E E vdxdy522E
2`

` S gx

f D U
x51

dy52E
2`

` Z1

Z2
dy,

~3.3!

FIG. 10. Streamlines for~2.10!, ~2.11! for A11a25p/2, A11b253p/2,
b,0.
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Z15pH M exp~ay!~21!~M21!/21N exp~by!

3~21!~N21!/21S a2b

a1b D 2

exp~~a1b!y!

3F S 11
1

b2D M exp~by!~21!~M21!/2

1S 11
1

a2DN exp~ay!~21!~N21!/2G J , ~3.4!

Z2511S 11
1

a2Dexp~2ay!1S 11
1

b2Dexp~2by!

12 exp@~a1b!y#S ab2A11a2A11b211

ab2A11a2A11b221
D

3~21!~M1N!/212 exp@~a1b!y#

3S ab1A11a2A11b211

ab1A11a2A11b221
D ~21!~M2N!/2

1S 11
1

a2D S 11
1

b2D S a2b

a1b D 2

exp@~2a12b!y#,

~3.5!

A11a25
Mp

2
, A11b25

Np

2
. ~3.6!

This integral is convergent, and can be evaluated numeric
if M ,N are known odd integers. Given the hyperbolic si
relationshipv can range over four or five orders of magn
tude asc changes from 1 to say 10. Note that there can
regions of large positive and negative values ofv. ~3.3! only
places a constraint on the integral of the vorticity.

FIG. 11. Streamlines for~2.10!, ~2.11! for A11a25p/2, A11b259p/2,
b,0.
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IV. DISCUSSIONS AND CONCLUSIONS

A higher order soliton expansion has been employed
generate new and novel solutions of two dimensional inv
cid vortex dynamics. The sinh-Poisson equation is chose
an example but the approach should theoretically be ap
cable to all such Klein Gordon equations. One appea
feature of the present procedure is that exceedingly com
flow patterns between two rigid walls can be generated a
lytically. Several extensions of the present work are possi

~1! A 6-soliton solution, if it exists, can be constructed
the expense of more algebra. One can anticipate the form
the expansion.x561 will remain streamlines for specia
choices of wavenumbers. The number of recirculation
gions per unit the flow will contain will be an interestin
question.

~2! A similar study can be pursued for the sine Gord
equation.

~3! A corresponding project for the Liouville equation10

is much more difficult since the expression for the mu
soliton is not available.

The present formulation derives a result which forms
generalization of the Mallier-Maslowe vortices. As such th
work should provide motivation for further theoretical wo
in vortex dynamics. Two important fluid mechanical aspe
of ~2.10!, ~2.11! are not discussed in the text and a remark
in order. The effect of viscosity is completely ignored due
the intrinsic limitations in the formulation. Viscous effec
are known to affect the Lamb dipole and are expected to p
a role here, but details remain to be pursued. The dynam
and evolution of even a low order vortical region, e.
monopole and tripole attractors, are already delicate qu
tions. Based on fully nonlinear, high Reynolds number
Navier-Stokes computations the outcome of such nonlin
evolution will depend on the amplitude of the initia
disturbance.21 Similar calculations for these multi-pole con
figurations and the related mixing problems will definitely
a valuable exercise. In fact the number of studies of mu
pole dynamics is very limited in the literature. Morel an
Carton22 considered multi-pole with an uniform interior dis
ribution and zero net vorticity.~2.10!, ~2.11! have a continu-
ously varying distribution and a net nonzero vorticity.

Stability properties of the configurations~2.10!, ~2.11!

FIG. 12. Streamlines for~2.10!, ~2.11! for a51, b51.6.
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for arbitraryM ,N are not addressed here and will be left f
future studies. Computational works will likely be require
for consideration of linear stability. At least some membe
of ~2.10!, ~2.11! will probably be unstable. One potentia
cause is the presence of ‘shielded monopoles’, a mono
core shielded by vorticity of the opposite sign~Fig. 3!.14 On
the analytical aspect tools from statistical mechanics mi
be exploited. Progress can be made regarding the stabilit
the solutions of

uxx1uyy5
exp~lu!

11m exp~lu!
,

and

uxx1uyy52exp~lu!.

Similar calculations for the shP have not yet been work
out.23 In the unstable regime~s! there would be a competition
between 2D and 3D instabilities, and surprises await fut
investigators.

Besides vortex dynamics another very critical ar
where the present work might make an impact is the reg
of chaotic flows. Persistent and robust 2D vortices have b
observed in many computational and experimental stud
Although the subject of two dimensional turbulence has b
and likely will remain controversial, the hyperbolic sine r
lationship between the vorticity and the stream function d
have supporting evidence in computations of turbulent,
caying 2D Navier-Stokes flows.24 Hence the results of the
present work are not only of interest as special elegant s
tions of vortex dynamics, but will have great practical si
nificance as a source of relevant information for asympto
states in complex flows. Many solutions of shP are yet to
discovered, and the present route should be a fruitful path
further research.

Finally multi-pole vortices can actually be observed
parallel shear flows between rigid walls.25 Whether the
present work will be applicable to these is left for futu
studies. As a conclusion the precise relationship between
long time outcome of complex chaotic flows and these ex
solutions from soliton theory will require further theoretica
computational and experimental efforts.
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