
Title Localized-density-matrix implementation of time-dependent
density-functional theory

Author(s) Yam, CY; Yokojima, S; Chen, G

Citation Journal Of Chemical Physics, 2003, v. 119 n. 17, p. 8794-8803

Issued Date 2003

URL http://hdl.handle.net/10722/42047

Rights Journal of Chemical Physics. Copyright © American Institute of
Physics.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by HKU Scholars Hub

https://core.ac.uk/display/37881422?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


JOURNAL OF CHEMICAL PHYSICS VOLUME 119, NUMBER 17 1 NOVEMBER 2003
ARTICLES

Localized-density-matrix implementation of time-dependent
density-functional theory

Chi Yung Yam, Satoshi Yokojima,a) and GuanHua Chenb)

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong

~Received 29 July 2003; accepted 6 August 2003!

A linear-scaling first-principles quantum mechanical method is developed to evaluate the optical
responses of large molecular systems. Instead of a many-body wave function, the equation of
motion is solved for the reduced single-electron density matrix in the time domain. The locality of
the reduced single-electron density matrix is utilized to ensure that computational time scales
linearly with system size. The two-electron Coulomb integrals are evaluated with the fast multipole
method, and the calculation of exchange-correlation quadratures utilizes the locality of an
exchange-correlation functional and the integral prescreening technique. As an illustration, the
resulting time-dependent density-functional theory is used to calculate the absorption spectra of
polyacetylene oligomers and linear alkanes. The linear-scaling of computational time versus the
system size is clearly demonstrated. ©2003 American Institute of Physics.
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I. INTRODUCTION

In recent years density-functional theory~DFT!1–3 has
become a promising alternative to conventionalab initio mo-
lecular orbital methods in quantum chemistry. The cost o
DFT calculation is on the same order as that of Hartre
Fock ~HF!, and with a description of electron correlatio
included, is substantially less expensive than traditional c
relation techniques, such as the configuration interac
~CI!,4 the Møller–Plesset perturbation theory~MP!,5 and the
coupled cluster~CC!6 methods. DFT is founded upon th
Hohenberg–Kohn theorem,1 which states that the exac
ground-state energy is a unique functional of the exact e
tron density. The Kohn–Sham~KS! formulation2 of DFT,
which is well suited for practical computation, is close
analogous to HF theory, in that a set of molecular orbital
derived from an effective one-electron potential via a se
consistent procedure. To solve for excited states or inve
gate properties involving time-dependent fields, t
Hohenberg–Kohn–Sham theory has been generalized
treat time-dependent systems. It is based on the Run
Gross theorem.7 Time-dependent density-functional theo
~TDDFT! has become a powerful tool to calculate the e
cited state properties of molecules, such as polarizabilit
hyperpolarizabilities, and excited state energies. Two ty
of TDDFT formalisms exist. The first one relates direc
to the linear response of electron density and leads to
density-based equation. This was suggested and
ployed8–10 prior to the rigorous proof of the Runge–Gro
theorem. The second formalism is based on the respons
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reduced density matrix, and thus leads to a density-mat
based approach.11–13 TDDFT has been widely used t
calculate the excited state properties of atoms and molecu
The state-of-the-art TDDFT calculations scale forma
as O(N3),11,14 where N is the number of atoms involved
This makes TDDFT a relatively expensive numeric
method, and cannot be employed to calculate the prope
of very large molecules. It is thus desirable to ha
linear-scaling TDDFT whose computational time scales
O(N).

Much progress has been made for linear-scal
DFT.15–22 The bottlenecks were the calculations of tw
electron Coulomb integrals and exchange-correlation~XC!
quadratures, and the Hamiltonian diagonalization. The
multipole method~FMM!,23–26 which was originally devel-
oped to evaluate the Coulomb interactions of point charg
led to the linear-scaling computation of the two-electr
Coulomb integrals. The linear-scaling evaluation of the X
quadratures was achieved by exploiting the localized na
of XC potential and by employing the integral prescreen
technique.21,27,28The Hamiltonian diagonalization is intrinsi
cally O(N3), and mostO(N) algorithms make use of the
locality or ‘‘nearsightedness’’18 of reduced single-electron
density matrixr. In the divide-and-conquer~DAC! meth-
od,16,17 r is patched together from the pieces that are cal
lated for smaller subsystems, and this avoids the diago
ization of the Hamiltonian matrix of an entire system
Density-matrix-based energy minimization20,29 provides an
alternative to the diagonalization, in which the energy
minimized upon the variation ofr. Other linear-scaling
methods have been developed as well, such as, the F
Operator Expansion~FOE!,30 the Fermi Operator projection
~FOP!,30 and the Orbital Minimization ~OM!.31,32

,

4 © 2003 American Institute of Physics
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These works pave the way for the linear-scaling TDD
method.

