-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

Title A numerical study of the bearing capacity factor Ny

Author(s) Zhu, DY; Lee, CF; Jiang, HD

Citation Canadian Geotechnical Journal, 2001, v. 38 n. 5, p. 1090-1096

Issued Date | 2001

URL http://hdl.handle.net/10722/42067

- Canadian Geotechnical Journal. Copyright © N R C Research
Rights Press.



https://core.ac.uk/display/37881442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A numerical study of the bearing capacity factor N(gamma)
DY zhu; CF Lee; H D Jiang

Canadian Geotechnical Journal; Oct 2001; 38, 5; ProQuest Science Journals
pg. 1090

1090

A numerical study of the bearing capacity factor
N

Y

D.Y. Zhu, C.F. Lee, and H.D. Jiang

Abstract: Values of the bearing capacity factor N, are numerically computed using the method of triangular slices.
Three assumptions of the value of v, the base angle of the active wedge, are analyzed, corresponding to the following
three cases: (1) w = ¢, the internal friction angle; (2) w = 45° + ¢/2; and (3) vy has a value such that N, is a mini-
mum. The location of the critical failure surface is presented and the numerical solutions to N, for the three cases are
approximated by simple equations. The influence of the base angle on the value of N, is investigated. Comparisons of
the present solutions are made with those commonly used in foundation engineering practice.

Kev words: shallow foundation, bearing capacity, bearing capacity factor, limit equilibrium.

Résumé : Les valeurs du coefficient de capacité portante N, sont calculées numériquement au moyen de la méthode
des tranches triangulaires. Trois hypothéses de la valeur de v, 1’angle de la base du coin actif, sont analysées, corres-
pondant respectivement aux cas ol y est égal a I’angle de frottement interne ¢, 45° + ¢/2, et le cas de la valeur mini-
mum de N,. On présente la localisation de la surface de rupture critique, et les solutions numériques de N, sont
calculées approximativement par des équations simples pour les trois cas . On étudie 'influence de 1’angle de la base
sur la valeur de N, . On compare les présentes solutions avec celles utilisées communément pour les fondations dans la

pratique d’ingénieur.
Mots clés -

{Traduit par la Rédaction]

Introduction

For foundation design, the bearing capacity of a shallow
strip footing is commonly determined by using the following
Terzaghi equation:

[1] gy =GN, +cN_ .+ %B*’z;\r' .

where ¢, is the ultimate bearing capacity; ¢ is the cohesion
of the soil underneath the footing; ¢ is the surcharge above
the base level of the footing; v is the unit weight of the soil;
B is the width of the footing; N, is the bearing capacity fac-
tor related to cohesion ¢; N, is the bearing capacity factor re-
lated to surcharge ¢: and N, is the bearing capacity factor
related to y (Terzaghi 1943).

Analytical expressions derived from the theory of plastic-
ity give N, and N, but not N,. Several methods have been
employed to compute N., including the limit equilibrium
method (Terzaghi 1943; Meyerhof 1951), the method of char-
acteristics (Sokolovski 1960), the limit analysis method
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fondation superficielle, capacité portante, coefficient de capacité portante, équilibre limite.

(Chen and Davidson 1973), and the finite element method
(Griffiths 1982). The values of N, given by these methods
often vary considerably, and different formulae based on the
limit equilibrium method are employed for computing N, in
the design codes of various countries (Sieffert and Bay-
Gress 2000). Discrepancies occur in the results mainly due
to the different assumptions made regarding the geometry of
the active wedge immediately under the footing and the dif-
ferent procedures used in the computation of passive earth
pressure acting on the edge of the active wedge.

