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Combined first-principles calculation and neural-network correction
approach for heat of formation
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Despite their success, the results of first-principles quantum mechanical calculations contain
inherent numerical errors caused by various intrinsic approximations. We propose here a
neural-network-based algorithm to greatly reduce these inherent errors. As a demonstration, this
combined quantum mechanical calculation and neural-network correction approach is applied to the
evaluation of standard heat of formatidgH® for 180 small- to medium-sized organic molecules

at 298 K. A dramatic reduction of numerical errors is clearly shown with systematic deviation being
eliminated. For example, the root-mean-square deviation of the calculgtéd for the 180
molecules is reduced from 21.4 to 3.1 kcal mbifor B3LYP/6-311+ G(d,p) and from 12.0 to

3.3 kcal mol ! for B3LYP/6-311+ G(3df,2p) before and after the neural-network correction.

© 2003 American Institute of Physic§DOI: 10.1063/1.1630951

One of the Holy Grails of computational science is to methods used? It has been proven an extremely difficult task
quantitatively predict properties of matter prior to experi-to determine the calculation errors from the first-principles.
ments. Despite the fact that the first-principles quantum meAlternatives must be sought.
chanical calculatioh? has become an indispensable research  We propose here a neural-network-based algorithm to
tool and experimentalists have been increasingly relying omletermine the quantitative relationship between the experi-
computational results to interpret their experimental findingsmental data and the first-principles calculation results. The
the practically used numerical methods by far are often notletermined relation will subsequently be used to eliminate
accurate enough in particular for complex systems. Thighe systematic deviations of the calculated results and thus
limitation is caused by the inherent approximations adoptededuce the numerical uncertainties. Since its beginning in the
in the first-principles methods. Because of computationalate fifties, neural networks has been applied to various en-
cost, electron correlation has always been a difficult obstaclgineering problems, such as robotics, pattern recognition,
for first-principles calculations. Finite basis sets chosen irspeech, eté* As the first application of neural networks to
practical computations are not able to cover entire physicafjluantum mechanical calculations of molecules, we choose
space and this inadequacy introduces also inherent computthe standard heat of formation;H® at 298.15 K as the
tional errors. Effective core potential is frequently used toproperty of interest.
approximate the relativistic effects, resulting inevitably in A total of 180 small- or medium-sized organic mol-
errors for systems that contain heavy atoms. The accuracy efcules, whose\;H® values are well documented in Refs.

a density functional theoryDFT) calculation is mainly de- 5-7, are selected to test our proposed approach. The three
termined by the exchange-correlati®C) functional being tabulated values oAH® in the three references differ less
employed! whose exact form is however unknown. than 1.0 kcalmol?! for any one of the 180 molecules. The

Nevertheless, the results of first-principles quantum meuncertainties of all\{H® values are less than 1.0 kcal mol
chanical calculation can capture the essence of physics. For Refs. 5—7. These selected molecules contain elements
instance, the calculated results, despite that their absolusch as H, C, N, O, F, Si, S, Cl, and Br. The heaviest mol-
values may agree poorly with measurements, are usually afcule contains 14 heavy atoms, and the largest has 32 atoms.
the same tendency among different molecules as their expeée divide these molecules randomly into the training set
mental counterparts. The quantitative discrepancy betweefi50 moleculesand the testing s€80 molecules The ge-
the calculated and experimental results depends predomdmetries of 180 molecules are optimized via B3LYP/6-311
nantly on the property of primary interest and, to a less ex-+ G(d,p)® calculations, and the zero point energi&PEs
tent, also on other related properties of the material. Therare calculated at the same level. The enthalpy of each mol-
exists thus a sort of quantitative relation between the calcuecule is calculated at both B3LYP/6-31G(d,p) and
lated and experimental results, as the aforementioned aB3LYP/6-311+ G(3df,2p).2  B3LYP/6-311+ G(3df,2p)
proximations to a large extent contribute to the systematiemploys a larger basis set than B3LYP/6-31G(d,p). The
errors of specified first-principles methods. Can we developnscaled B3LYP/6-31tG(d,p) ZPE is employed in the
general ways to eliminate the systematic computational erA;H® calculations. The strategies in Ref. 9 are adopted to
rors and further to quantify the accuracies of numericalkcalculate A(H®. The calculatedA;H®s for B3LYP/6-311
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+G(d,p) and B3LYP/6-31% G(3df,2p) are compared to den neurons is to be determined. The most important issue is
their experimental data in Figs(al and ib). The horizontal to select the proper physical descriptors of our molecules,
coordinates are the raw calculated data and the vertical cavhich are to be used as the input for our neural network. The
ordinates are the experimental values. The dashed lines ag@lculatedA;H® contains the essence of exdgH®, and is
where the vertical and horizontal coordinates are equal, i.ethus an obvious choice of the primary descriptor for correct-
where the B3LYP calculations and experiments would havéng A{H®. We observe that the size of a molecule affects the
the perfect match. The raw calculation values are mostlyaccuracies of calculations. We plot the difference between
below the dashed line, i.e., most rawH®s are larger than the calculatedAH® and the measuredH® versus the