The remaining obstacle for the linear-scaling TDDF
method lies in solving the TDDFT equation. The TDDF
equation is very similar to the time-dependent Hartree–F
~TDHF! equation.33,34 The localized-density-matrix~LDM !
method was developed to solve the TDHF equation, and
computational time scales linearly with the system size.35,36

Instead of the many-body wave function, the LDM meth
solves for reduced single-electron density matrixr of a mo-
lecular system from which its electronic excited state pr
erties are evaluated. The reduced single-electron density
trix r contains important information of an electronic syste
and its elements are defined as the expectation values
instance,r i j [^Cuaj

†ai uC&, with C being the many-body
wave function andai

†(aj ) the electron creation~annihilation!
operator at the local orbitali ( j ). Expressed in an orthonor
mal basis set, the diagonal elementr i i is the electron occu-
pation number at a local orbitali, and the off-diagonal ele
ment r i j ( iÞ j ) measures the electronic coherence betw
two orthogonal local orbitals,i and j. An equation of motion
~EOM! for r has been solved to calculate linear and non
ear electronic responses to external fields,33,34 and thus,
probe the properties of the excited states. This EOM is ba
on the TDHF approximation,33,34and the computational time
for solving it in the time domain scales asO(N3). In fre-
quency domain, the computational time for solving it v
diagonalization scales asO(N6) and the Davidson
diagonalization37 can reduce the computational time substa
tially. It has been shown that the ground state off-diago
elementsr i j are negligible when the distancer i j betweeni
and j is larger than a critical lengthl 0 .38 This is a conse-
quence of ‘‘the nearsightedness of equilibrium systems18

When the system is subjected to an external fieldE(t), the
field induces a changedr in the reduced density matrix
The induced density matrixdr has a similar ‘‘nearsighted
ness,’’ i.e., off-diagonal elementdr i j is approximately
zero, as the distance betweeni and j is large enough.38

Different orders of responses inE(t) have different critical
lengths. Usually the higher the order of responsen is,
the longer the critical lengthl n is, i.e., l 0< l 1< l 2< l 3<¯ .
We may truncate thenth-order-induced density matrixdr (n)

~note that dr5dr (1)1dr (2)1dr (3)1¯) by setting
its elementsdr i j

(n) to zero if r i j . l n . This truncation leads
to a drastic reduction of the computational time. Sin
TDDFT and TDHF have similar EOMs forr, we may com-
bine the TDDFT and LDM methods just as TDHF-LDM
method.35 The computational time of the resultin
TDDFT-LDM method should thus scale linearly with th
system size.

In this manuscript we present the TDDFT-LDM metho
for calculating the excited state properties of very lar
molecular systems and its applications to polyacetyl
oligomers and alkanes. In Sec. II we outline the TDD
method, and, in particular, its local density approximati
~TDLDA ! approach. The TDLDA method is combine
with the LDM method, and the resulting TDLDA-LDM
formalism is presented. To test its validity, we app
the TDLDA-LDM method to calculate the absorptio
Downloaded 08 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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spectra of alkanes and polyenes. The calculation de
and results are presented in Sec. III. We discuss the fur
development of TDDFT-LDM method and conclude
Sec. IV.

II. COMBINED TIME-DEPENDENT DENSITY
FUNCTIONAL THEORY AND LOCALIZED-DENSITY-
MATRIX METHOD

A. Time-dependent local density approximation

When an external electromagnetic field is applied to
molecule, its electronic response to the fieldE(t), and optical
signals may be observed. The EOM forr has been derived
within the TDHF approximation.34 For TDDFT, the EOM
can be derived in the similar way. Starting with the definiti
of reduced single-electron density matrixr(r ,r 8,t) in the
spatial representation,

r~r ,r 8,t !5(
k

occ

ck* ~r 8,t !ck~r ,t !, ~1!

where ck(r ,t) is the kth occupied molecular orbital~MO!
and the summation is over all occupied MOs. The redu
single-electron density matrixr in the atomic orbital~AO!
basis set is given by

r i j ~ t !5E drE dr 8 f i* ~r 8!r~r ,r 8,t !f j~r !, ~2!

wheref i(r ) is the ith atomic orbital.
From the time-dependent Schro¨dinger equation,

i\
]

]t
c i~r ,t !5F̂~n~r ,t !,r ,t !c i~r ,t !, ~3!

F̂5ĥ~ t !1 f̂ ~ t !, ~4!