The geometry of the active wedge is defined by the base
angle v (Fig. 1), i.e., the inclination of the wedge with the
horizontal, which has been assumed to be equal to ¢ (Terzaghi
1943), the friction angle; 45°+ ¢/2 (Meyerhof 1963; Vesic
1973); or a selected value such that N, is a minimum (Hansen
1970; Vogel and Baracos 1973). The validity and merits of
these assumptions have yet to be duly verified. In this paper,
N, values based on these three assumptions are computed
and compared. In previous studies, the passive earth pressure
on the edge of the active wedge was obtained using the limit
equilibrium method with the assumption of a logarithmic
spiral slip line bounding the general failure region. In this
paper, the passive pressure is calculated using the method of
triangular slices, which is within the framework of the limit
equilibrium approach (Zhu and Qian 2000). With this method,
the passive failure region is divided into a number of trian-
gular slices and the critical base inclination of each slice is
determined based on the principle of optimality. This results
in minimal passive earth pressure without any restriction on
the shape of the critical failure surface. The passive earth
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Fig. 1. General shear failure mechanism of soil under the footing.
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pressure coefficients thus calculated were found to be in
good agreement with those from analytical solutions based
on the theory of plasticity.

Procedure

A strip footing with a width B subject to a vertical and
central load Q, on the surface of cohesionless soil is consid-
ered as shown in Fig. 1. It is assumed that under the ultimate
load, a general symmetrical shear failure surface consisting
of three zones is formed: active wedge (OAC in Fig. 1), ra-
dial shear zone (OCD), and passive Rankine zone (ODE).
The active wedge is an isosceles triangle with a base angle
of y. The weight W of the active wedge is

[2] Wzlzytfzsinmp

The passive earth force P acting on the edge OC can be ex-
pressed as

1 =
[3] P, = EyprC

where k,, is the passive earth pressure coefficient, which can
be directly determined using the method of triangular slices
(Zhu and Qian 2000).

From vertical equilibrium of the active wedge, the ulti-
mate load is given by

[4] Q, =2P, cos(y — ¢) - W

where ¢ is the internal friction angle.

Substituting egs. [2] and [3] into eq. [4] and considering
the relationship OC = B/(2 cos ), we have
B

[5] Q, = ———I[2k, cos(y — ¢) —sin 2y]
8 cos” vy

From eq. [1], Q, can also be expressed as

(6] 0, =3B

Comparing egs. [5] and [6], we have

[?] NT :Kolsi—;[zkp COS(LP "'¢}—Sil'1 21}1’]

Three assumptions of the value of  are considered in this
analysis corresponding to the following three cases: (1) y =
b, (2) v = 45° + ¢/2, and (3) y has a value that makes N,], a
minimum. The values of N, in these three cases are denoted
N,Y, NS, and N, respectively.

Numerical values of N, and comparisons

The numerical values of N, for ¢ = 1-50° are presented in
Table 1. The variation of N, with ¢ is shown in Fig. 2. The
numerical values of N, can be approximated by the follow-
ing equations:

[8] N, = (2N, + 1)(tan $!-3 for case 1
[9] N, = {2N‘|F + I)tan(1.07¢) for case 2
[10] N, = (2N, + 1)(tan §)!-45 for case 3

where
N, = tanz[E + E] sy
4 2

Table 1 shows that the simple equations [8]-[10] agree
well with the numerical results, with a maximum difference
not exceeding 10%, which can therefore be used in practice.

Comparisons of the present solution with those by other
investigators are presented in Fig. 3. For case 1, Kumbhojkar
(1993) has obtained numerical values of N, using the loga-
rithmic spiral method for calculating the passive earth pressure
acting on the edge between the active wedge and the radial
shear zone. Kumbhojkar’s solutions are plotted in Fig. 3,
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Table 1. Numerical values of N,
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Numerical N,

Approximate N, / numerical N,

d (%) Case 1 Case 2 Case 3 N, Case 1| Case 2 Case 3
1 0.012 0.058 0.011 1.094 1.094 1.027 0.812
2 0.031 0.124 0.025 1.197 1.182 1.021 1.028
3 0.058 0.200 0.045 1.309 1.169 1.015 1.121
4 0.094 0.286 0.071 1.432 1.131 1.011 1.146
5 0.139 0.385 0.107 1.568 1.108 1.007 1.131
6 0.195 0.497 0.152 1.726 1.087 1.004 1.111
7 0.262 0.624 0.208 1.879 1.069 1.002 1.095
8 0.343 0.769 0.275 2.058 1.056 1.001 1.081
9 0.440 0.935 0.356 2255 1.041 1.000 1.068