the experimental data. In other words, there are systematigumber of atoms\; in Fig. 3. Roughly speaking, the more
deviations for B3LYPA{H®. Compared to the experimental atoms a molecule has, the larger the deviation. The deviation
measurements, the root-mean-squéRMS) deviations for is approximately proportional tdN;, although the propor-
AH® are 21.4 and 12.0kcalmot for B3LYP/6-311 tionality is by no means strict. This is consistent with the
+G(d,p) and B3LYP/6-31% G(3df,2p) calculations, re- general observations of others in the field, of a molecule
spectively. In Table | we compare the B3LYP and experimenis thus chosen as the second descriptor for the molecule. ZPE
tal A;H®s for 180 molecules with first seven small mol- is an important parameter in calculatingH®. Its calculated
ecules reported in Ref. 9. Overall, B3LYP/6-311 value is often rescaled in evalua’[img:}He,9 and it is thus
+G(3df,2p) calculations yield better agreements with the
experiments than B3LYP/6-311G(d,p). In particular, for
small molecules with few heavy elements B3LYP/6-311
+G(3dp,2p) calculations result in very small deviations
from the experiments. For instance, thgH® deviations for
CH, and CS are only —0.3 and 0.4 kcalmol', respec-
tively. The results in Ref. 9 are slightly better than the |,
B3LYP/6-311+ G(3df,2p) results for small molecules, and
this is because the ZPEs in Ref. 9 are scaled by an empirica
factor 0.98. For large molecules, both B3LYP/6-311
+G(d,p) and B3LYP/6-31% G(3df,2p) calculations yield
quite large deviations from their experimental counterparts.
To improve the comparison with the experiment, different
empirical scaling factors have been employed for large mol-
ecules.

Our neural network adopts a three-layer architecture
which has an input layer consisting of inputs from the physi-
cal descriptors and a bias, a hidden layer containing a num- g,
ber of hidden neurons, and an output layer that outputs the
corrected values foAH® (see Fig. 2 The number of hid-

Input layer Hidden layer Output layer

Wy

(=)

Nao | Xa

Wxs2

FIG. 2. Structure of our neural network.

Downloaded 08 Nov 2006 to 147.8.21.97. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 119, No. 22, 8 December 2003 Calculated heat of formation 11503

60 ' : ' : ' L tween the neural-network correctagH®s and their experi-
. () | mental valuegwith the vertical coordinates for the experi-
50 a 2 . .
., mental values and the horizontal coordinates for the
40 t L st i calculatedA;H®s). The triangles belong to the training set
. R ‘s and the crosses belong to the testing set. Compared to the
30 | sa s 4t 2ot 1 raw calculated results, the neural-network corrected values
o0 | Le £ . a 2 gk N are much closer to the experimental values for both training
—_ 2 sog,bg a8t and testing sets. More importantly, the systematic deviations
w'TE: 10 | g&gggﬁf ’ for A(H® in Figs. 4a) and 1b) are eliminated, and the re-
= PR sulting numerical deviations are reduced substantially. This
g 0r B3LYP/6-311+G(dp) - can be further demonstrated by the error analysis performed
2 10 for the raw and neural-network correctdgH®s of all 180
% molecules. In the insets of Fig. 1, we plot the histograms for
2 50+ (0 / the deviations(from the experimenjsof the raw B3LYP
a A¢H®s and their neural-network corrected values. Obviously,
40 1 1 the raw calculated\{H®s have large systematic deviations:
a0 | ) s .| 21.4 and 12.0kcalmof for AH®s at B3LYP/6-311
S L N +G(d,p) and B3LYP/6-31% G(3df,2p), respectively. On
20 | STy 8 1 the contrary, the neural-network correctagH®s have vir-
X :& . QZ §§“ﬁ ¢ tually no systematic deviations. Moreover, the remaining nu-
10r .z :Q%gﬁ%ﬁ merical deviations are much smaller. Upon the neural-
ol gﬁggﬁgggﬁim 8 B3LYP/6-311+G(3df,2p) | network corrections, the RMS dewzimons (AffHes are
N reduced from 21.4 to 3.1kcalmol and 12.0 to
10 . . . . . . 3.3kcalmol't  for B3LYP/6-311+ G(d,p) and
0 5 10 15 20 25 30 35 B3LYP/6-3114 G(3df,2p), respectively. Note that the error
Number of atoms N; distributions after the neural-network correction are of ap-