ĥ~ t !52
1

2
¹21U~r !1E dr 8

n~r 8,t !

ur2r 8u
1vxc~r ,t !, ~5!

f̂ ~ t !5eE~ t !"r , ~6!

wheren(r ,t) is the electron density.ĥ(t) is the Fock opera-
tor and f̂ (t) is the interaction between an electron and t
external fieldE(t). The first and second terms in Eq.~5! are
the electron kinetic energy and the potential energy produ
by the nuclei, respectively. The third terms in Eq.~5! repre-
sents the Coulomb interaction among the electrons and
fourth term,vxc(r ,t) is the exchange-correlation interactio
within the local density approximation~LDA !.

The time derivative of Eq.~1! may be expressed as

i\
]

]t
r~r ,r 8,t !5(

k

occ

F̂ck~r ,t !ck* ~r 8,t !

2(
k

occ

ck~r ,t !„F̂ck~r 8,t !…* . ~7!

The EOM for the reduced single-electron density matrixr in
the AO representation can be thus expressed as
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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i\
]

]t
r i j ~ t !5(

k

occ

^f i uF̂uck~r ,t !&^ck~r 8,t !uf j&

2(
k

occ

^f i uck~r ,t !&^ck~r 8,t !uF̂uf j&

5(
k

occ

(
mn

^f i uF̂ufm&cmk~ t !cnk* ~ t !^fnuf j&

2(
k

occ

(
mn

^f i ufm&cmk~ t !cnk* ~ t !^fnuF̂uf j&

5(
mn

~Fimrmndn j2d imrmnFn j!

5(
m

~Fimrm j2r imFm j!. ~8!

Here we assume the AOs are orthonormal. For a nonortho
nal basis set, a similar EOM can be derived with the inc
sion of overlap matrixS.39

Within the TDDFT formalism, a closed nonlinear se
consistent EOM is yielded for the reduced single-elect
density matrixr(t),

i\ṙ~ t !5@h~ t !1 f ~ t !,r~ t !#, ~9!

whereh(t) is the Fock matrix,

hmn~ t !5tmn1vmn
xc ~ t !1(

i j
r i j ~ t !Vmni j , ~10!

tmn5^fmu2
1

2
¹21U~r !ufn&

~11!

5E dr fm* ~r !F2
1

2
¹21U~r !Gfn~r !,

vmn
xc ~ t !5E dr fm* ~r !vxc@n#~r ,t !fn~r !, ~12!

Vmni j5E drE dr 8 fm* ~r !fn~r !
1

ur2r 8u
f i* ~r 8!f j~r 8!, ~13!

with tmn being the one-electron integral element between
bitalsm andn, Vmni j the two-electron Coulomb integral, an
vxc@n#(r ,t) is the exchange-correlation potential, which
defined as the functional derivative of the exchange corr
tion functionalAxc,

vxc@n#~r ,t ![
dAxc@n#

dn~r ,t !
'

dExc@nt#

dnt~r !
5vxc@nt#~r !, ~14!

wherent denotes the electron density evaluated at the timt,
the unknown functionalAxc is approximated byExc, which is
the exchange-correlation functional of time-independ
Kohn–Sham theory, andExc is further approximated by the
local density approximation~LDA !.2,3,40 Note thatAxc is a
functional of a functionn over both time and space andExc

is a functional of a functionnt over space only. This is re
ferred to as the adiabatic approximation in which the sta
LDA functional evaluated at the time-dependent density
used forvxc@n#(r ,t). The matrix elements off (t) are evalu-
ated as

f mn~ t !5eE~ t !•^fmu r̂ ufn&. ~15!
Downloaded 08 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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We partition the reduced single-electron density mat
r(t) into two parts:

r~ t !5r~0!1dr~ t !, ~16!

wherer (0) is the DFT ground state reduced single-electr
density matrix in the absence of the external field, anddr(t)
is the difference betweenr(t) and r (0), i.e., the induced
reduced single-electron density matrix byE(t). Similarly, the
Fock matrixh(t) is decomposed in the form

h~ t !5h~0!1dh~ t !, ~17!

whereh(0) is the Fock matrix whenE(t)50 anddh(t) is the
external field induced Fock matrix,

dhi j ~ t !5dv i j
xc1(

mn
drmn~ t !Vi jmn , ~18!

where

dvmn
xc 5E dr fm* ~r !dvxc@nt#fn~r !

5E drE dr 8 fm* ~r !fn~r !
dvxc@nt#~r !

dnt~r 8!
dnt~r 8!

5E drE dr 8 fm* ~r !fn~r !
dvxc@nt#~r !

dnt~r 8!

3(
i j

f i~r 8!dr i j f j* ~r 8!

5(
i j

dr i j ~ t !Vmni j
xc ,

Vmni j
xc [E drE dr 8 fm* ~r !fn~r !