10 0.552 1.123 0.453 2471 1.034 1.000 1.059

11 0.684 1.337 0.568 2710 1.028 1.000 1.051

12 0.842 1.582 0.707 2973 1.020 1.001 1.041

13 1.023 1.860 0.875 3.264 1.017 1.003 1.027

14 1.238 2178 1.069 3.586 1.012 1.004 1.020

15 1.488 2.540 1.309 3.941 1.009 1.006 1.006

16 1.775 2.955 1.584 4.335 1.009 1.008 0.998

17 2.114 3.429 1.921 4.772 1.007 1.010 0.984

18 2.509 3.973 2.323 5.258 1.006 1.013 0.971

19 2.964 4.597 2.793 5.798 1.008 1.015 0.961

20 3.499 5313 3.367 6.399 1.008 1.018 0.947

21 4.123 6.138 4.033 7.071 1.008 1.020 0.937

22 4.852 7.089 4.796 7.821 1.009 1.023 0.932

23 5.701 8.187 5.673 8.661 1.011 1.025 0.932

24 6.698 9.457 6.685 9.603 1.012 1.027 0.935

25 7.867 10.930 7.864 10.662 1.013 1.029 0.939

26 9.240 12.643 9.240 11.854 1.014 1.031 0.944

27 10.856 14.638 10.849 13.199 1.016 1.033 0.950

28 12.761 16.968 12.740 14.720 1.017 1.034 0.956

29 15.013 19.697 14.959 16.443 1.018 1.035 0.963

30 17.682 22.901 17.579 18.401 1.018 1.035 0.970

31 20.851 26.676 20.672 20.631 1.019 1.036 0.977

32 24.625 31.138 24.346 23.177 1.019 1.035 0.984

33 29.136 36.429 28.719 26.092 1.019 1.034 0.990

34 34.542 42.726 33.941 29.440 1.019 1.032 0.997

35 41.048 50.247 40.200 33.296 1.018 1.030 1.003

36 48.902 59.269 47.735 37.152 1.016 1.027 1.008

37 58.426 70.137 56.855 42.920 1.014 1.024 1.013

38 70.025 83.287 67.899 48.933 1.012 1.020 1.018

39 84.210 99.274 81.366 55.957 1.009 1.014 1.022

40 101.653 118.786 97.926 64.195 1.004 1.009 1.025

41 123.203 142.746 118.246 73.896 1.000 1.002 1.027

42 149.981 172.339 143.431 85.373 0.994 0.994 1.028

43 183.451 209.096 174.829 99.013 0.987 0.986 1.029

44 225420 255.049 214.058 115.307 0.980 0.977 1.029

45 278.540 312.880 263.746 134.872 0.972 0.966 1.027

46 346.205 386.183 326.590 158.500 0.963 0.955 1.024

47 433.047 479.815 407.403 187.204 0.953 0.942 1.020

48 545.391 600.384 511.186 222.297 0.941 0.928 1.015

49 691.958 757.000 646.853 265.494 0.929 0.914 1.008

50 884.930 962.325 824.313 319.053 0.915 0.898 1.000

which shows that his numerical values are, to a certain de-
gree, higher than those from the present solution, especially
when the internal friction angle of the soil is large. This dis-
crepancy possibly results from the different approaches used
in searching the critical slip surface. Terzaghi (1943) pub-

lished well-known curves of bearing capacity factors versus
. It is difficult to precisely reproduce his solution. Hence,
only three numerical values are plotted in Fig. 3 for compar-
ison. It is shown that Terzaghi's solution is in agreement
with that of Kumbhojkar when ¢ is less than 45°,
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Fig. 2. Variation of N, with ¢.
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For case 2, two widely used formulae were provided by
Meyerhof (1963)

[11] N‘r = (Nq — I)tan(1.4¢)
and Vesic (1973)
[12] N._, = E(Nq + I)tan ¢

Figure 3 shows that the present solution is in good agree-
ment with that of Vesic (1973) when ¢ is less than 35°,
whereas the solution of Meyerhof (1963) generally gives
lower values of N, in comparison to the other two solutions.