- proximate Gaussian distributiorisee Figs. (c) and 1d)].
FIG. 3. Deviations (theory—expd. vs the number of atomga) for
B3LYP/6-311+ G(d,p); (b) for B3LYP/6-311+ G(3df,2p). Although the raw B3LYP/6-311 G(d,p) results have much

larger deviations than those of B3LYP/6-316G(3df,2p),

the neural-network corrected values of both calculations
taken as the third physical descriptor. Finally, the number ohave deviations of the same magnitude. This implies that it
double bondsNgp,, is selected as the fourth and last descrip-may be sufficient to employ the smaller basis set 6-311
tor to reflect the chemical structure of a molecule. To ensure- G(d,p) in our combined DFT calculation and neural-
the quality of our neural network, a cross-validation proce-network correction (or DFT-NEURON approach. The
dure is employed to determine our neural network includingheural-network-based algorithm can correct easily the defi-
its structure and Welgh@We randomly divide further 150 Ciency of a small basis set. Therefore, the DFT-NEURON
training molecules into five subsets of equal size. Four thproach can potentia”y be app“ed to much |arger Systems_
them are used to train the neural network, and the fifth tqn Taple | we distinguish the molecules of the testing sets.
validate its predictions. This prOCEdUre is repeated five tlme#‘hE deviations of |arge molecules are of the same magnitude
in rotation. The number of neurons in the hidden layer isas those of small molecules. Unlike other quantum mechani-
varied from 1 to 10 to decide the optimal structure of ourca| calculations that usually yield worse results for larger
neural network. We find that the hidden Iayer Containing tWOm0|ecu|eS than for small ones, the DFT-NEURON approach
neurons ylelds the best overall results. Therefore, the 5-2'aoes not discriminate against the |arge molecules.
structure is adopted for our neural network as depicted in |y Table I we list the values ofwx; } and{Wy;} of the
Fig. 2. The input values at the input laye®, X5, X3, X4, two neural networks for correctinngé of B3LYP/6-311
andxs, are scaled\H®, N;, ZPE,Ngp,, and bias, respec- +G(d,p) and B3LYP/6-31%G(3df,2p) calculations.
tively. The biasxs is set to 1. The weightfWx;}s connect  Analysis of our neural network reveals that the weights con-
the input neurongx;} and the hidden neuroryg andy,, and  necting the input for\;H® have the dominant contribution
{Wy;}s connect the hidden neurons and the ougputhich iy all cases. This confirms our fundamental assumption that
is the scaled\H® upon neural-network correction. The out- the calculatedA;H® captures the essential value of exact

put Z is related to the inpufx;} as A¢H®. The bias contributes significantly to the correction of
systematic deviations in the raw calculated data, and always
Z= 21 , Wy; Sig( ,215 W Xi) : (1) has the second largest weights for all cases. The input for the
=1 =1,

second physical descriptd¥,, has also large weights in all
where Sigf)= 1[1+exp(—av)] and « is a parameter that cases, in particular for 6-3#1G(d,p). This is because the
controls the switch steepness of Sigmoidal function &g( raw A;H® deviations are roughly proportional th, as
An error back-propagation learning procedligeused to op-  shown in Fig. 3, which confirms the importance Nf as a
timize the values ofWx; and Wy; (i=1,2,3,4,5 andj significant descriptor of our neural network. ZPE has been
=1,2). In Figs. 1c) and 1d) we plot the comparison be- often rescaled to account for the discrepancies between cal-
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TABLE I. Experimental and calculatefiiH® (298 K) for 180 compoundsall data are in the units of kcal mot).