3
d2Exc@n#

dn~r !dn~r 8!
f i* ~r 8!f j~r 8! ~19!

5E dr fm* ~r !fn~r !
dvxc@nt#~r !

dn~r !
f i* ~r !f j~r !,

and, thus,

dhi j ~ t !5(
mn

drmn~ t !~Vi jmn1Vi jmn
xc !. ~20!

With Eqs.~16! and ~17!, we can rewrite Eq.~9! as

i\dṙ5@h~0!,dr#1@dh,r~0!#1@ f ,r~0!#1@ f ,dr#1@dh,dr#.
~21!

Equation~21! is the EOM fordr under the TDLDA ap-
proximation. To the first order inE(t), the EOM for the
first-order-induced reduced single-electron density ma
dr (1) is expressed as

i\dṙ~1!5@h~0!,dr~1!#1@dh~1!,r~0!#1@ f ,r~0!#. ~22!

More specifically,
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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i\dṙ i j
~1!5(

k
~hik

~0!drk j
~1!2dr ik

~1!hk j
~0!!

1(
k

~dhik
~1!rk j

~0!2r ik
~0!dhk j

~1!!

1(
k

~ f ikrk j
~0!2r ik

~0! f k j!, ~23!

where the first-order induced Fock matrix element,

dhi j
~1!5(

mn
drmn

~1!~Vi jmn1Vi jmn
xc !. ~24!

We integrate Eq.~23! numerically in the time domain an
solve for the time evolution of the polarization vectorP(t).
Within the dipole approximation,P(t) may be expressed a

P~ t !52(
i j

e^f i u r̂ uf j&r i j ~ t !. ~25!

The first-order responseP(1)(t) is

P~1!~ t !52(
i j

e^f i u r̂ uf j&dr i j
~1!~ t !. ~26!

To obtain the optical absorption spectrum, we perform
Fourier transformation ofP(1)(t),

P~1!~v!5E
2`

`

dt P~1!~ t !e2 ivt. ~27!

The ratio between the imaginary part ofP(1)(v) and E~v!,
i.e., Im@P(1)(v)/E(v)#, is the absorption amplitude at fre
quencyv whereE~v! is the Fourier transform ofE(t).

B. Localized-density-matrix approximation and FMM
evaluation of Coulomb interaction

The key for theO(N) scaling lies in the reduction of th
dimension of the reduced single-electron density matrix. T
reduction is based on the fact that the density matrix ha
localized character or a ‘‘nearsightedness.’’18 This ‘‘near-
sightedness’’ holds not only for ther (0) but also fordr.38

Specifically,r i j
(0) is set to zero forr i j . l 0 , and, consequently

hi j
(0) becomes zero for the samer i j @see Eq.~10!#; anddr i j

(1)

is set to zero whenr i j . l 1 , which leads to a reduction of th
dimension ofdr (1) from O(N2) to O(N):35,36

r i j
~0!50, if r i j . l 0 ;

~28!
dr i j

~1!50, if r i j . l 1 .

Here l 0 and l 1 are two cutoff lengths. For a fixed pair o
i and j, these approximations result in the finite number
summations in Eq.~23! for k on the right-hand side~rhs!,
which leads toO(N) floating point operations for evaluatio
of the first and third terms on the rhs of Eq.~23!. The second
term on the rhs of Eq.~23! can be expanded as

(
k

(
m

(
n

~drmn
~1!Vikmnrk j

~0!2r ik
~0!drmn

~1!Vk jmn!

1(
k

(
m

(
n

~drmn
~1!Vikmn

xc rk j
~0!2r ik

~0!drmn
~1!Vk jmn

xc !. ~29!
Downloaded 08 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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Although the number of summations overk is finite for each
pair of i and j, the number of summations overm and n is
O(N). This leads to an overallO(N2) floating point opera-
tions for the second term on the rhs of Eq.~23!. We separate
the induced Fock matrixdh(1) into

dh~1!5dhu1dhxc, ~30!

dhi j
u 5(

mn
drmn

~1!Vi jmn , ~31!

dhi j
xc5(

mn
drmn

~1!Vi jmn
xc . ~32!

Equation~29! can thus be rewritten as

(
k

~dhik
u rk j

~0!2r ik
~0!dhk j

u !1(
k

~dhik
xcrk j

~0!2r ik
~0!dhk j

xc!. ~33!

Due to the slow decaying nature of 1/r in the Coulomb po-
tential, one cannot simply cut off individual interactions b
low a certain threshold. We have to include all the pairw
interactions between these charge distributions. This yie
O(N2) floating point operations to evaluate the first term
Eq. ~33!. To achieve a linear-scaling calculation of the fir
term of Eq. ~33!, we resort to the FMM23–26 to evaluate
dhi j

u . In the calculation,dhu anddhxc are first calculated in
the nonorthogonal basis set and then transformed to the
thogonal basis set.