For case 3. Hansen (1970) gave the following formula for

computing N.:
[13] N, = L5(N, - Dan ¢

Vogel and Baracos (1973) also gave numerical results for
several values of ¢, which are plotted in Fig. 3 along with
those based on eq. [13]. The present solution agrees well
with that of Vogel and Baracos. The results provided by
eq. [13], based on the solution of Hansen (1970), are lower
in value.

Figure 2 shows that the difference in corresponding values
of N, between case 1 and case 3 is relatively small. More-
over, the influence of the base angle \ on the value of N,
computed is not large, as illustrated in Fig. 4. For example,
for ¢ = 40°, when  increases from 34° to 61°, N, will only
decrease by less than 10%.

It must be pointed out that the present solutions for the
bearing capacity factor N, are in the context of limit equilib-
rium. Strictly speaking, they are neither lower nor upper
bounds to the exact solutions. Since the passive earth pres-
sure coefficient required for calculating N, is obtained to a
high degree of accuracy by the method of triangular slices,
the calculated values of N, can be regarded as nearly accu-
rate for the adopted assumption regarding the base angle of
the active wedge. Recently, several investigators have devel-
oped the least upper-bound solutions to N, by means of limit
analysis using an optimization technique (Michalowski 1997:
Soubra 1999; Zhu 1999). Their results are nearly identical
for both the symmetrical and the one-sided failure mecha-

nisms. Comparison between the values of N, obtained with
the present method and those from the least upper-bound so-
lutions are tabulated in Table 2, It can be seen in Table 2
that the least upper-bound solutions to N, are in close agree-
ment with those from the present method for case 2. The
values of N, in case 3 are the lowest of all three cases and
may therefore approximate the lower-bound solutions, since
they are minimized with respect to the base angle, and the
associated passive earth pressure coefficient is nearly ex-
actly obtained by using the method of triangular slices.

Location of critical failure surfaces

The location of the critical failure surface in soil under ul-
timate loading is of interest in design. Figure 5 shows that
the extent of the failure region in case 2 is larger than those
for cases 1 and 3. It is interesting to note that for case 3,
when ¢ is equal to or less than 20°, the critical value of s is
zero. This was first found by Vogel and Baracos (1973).
Comparison of the locations of the critical failure surface is
shown in Fig. 6. The location of the critical failure surface
given by Kumbhojkar (1993) deviates substantially from the
present solution, and this results in a large discrepancy in the
values of N, calculated. Kumbhojkar restricted the center of
the logarithmic spiral to the line that makes an angle of 45° —
¢/2 with the horizontal. Vogel and Baracos (1973) imposed
no such restriction on the position of the center of the loga-
rithmic spiral and gave locations of the critical failure sur-
face which are in good agreement with those obtained with
the present method of triangular slices.

Conclusions

The method of triangular slices is an effective method for
computing the values of the bearing capacity factor N,. Three
cases of base angle assumption are taken into account in the
present analysis. The values of N, computed based on the as-
sumption of 45° + ¢/2 are in close agreement with the least
upper-bound solutions by limit analysis, whereas those val-
ues which are minimized with respect to the base angle ap-
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Fig. 3. Comparison of N, values computed in the present study w
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ith those from other investigators.
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Fig. 4. Effect of y on N,.
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Table 2. Comparison of N, values from the present method with those from limit analysis.

Least upper-bound solutions

Present solutions Symmetrical One-sided

$(*) Case 1 Case 2 Case 3 mechanism mechanism
5 0.139 0.385 0.107 0.181 0.247
10 0.552 1.123 0.453 0.706 0.845
15 1.488 2.540 1.309 1.937 2.095
20 3.499 5313 3.367 4.466 4.659
25 7.867 10.930 7.864 9.760 10.031
30 17.682 22.901 17.579 21.384 21.805
35 41.048 50.247 40.200 48.654 49.381
40 101.653 118,786 97.926 118.750 120.150
45 278.540 312.880 263.746 322.622 325.766
50 884.930 962.325 824.313 1025.064 1033.480
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Fig. 6. Comparison of location of critical failure surfaces.
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