Hu et al.

AH® (298 K)
Formula Name Expt? DFTZ° NN1° DFTZ NN2° DFT3
CR,0 carbonyl fluoride —152.7 -132.9 —146.0 —144.2 —146.2 —143.6
CH,Cl, dichloromethane —22.8 —-12.2 —-19.2 —-17.8 -17.9 —-18.2
CH,F,% difluoromethane —108.2 —100.1 —-107.2 -107.5 -107.5 —107.7
CH, methane -17.9 -16.6 -16.7 -18.2 -16.8 -19.5
CH,0¢ methanol —48.1 —42.9 —46.2 —47.2 —47.3 —48.1
CS, carbon disulfide 28.0 36.5 31.2 28.4 31.1
CgHg® benzene 19.8 36.2 21.1 26.7 21.1
CBrCly bromotrichloromethane -9.3 11.3 —-5.3 1.2 -1.1 —
CBrF;¢ bromotrifluoromethane —155.1 —140.4 —156.9 —153.4 —156.7 -
CCIR,9" chlorotrifluoromethane —169.2 —150.9 —168.0 —165.0 -169.1 -
CCIN® cyanogen chloride 33.0 40.3 34.3 32.7 33.8
CCLL,O phosgene -52.3 —-40.4 —49.8 —49.2 —48.6 -
CF, carbon tetrafluoride —223.0 —203.2 —218.6 —218.9 —220.1 -
CHCl, chloroform —24.2 —-7.4 —18.8 —15.6 -16.7 -
CHF; trifluoromethane —166.7 —153.2 —167.6 —164.5 —168.2 -
CH,0O, formic acid -90.5 -82.9 —89.2 —89.6 —89.2 -
CH3Br methyl bromide -9.0 —6.8 —10.3 —9.2 -84 -
CH;NO, nitromethane -17.9 —-11.0 —-20.1 —-20.5 —22.0 -
CH3;NO, methyl nitrite —15.3 -79 -17.8 —-17.4 -19.1 -
CH,S%" methyl mercaptan -55 1.4 -4.0 -33 -3.7 -
CHsN methylamine -55 —-3.4 -6.5 -7.3 -8.0 -
COSs carbonyl sulfide -33.1 —25.8 —29.4 —34.0 —30.6 -
C,H, acetylene 54.2 59.8 54.2 56.7 55.7 —
C,H,CL° 1,1-dichloroethylene 0.6 15.0 4.4 6.8 5.8 —
C,H,F, 1,1-difluoroethylene —-80.5 —-735 —-83.9 —-83.5 —-84.7 -
C,H,0,4 oxalic acid —-173.0 —152.7 —-177.3 —166.5 -176.9 -
C,H;Br vinyl bromide 18.7 22.6 15.6 185 18.1 -
C,H;CIO" acetyl chloride —58.3 —47.5 —58.3 -55.0 —-57.0 -
C,H5CIO, chloroacetic acid —104.3 -97.3 —-112.6 -97.3 —-101.2 -
C,H;Cl,¢ 1,1,1-trichloroethane —34.0 —-12.7 —29.4 —-22.0 —26.7 -
C,HsF vinyl fluoride -33.2 —-27.7 —33.8 —34.0 —-341 -
C,H,9 ethylene 125 16.3 135 13.1 13.7 -
C,H,4Br, 1,2-dibromoethane -9.3 -0.0 —-12.4 —-4.3 -7.8 -
C,H,Cl, 1,1-dichloroethane —-31.0 —17.6 —29.7 —24.3 —-27.9 —
C,H,Cl, 1,2-dichloroethane —-31.0 —18.2 —-29.9 —24.6 —-28.1 -
CoH4F, 1,1-difluoroethane —118.0 —109.3 -121.9 -117.9 -121.7 -
C,H,O ethylene oxide -12.6 —-3.6 -9.8 —-10.3 —-11.7 -
C,H,0, acetic acid —103.9 -91.9 —103.8 —100.1 —103.4 -
C,H,S thiacyclopropane 19.7 30.3 22.4 23.9 21.8
C,HsBr bromoethane —15.3 -9.8 —18.0 -13.2 —15.9 -
C,Hs5Cl ethyl chloride —26.7 —18.1 —26.0 —22.6 —25.2 -
C,HsN ethyleneimine 295 36.8 29.4 30.5 27.7 -
C,HsNOo" acetamide —57.0 —49.6 —60.5 -575 —-61.1 -
C,HsNO, nitroethane —24.2 -14.4 —28.8 -25.1 -30.7 -
C,H5NO; ethyl nitrate —36.8 —24.2 —42.3 -384 —45.1 -
C,Hg ethane -20.2 -15.9 -20.2 -18.8 -20.5 -
C,HgO dimethyl ether —44.0 -36.3 —44.5 —42.6 —46.2 -
C,HgS dimethyl sulfide -9.0 1.9 -7.9 —-4.6 -8.3 -
C,H;N dimethylamine —-45 0.9 -7.2 —-45 —8.6 -
C,H,N" ethylamine -11.0 -6.3 —14.2 -11.4 -15.5 -
C,HgN, ethylenediamine -4.1 3.4 -8.2 —-4.0 —10.5 -
C,N, cyanogen 73.8 78.4 65.7 70.7 66.9 -
C;3H;NO oxazole -3.7 8.9 -1.6 —-2.1 -39 —
CgH,¢ methylacetylene 44.3 51.5 425 46.8 43.7
CgH," propadiene 45.9 49.4 41.5 44.4 42.9 -
C5H,04 ethylene carbonate —121.2 —-101.4 —119.3 —115.9 —122.7 -
C3HsCl3 1,2,3-trichloropropane —44.4 -175 —38.3 —27.2 —35.1 -
C3Hg? cyclopropane 12.7 21.6 141 16.7 13.4
C3Hg® propylene 4.9 11.9 4.4 7.2 4.6 -
C3HgBr, 1,2-dibromopropane —-17.4 —-5.2 —22.5 -10.5 —-17.5 -
C3HeCly" 1,2-dichloropropane —39.6 -204 —-37.2 —28.1 —-35.1 -
C3HgO acetone —52.0 —41.6 —53.6 —48.5 —53.2 -
C3Hg0," methyl acetate —-98.0 —-83.9 —100.3 —-94.1 —100.8 -
C3HgO,? propionic acid —108.4 -91.8 —108.3 —101.3 —108.1 -
C3HeS" thiacyclobutane 14.6 31.1 18.8 23.9 18.6
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TABLE | (Continued.