For dhu, it contains the Coulomb interaction betwee
the charge distributions and the induced charge distributio

dhi j
u 5E drE dr 8 di j ~r !

1

ur2r 8u (mn
ddmn~r 8!, ~34!

di j ~r !5f i* ~r !f j~r !, ~35!

ddmn~r 8!5drmnfm* ~r 8!fn~r 8!. ~36!

Here we definedi j andddi j as the charge distribution and th
induced charge distribution for a pair of atomic orbitalsi and
j, respectively. Note that the numbers ofdi j and ddi j are
O(N) since the overlap betweeni andj decays exponentially
over their distance. For instance, the product of twos
Gaussian basis functions is expressed as41

G1s
a ~r2Ri !G 1s

b ~r2Rj !5expF2
ab

a1b
uRi2Rj u2G

3G 1s
a1b~r2RP!, ~37!

G1s
a ~r2R!5exp@2a~r2R!2#, ~38!

whereRi and Rj are the centers of orbitali and j, respec-
tively, a andb are the exponents, and

RP5
aRi1bRj

a1b
, ~39!

is defined as the center of the product of the Gaussian b
functions.

Figure 1 shows the Coulomb interaction between
charge distributions,di j and ddmn . The whole physical
space with all the charges and induced charges are conta
in a large cube. The cube is then divided in half along ea
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 1. Coulomb interaction between charge distrib
tion di j and induced charge distributionddmn . A andB
are the center of chargei, j and induced chargem, n,
respectively.
dr
rg
an
at
in

l

e
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s of

ti-

r
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the
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rge
Cartesian axis and thus each cube contains eight chil
cubes. This process is continued recursively until the cha
in each cube at the lowest level is approximately const
Figure 2 shows the first three levels of division. We evalu
the Coulomb potential atP due to the induced charges
cubeA, assuminguRu@urmnu applies for all of the induced
charges within the cubeA ~cf. Fig. 3!. The Coulomb potentia
can be expressed as the multipole expansion,

V~r !5
Z

R
1

maRa

R3
1

QabRaRb

R5
1

OabgRaRbRg

R7
1¯,

Z5 (
mnPA

Smndrmn
AO ,

FIG. 2. Hierarchy of cubes.
Downloaded 08 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
en
es
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e

ma5 (
mnPA

^xmur mnauxn&drmn
AO , ~40!

Qab5 (
mnPA

^xmu
3

2
r mnar mnb2

1

2
dabr mn

2 uxn&drmn
AO ,

Oabg5 (
mnPA

^xmu
15

6
r mnar mnbr mng2

1

2
r mn

2 ~r mnadbg

1r mnbdag1r mngdab!uxn&drmn
AO ,

where R5r2rA, rA is the center of the cubeA, r is any
point outside the cube,a5x, y, z, r mna is thea component
of the position vector forddmn measured with respect to th
center of the cubeA, andSmn5* dr xm* (r )xn(r ). xn is the
nonorthogonal atomic orbitaln, and drAO is the induced
density matrix in a nonorthogonal basis set. The multip
expansions of the potential caused by the induced charge
a cube at level (l 21) can be constructed from those mul
pole expansions of the cubes at the lower level~l! as follows:

Z~ l 21!5 (
mnPAl 21

Smndrmn
AO

5 (
AlPAl 21

(
mnPAl

Smndrmn
AO5 (

AlPAl 21

Z~ l !, ~41!

ma
~ l 21!5 (

mnPAl 21

^xmur mna
~ l 21!uxn&drmn

AO

5 (
AlPAl 21

(
mnPAl

^xmur pca
~ l ! 1r mna

~ l ! uxn&drmn
AO

5 (
AlPAl 21

Z~ l !r pca
~ l ! 1 (

AlPAl 21

ma
~ l ! ,

etc., wherer pca
( l ) is thea component of the position vector fo

a child cube~l! with respect to the center of its parent cu
( l 21). Al is defined as cubeA at level l. The multipole
moments from all child cubes are summed and stored for
parent cube. Figure 4 shows the schematic relation betwe
parent cube and a child cube. At this point, we have a m
tipole expansion for each cube representing all the cha
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 3. Coulomb potential formed byddmn on the
point P.
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distributions contained in it. Since the number of cub
scales linearly with the system size and the number of cha
distributions in the lowest level is chosen to be independ
of the system size, the CPU time for evaluating the multip
moments for cubes at different levels should therefore s
linearly.