AH® (298 K)
Formula Name Expt?2 DFT1? NN1° DFTX NN2° DFT3
C3H,Br 1-bromopropane -21.0 -10.7 —23.7 —-15.4 -215 -
CgH7Brh 2-bromopropane —23.2 —12.8 —26.1 —-17.5 —23.6 -
C;H,ClI isopropyl chloride -35.0 —-21.7 —-34.7 —27.5 —33.6 -
C;H,ClI n-propyl chloride —-31.1 —18.9 —31.7 —24.8 —30.8 -
C;H,F 1-fluoropropane —67.2 —58.9 —-71.5 —65.6 —-71.7 -
C3H,NO? N,N-dimethylformamide —45.8 —36.2 -515 —45.9 -52.8 -
C;3H,NO, 1-nitropropane —29.8 —15.0 —33.7 —-27.0 —35.3 -
C;H;NO, 2-nitropropane —33.5 -17.9 —36.8 —29.6 —38.1 -
C3H;NO; propyl nitrate —41.6 —24.9 —47.7 —40.3 —50.5 -
C3H;NO, isopropyl nitrate —45.6 —-28.1 —-51.3 —43.4 —-53.7 -
CaHg" propane —24.8 —16.8 —25.9 -21.0 —26.2 —
C;HgO methyl ethyl ether —-51.7 —40.6 —-53.7 —48.1 —55.1 -
C3HgS n-propyl mercaptan —16.2 -1.6 —16.5 —-8.7 —16.0 -
C3HgS isopropyl mercaptan —18.2 —-2.7 —-17.8 -9.7 -17.0 -
C3HgS ethyl methyl sulfide —14.2 0.7 —13.8 -7.0 —-14.1 -
C3HgN n-propylamine —-17.3 —-7.0 —19.7 —13.4 —21.0 -
C3HgN isopropylamine —20.0 -9.7 —22.7 —-16.2 —23.8 -
C3HgN trimethylamine —5.7 3.4 -9.8 —3.6 —-11.2 —
CaH N, 1,2-propanediamine —-12.8 0.4 —-16.1 —-8.0 -17.9 -
C4H4N, succinonitrile 50.1 63.5 445 53.2 45.3 -
C,Hs 1,2-butadiene 38.8 46.5 344 40.1 35.7
C,HO" divinyl ether -3.3 10.0 —-45 -0.5 -5.6 -
C4Hg" 1-butene -0.0 11.3 -0.8 5.3 -0.6 -
C,HgO isobutyraldehyde —-51.5 —35.6 —-52.3 —43.7 —-51.7 -
C4HgO, ethyl acetate —105.9 —88.0 —109.4 -99.4 —109.8 -
C,HgBr 1-bromobutane —25.6 —-114 —-29.3 —-17.5 —27.0 -
C,4HoClI tert-butyl chloride —43.8 —24.6 —42.9 -31.7 —-41.3 -
C,4H;0 sec-butanol —69.9 —-52.4 —70.5 —-60.3 —-70.7 -
C4H10," 1,4-butanediol —102.0 -79.8 —101.3 -90.3 -102.1 -
C4H10S isobutyl mercaptan —232 —-2.4 —-22.3 -10.7 —-21.4 -
C4H1 S methyl propyl sulfide —-19.5 -0.1 —-19.4 -9.1 —19.6 -
C4HN tert-butylamine —28.6 —-12.1 —-30.4 -19.8 -31.0 -
CsHsN pyridine 335 46.2 31.2 35.6 30.6 -
CsHgS 2-methylthiophene 20.0 44.3 25.6 31.7 24.6
CsHg trans-1,3-pentadiene 18.6 31.7 16.0 23.7 16.7
C5HgO," acetylacetone -90.8 —66.6 —-91.4 —78.8 —90.2 -
C5H10h cyclopentane —18.5 0.9 —-14.9 —-5.8 —15.5 -
CsHyp 2-methyl-1-butene —-8.7 7.9 -9.2 0.5 -8.9 -
CsHyg 2-methyl-2-butene -10.2 5.9 -11.6 -1.7 —-11.2 -
CsHyp 3-methyl-1-butene —-6.9 10.6 -6.5 3.3 -6.1 -
CsHyp 1-pentene -5.0 10.4 -6.5 3.1 -6.2 -
CsHyg cis-2-pentene —6.7 9.0 -8.1 1.6 —-7.7 -
CsHyg" trans-2-pentene —-7.6 7.5 -9.7 0.1 -9.3 -
CsH, 0 2-pentanone —61.8 —43.8 —65.5 —53.3 —64.8 -
CsH, 0 valeraldehyde —54.4 —-35.3 —56.6 —44.7 —56.1 -
CsH100,9 valeric acid —-117.2 —94.4 —120.6 —106.5 —120.6 -
CgHy oS thiacyclohexane —-15.1 11.4 -9.2 1.8 -9.9 -
CgH oM cyclopentanethiol -11.5 14.7 -7.3 5.2 -6.7 -
CsHy4Br 1-bromopentane —30.9 —12.2 —-35.0 —19.6 —-325 -
CsH44Cl 1-chloropentane —41.8 —20.5 —43.0 —-29.0 —41.9 -
CsHaN piperidine —-11.7 9.7 —-9.6 0.8 —11.3 -
CsHy» isopentane —36.9 —18.4 —37.4 —25.3 —37.4 -
CsHyo n-pentane —35.0 —184 —37.2 —25.2 —37.3 -
CsH1,0 2-methyl-1-butanol -72.2 —49.2 -71.9 -58.4 -72.2 -
CgH,0%" 3-methyl-1-butanol -72.2 —48.2 -70.7 —57.4 -71.1 -
CsH1,0 3-methyl-2-butanol —75.1 —-52.1 —-75.1 —-614 —75.2 -
CsH1,0 2-pentanol —75.0 -52.0 —-74.7 -61.1 —74.9 -
CsH.1,0 3-pentanol —-75.7 —49.8 —-72.6 -59.0 —-72.8 -
CsH1,0 ethyl propyl ether —65.1 —454 —68.2 —55.4 —69.2 -
Cs5H1,0,4 pentaerythritol —185.6 —143.7 —179.6 —159.3 —181.2 -
CgHy S n-pentyl mercaptan —25.9 —-3.2 —27.8 —12.9 —-27.0 -
CsHy5S butyl methy! sulfide —24.4 -0.9 —-25.1 —-11.2 —25.2 -
CsFs hexafluorobenzene —228.6 —194.8 —230.3 —225.2 —232.6 -
CgH,Cl, m-dichlorobenzene 6.3 32.8 9.3 18.5 11.1
CeHFp9" p-difluorobenzene —73.4 —51.3 —74.8 —-67.1 —75.3 -
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TABLE | (Continued.