The induced Coulomb potential inside a cubeB at the
lowest level is partitioned into the near-field and farfie
contributions24 as

V~r !5Vfar~r !1Vnear~r !

5 (
APfar

V~r2rAB!1 (
mnPnear

E dr 8
xm* ~r 8!xn~r 8!drmn

AO

ur2r 8u
,

~42!

whererAB is defined as the displacement vector of the cen
of cubeA with respect to the center ofB andr is the charge
position with respect to the center ofB. If their center-to-
center distance is less thanalD along thex, y, andz direc-
tions, whereal is the size of a cube at levell and D is a
positive integer, then cubeA andB are said to be the near
field cubes, otherwise, they are considered as farfield cu
For the near-field contribution whered and dd are close in
distance, explicit analytical integration is used to ensure h
accuracy. The computational time of the near-field inter
tion betweend anddd is of O(NM), whereM is the number
of induced chargesddmn’s within the nearby cubes at th

FIG. 4. The connection between the parent cube and his child.
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lowest level, andN is the number of chargesdi j ’s of the
entire system. The number of induced chargesddmn’s within
each lowest level cube is independent of the system size,
M is approximately a constant. Thus, the computational ti
for evaluating near-field interaction scales linearly with t
system size. The farfield potential atr is decomposed into
the contributions from the farfield cubes of different leve
For instance, at the lowest level the contribution toVfar(r ) is
from those farfield cubes whose parents are considere
near-field; the contribution from the next higher level~par-
ents! is thus from the farfield parent cubes whose grandp
ents are of near-field, and so on. At a particular level,
multipole expansions of the potentials@cf. Eq. ~40!# from the
contributing farfield cubes at the same level are conver
into local Taylor expansions about the center of the curr
cubeB, and the expansion coefficients from different cub
are summed. The Taylor expansion coefficients are comp
by expanding each term of Eq.~40! in r which is the dis-
placement vector from the center of cubeB, for example,

Z

ur2rABu
5

Z

r AB
1

ZrAB

r AB
3

"r1¯,

~43!

m•~r2rAB!

ur2rABu3
5

2m"rAB

r AB
3

1F m

r AB
3

23
~m"rAB!rAB

r AB
5 G "r1¯.

The above Taylor expansion begins at the top level and t
transverse downward. The information of the parent cu
are translated to the children and is continued to the low
level. Vfar(r ) of a cube at the lowest level is a Taylor expa
sion that contains the potential of all induced charge dis
butions from all the farfield cubes. Given a cube at level,
the number of its near-field cubes is (2D11)3. The number
of its farfield cubes whose parents are of the near-field is t
73(2D11)3, assuming there areBl cubes at levell and the
Taylor coefficients are evaluated for every cube. Thus,
CPU cost for calculating these Taylor expansions is prop
tional to

Bl@7~2D11!3#. ~44!

At the next higher levell 21, there areBl 215Bl /8 cubes,
and the CPU time to calculate the Taylor expansions
these cubes is thus proportional to
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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7Bl

8
@~2D11!3#. ~45!

Therefore, the total CPU time for calculating the Taylor e
pansions is proportional to

Bl@73~2D11!3#1Bl 21@73~2D11!3#

1Bl 22@73~2D11!3#1¯

5Blowest@73~2D11!3#1
Blowest

8
@73~2D11!3#

1
Blowest

82
@73~2D11!3#1¯ ~46!

<8Blowest~2D11!3,

where Blowest is the number of cubes in the lowest leve
SinceBlowest increases linearly with the system size, the co
putational time for evaluatingVfar for all the cubes at the
lowest level scales also linearly with the system size.

For Vi jmn
xc , we resort to numerical integration to calc

late it since the analytical results cannot be obtained, e
using Gaussian orbitals. In order to achieve the high ac
racy, sophisticated multicenter quadrature schemes27,28,42are
used. The integrals are partitioned over atomic centers u
a weight scheme, and a further decomposition into radial
angular components of each atomic contribution is int
duced.42–44Since the number of grid points is proportional
the size of the molecule, and we have to calculate the i
grals over four orbital indices, the numerical integration
Vi jmn

xc is anO(N5) computational process. Taking advanta
of the fast decaying nature of Gaussian basis functions, t
are only a limited number of basis functions with no
negligible value at a given grid point. The computation
time is therefore proportional to the number of grid points.
addition, we discard the integrals when the differential ov
lap between any two orbitals is negligible, i.e.,

Vi jmn
xc 50, if Skl,1310214,

where k, or l 5 i , j ,m, or n. ~47!