AH® (298 K)
Formula Name Expt?2 DFT2P NN1° DFTX NN2° DFT3
CsHsCl monochlorobenzene 12.4 34.0 14.8 22.1 15.7 -
CeHsF fluorobenzene —27.9 -8.3 —26.8 —-21.0 -27.3 -
CgHsNO, nitrobenzene 16.2 37.1 12.1 19.6 11.0 -
CgHgN,O, m-nitroaniline 14.0 38.2 8.8 18.0 6.9 -
CsHgO phenol —23.0 -15 -20.3 -14.0 -21.1 -
CeHgO, 1,3-benzenediol —65.7 —-39.3 —-63.1 —54.8 —64.5 -
CgH,N 2-methylpyridine 23.6 40.7 20.8 28.7 20.5 -
CgHgN> adiponitrile 35.7 59.3 31.7 46.4 32.6 -
CgH1o? 1-methylcyclopentene -1.3 20.9 1.4 12.3 1.6 -
CsHyp 1,5-hexadiene 20.1 38.7 18.2 29.6 19.1 -
CgH1003 propionic anhydride —149.7 —-116.5 —153.0 —133.6 —153.9 —
CgHy,NO? e-caprolactam —58.8 —-32.1 —58.4 —45.0 —59.9 -
CeH1o trans-3-hexene -13.0 6.9 —-15.1 -1.8 —14.6 -
CgH10 butyl vinyl ether —43.7 —-18.9 —44.9 —-31.1 —-45.9 -
CgH10° 3-hexanone —66.4 —43.8 —70.2 —54.6 —69.5 -
CgHy 2" 3-methylpentane -41.0 -16.1 —39.8 —24.2 -39.7 -
CgH14S methyl pentyl sulfide —-29.3 -1.7 —30.7 —-13.3 —-30.7 -
C;HsN benzonitrile 52.3 72.1 48.4 58.7 49.2 -
C,HgO benzaldehyde -8.8 13.2 —8.6 -0.3 -8.1 -
C,Hg® toluene 11.9 32.9 12.7 22.0 13.1 -
C,HgO o-cresol —-30.7 -5.0 —-29.1 —18.8 —29.5 -
C,;HgN 2,6-dimethylpyridine 14.0 35.2 10.2 21.9 10.3 -
C;Hqa cis-1,2-dimethylcyclopentane -31.0 -1.0 —26.9 —-10.3 -27.0 -
C,HysBr 1-bromoheptane —40.2 —13.8 —46.2 —23.8 —43.6 -
CrHyg" 3,3-dimethylpentane —48.2 -17.4 —46.2 —26.7 —45.7 -
C;Hyg 2,2,3-trimethylbutane —48.9 —-17.4 —46.6 —26.8 —45.9 -
C;H1S n-heptyl mercaptan —35.8 -4.1 —-38.4 -16.5 -375 -
CgHgOy4 terephthalic acid —-171.6 —121.9 —169.0 —144.6 —169.6 -
CgHgO acetophenone —-20.7 7.0 —-19.9 —-7.8 —-19.3 -
CgHy" o-xylene 45 30.3 5.1 17.9 5.6 -
CgH,0° 3,4-xylenol -37.4 -7.1 -36.7 —22.4 —36.8 -
CgHyg cis-1,2-dimethylcyclohexane —-41.1 -5.7 -36.1 -16.1 -36.2 -
CgHygd" trans-1,4-dimethylcyclohexane —44.1 —-4.7 —-35.0 —-15.0 —-35.1 -
CgHig" 2,4 4-trimethyl-2-pentene -25.1 6.8 —25.4 —45 -243 -
CgHig 2,3-dimethylhexane —51.1 —-17.7 —51.3 —28.5 —50.9 -
CgHig 3-ethylhexane -50.4 —16.6 —-50.0 —-27.3 —49.7 -
CgHyg 4-methylheptane -50.7 -19.4 —-52.8 —-30.1 -525 -
CgHs¢° 2,3,4-trimethylpentane —-52.0 —-14.0 —47.6 —24.7 —47.1 -
CgH4g0° 2-ethyl-1-hexanol -87.3 —47.7 —84.4 —60.8 —84.6 -
CgH16S, dibutyl disulfide -37.9 7.5 -36.2 -11.9 -38.2 -
CyH1» m-ethyltoluene -0.5 29.3 -0.8 15.6 -0.1 -
CgH,? 1,2,3-trimethylbenzene -2.3 29.1 -1.3 15.3 -05 -
CoH 0" diisobutyl ketone —85.5 —45.4 —86.3 —60.0 —85.3 -
CoHaq 3,3-diethylpentane -55.4 —-11.2 —49.4 —-23.0 —48.8 -
CoHyo 2,2,3,4-tetramethylpentane —56.6 —-14.1 —52.8 —26.1 -52.0 -
CioH14 sec-butylbenzene -4.0 315 -3.1 16.7 —-24 -
CiH1a isobutylbenzene —-4.9 30.4 —4.2 155 -3.5 -
CioH1604 sebacic acid —220.3 —163.4 —218.8 —188.6 —221.4 -
CyoH200, n-decanoic acid —142.0 —-92.9 —142.2 —-112.1 —144.6 -
CyoHag acenaphthene 37.0 79.0 41.6 60.5 42.7 -

#The experimental data were taken from Ref. 5.

The calculated\H® by using B3LPY/6-31% G(d,p) geometries, zero point energies and enthalpies.

°The calculated\H® by B3LYP/6-31H G(d,p)-neural networks approach.

9The calculated\{H® by using the 6-31% G(d,p) geometries and zero point energies, and recalculated enthalpies by16G83df,2p) basis.
®The calculated\H® by B3LYP/6-31H G(3df,2p)-neural networks approach.

The A{H®s were taken from Ref. 9, where the zero point energies were corrected by a scale factor 0.98.

9The molecule belongs to the testing set in NN1 calculation.

"The molecule belongs to the testing set in NN2 calculation.

culations and experimentsand it is thus expected to have Our DFT-NEURON approach has a RMS deviation of
large weights. This is indeed the case, especially when the 3 kcal mol ! for the 180 small- to medium-sized organic
smaller basis set 6-3#1G(d,p) is adopted in the calcula- molecules. The physical descriptors adopted in our neural
tions. In all cases the number of double boridg,, has the  network, the raw calculatefi{H®, the number of atoml,
smallest but non-negligible weights. the number of double bondd,,, and the ZPE are quite
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TABLE II. Weights of DFT-neural networks fofH®. To summarize, we have developed a promising new ap-
NN1® NN2 proach to improve the results of first-principles quantum me-
chanical calculations and to calibrate their uncertainties. The
Weights Y1 Y2 Y1 Y2 accuracy of DFT-NEURON approach can be systematically
Wy, —2.48 0.79 0.85 —277 improved as more and better experimental data are available.
W, 0.25 -0.50 -0.18 0.09 As the systematic deviations caused by small basis sets and
Wxs; 0.01 0.38 0.09 020  less sophisticated methods adopted in the calculations can be
W, 0.26 0.01 0.01 020 easily corrected by neural networks, the requirements on
Wxg 041 049 056 059 first-principles calculations are modest. Our approach is thus
Wy, -0.21 1.41 1.43 -0.20 ) e g i
highly efficient compared to much more sophisticated first-
*NN1 refers B3LYP/6-31% G(d, p)-neural networks approach. principles methods of similar accuracy, and more impor-

°NN2 refers B3LYP/6-31% G(3df,2p)-neural networks approach. tantly, is expected to be applied to much larger systems. The

combined first-principles calculation and neural-network cor-
general, and are not limited to special properties of organié€ction approach developed in this work is potentially a pow-
molecules. The DFT-NEURON approach developed here i€rful tool in computational physics and chemistry, and may
expected to yield a RMS deviation of 3 kcalmor ! for ~ OPen the possibility for first-principles methods to be em-
A{H®s of any small- to medium-sized organic molecules. coployed practically as predictive tools in materials research
(Ref. 9 and G3(Ref. 11 methods result in more accurate @nd design.
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descriptors should be chosen according to their relations to533(1986. _ _ _
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