This results in anO(N) computational time for evaluating a
Vi jmn

xc . To further reduce the computational time, we e
ploited the locality of the exchange-correlation potential a
confine its contribution at a given grid point to a relative
small region around it with a negligible loss of accuracy.

In Eq. ~23! the summation overk is restricted to a finite
range, which does not depend on the value ofN when the
size is large enough. Since the number of non-neglig
dr i j

(1) is proportional toN, the total number of steps require
to integrate scales linearly withN. Therefore, the overal
computational time is proportional toN.

C. Transformation between atomic orbital basis set
and orthogonal atomic orbital basis set

The LDM method was originally developed for sem
empirical models which adopt orthogonal basis sets. Fi
principles methods employ the localized Gaussian basis
whose orbitals are nonorthogonal. In Ref. 39, we develo
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a generalized LDM~GLDM! method that adopts nonor
thogonal basis functions. The GLDM method was found s
sitive to the cutoffs and sometimes divergent during the
merical simulations. We start from Gaussian AOs. Each
these orbitals is localized at a particular atom. However, t
are not orthogonal. To implement TDDFT with the LDM
method, we need to orthogonalize the AOs while maintain
the localized nature of the basis functions. Cholesky tra
formation has been used to orthogonalize AOs and it
been found that the resulting orthonormal AOs are quite
calized in space.20 Subsequently, both the density and Fo
matrices are evaluated in terms of the orthonormal basis
and the EOMs@Eqs.~21!–~23!# need no modifications. Spe
cifically, the transformation is based on the Cholesky deco
position of the overlap matrixS to orthogonalize the atomic
orbitals ~AOs!. The Cholesky decomposition partitions
positive definite matrix into a lower triangular matrix time
an upper triangular matrix,45

S5UTU, ~48!

whereU is an upper triangular matrix. For symmetric pos
tive definiteS, the lower triangular matrix is just the trans
pose of the upper triangular matrix, and the Cholesky tra
formation to an orthonormal basis can be written as

rortho5UrAOUT; hortho5U2ThAOU21. ~49!

The transformed reduced density matrix is found to have
same sparsity as the reduced density matrix in an AO ba
and the transformed Fock matrix has similar sparsity as
reduced density matrix.

The computational cost of Cholesky factorization@Eq.
~48!# is given by20

CPU time}(
i 51

N

mi
U~mi

U13!/2, ~50!

wheremi
U is the number of nonzero elements in theith row

of U andN is the number of basis functions. Taking adva
tage of the sparsity of overlap matrixS, mi

U remains approxi-

FIG. 5. Absorption spectra for C40H82 . The solid line is for C40H82 and l
525 Å, and the dashed line for the full TDDFT calculation, where no c
offs are introduced. The phenomenological dephasing constantG50.1 eV.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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mately constant regardless of the system size. Similar res
hold for the computation of inverse Cholesky matrix. T
CPU time thus goes up linearly withN.

III. RESULTS

A. Linear-scaling calculation on linear alkanes

To demonstrate that the TDLDA-LDM method is indee
a linear-scaling method, we have carried out calculations
a series of linear alkanes. Gaussian basis set 6-31G has
used. We apply the electric fieldE(t) parallel to the linear
alkanes. The time step of the simulation is set to 0.005 fs
the total simulation time is 70 fs. The accuracy of the cal
lation is determined by the values ofl 0 and l 1 . For simplic-
ity, we chosel 05 l 15 l in our calculation. In Fig. 5, we
present the absorption spectrum of C40H82 usingl 525 Å. To
examine the accuracy of the calculation, we perform a
TDDFT calculation with no cutoff for the same molecul
The dashed line represents the results of the full TDL
calculation. The agreement between the results of
TDLDA calculations are excellent. This valuel 525 Å will
be employed in the calculation of larger alkanes. In Fig.

FIG. 6. Absorption spectra for C60H122 using l 05 l 1525 Å. The phenom-
enological dephasing constantG50.1 eV.

FIG. 7. CPU time for alkanes withN562, 92, 122, 242, 362, 602. Eac
calculation is performed during the time interval between20.5 and 0.5 fs
with time step 0.005 fs.l 525 Å is used.
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we plot the absorption spectrum of C60H122. In Figs. 5 and 6,
absorptions start at about 8 eV for both molecules. This
consistent with the observeds to s* transition at about 150
nm wavelength in alkanes.46 The absorption spectrum o
C40H82 and C60H122 are overall similar, except for the sligh
difference between 11 and 13 eV.

Now we are ready to examine whether the TDLDA
LDM method is indeed a linear-scaling method. We perfo
the TDLDA-LDM calculates on a series of linear alkan
with the number of atoms ranging from 62 to 602. To sa
computational time, we limit our simulation to a 1 fsinter-
val. The CPU time of each calculation is recorded. The co
putational time spent in solving the DFT ground state is n
ligible. In Fig. 7, we plot the CPU time versusN. Clearly the
CPU time scales linearly withN for N between 62 and 602
The linear scaling of computational time versus the syst
size has been convincingly achieved. We have also exam
the CPU time of Cholesky transformation versus the sys
size. Figure 8 shows the computational time of Choles
transformation scales linearly with the molecular size.

B. TDDFT calculations on polyacetylene oligomers

We have also performed the TDLDA-LDM calculation
on several polyacetylene oligomers. Their excitation energ
are presented in Table I. A 6-31G basis set is employed
no cutoff is used in the calculations.E(t) is set parallel to the
molecules. The time step and total time of the simulation
0.005 and 70 fs, respectively. We study the excitation to
optically allowed 11Bu state. Compared with the availab
experimental excitation energies for the oligomers, it is co

FIG. 8. CPU time for the Cholesky transformation.

TABLE I. Excitation energies~eV! of polyacetylene oligomers.

N TDLDA Expt.

2 8.20 7.65~Ref. 50!
4 6.01 5.92~Ref. 50!
6 4.70 4.95~Ref. 50!
8 4.22 4.41~Ref. 50!

10 3.98 4.02~Ref. 50!
20 2.25 2.80~Ref. 51!
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firmed that our TDLDA-LDM code yields reasonable pred
tions for excitation energies. The general trend of decrea
excitation energy with the chain length is correctly rep
duced. For molecule C20H22, the calculated excitation en
ergy is less than the experiment result. This may be du
the structural difference between the experiment and ca
lation. Long polymers tend to bend or rotate compared to
optimized structure adopted in the calculations, which le
to the reduction of conjugation length and the blue shifts
absorption spectra. We calculate the absorption spectr
longer oligomers, such as C40H42, whose absorption spec
trum is given in Fig. 9. The optical gap of longer oligome
is believed to saturate at about 2 eV, which contrasts
calculation result for C40H42. This may again be due to th
structural distortions of long polyacetylene oligomers in e
periments. Of course, this may also imply that the TDLD
calculation is not adequate for longer polyacetylene oli
mers. A further study is warranted. It has been pointed
that the excitation energy to the 11Bu is sensitive to the
choice of XC functional.47 It has been found that the curre
XC functionals are inadequate to describe the excitation
ergies, polarizabilities, and hyperpolarizabilities
polyacetylene.48,49Better XC functionals beyond the existin
XC functionals are required for calculating the excited st
properties of polyacetylene and other systems. Since
LDM method is based solely on the locality of the reduc
density matrix, we can thus improve our TDDFT-LDM
method by introducing more sophisticated exchan
correlation functionals.

IV. DISCUSSION AND CONCLUSION

The integration of Eq.~23! alone does not yield linea
scaling. It requires matrix multiplications that scale
O(N3). For large molecular systems, we can reduce the
of the matrix operations by taking advantage of matrix sp
sity. The intrinsic nature and size of the molecular syst
under consideration are important factors in determining
sparsity. It is well known that systems with a small
HOMO–LUMO gap have denser Fock and density matri
than those with a large HOMO–LUMO gap.20,21 In the large
molecule limit, the number of significant elements of a de

FIG. 9. Absorption spectra for C40H42 .
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sity matrix are proportional to the molecular size because
its localized nature. One should also notice that DFT Fo
and density matrices are normally much less sparse than
semiempirical ones. In order to attain the same accur
longer cutoff lengthl should be chosen compared to that
semiempirical methods.35,36,52,53 The only approximation
made here relates to the feature of a reduced single-elec
density matrix, i.e., the locality ofr anddr. This fact guar-
antees the wide applicability of the method. To improve o
TDDFT-LDM method, we may adopt other XC functional
such as, GGA54–57 and B3LYP.58 We may also improve our
FMM by the CFMM25 or GvFMM26 approach. The curren
bottleneck of the TDLDA-LDM method is the evaluation o
dhu at each simulation step. We may update the farfield p
of dhu every few simulation steps. Another issue is the s
bility of the simulation. The numerical simulations ma
sometimes diverge, caused by an unphysical numerical fl
tuation, leading to a positive feedback fordr (1). We may
adopt a purification procedure to suppress the unphysical
merical fluctuation.

To summarize, we have developed a linear-scal
TDLDA-LDM method. The calculations on the linear a
kanes and polyacetylene oligomers demonstrate its accu
and efficiency. This makes possible the first-principles cal
lation of the excited state properties of very large molecu
systems. Although the linear response has been the focu
nonlinear response may easily be evaluated via a slight g
eralization of the method.
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