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ARTICLES

Localized-density-matrix implementation of time-dependent
density-functional theory

Chi Yung Yam, Satoshi Yokojima,® and GuanHua Chen®
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong

(Received 29 July 2003; accepted 6 August 2003

A linear-scaling first-principles quantum mechanical method is developed to evaluate the optical
responses of large molecular systems. Instead of a many-body wave function, the equation of
motion is solved for the reduced single-electron density matrix in the time domain. The locality of
the reduced single-electron density matrix is utilized to ensure that computational time scales
linearly with system size. The two-electron Coulomb integrals are evaluated with the fast multipole
method, and the calculation of exchange-correlation quadratures utilizes the locality of an
exchange-correlation functional and the integral prescreening technique. As an illustration, the
resulting time-dependent density-functional theory is used to calculate the absorption spectra of
polyacetylene oligomers and linear alkanes. The linear-scaling of computational time versus the
system size is clearly demonstrated. 2003 American Institute of Physics.
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I. INTRODUCTION reduced density matrix, and thus leads to a density-matrix-
based approach® TDDFT has been widely used to
In recent years density-functional theof®FT)'® has  calculate the excited state properties of atoms and molecules.
become a promising alternative to conventiogiaiinitio mo-  The state-of-the-art TDDFT calculations scale formally
lecular orbital methods in quantum chemistry. The cost of a5 O(N2),**'* where N is the number of atoms involved.
DFT calculation is on the same order as that of Hartree-This makes TDDFT a relatively expensive numerical

Fock (HF), and with a description of electron correlation method, and cannot be employed to calculate the properties
included, is substantially less expensive than traditional corgs very large molecules. It is thus desirable to have

relation techniques, such as the configuration interaCtiorﬂnear-scaling TDDFT whose computational time scales as
(Cl),* the Mgller—Plesset perturbation thedMP),® and the O(N).

coupled cluster(CC)® methods. DFT is founded upon the
Hohenberg—Kohn theoremwhich states that the exact
ground-state energy is a unique functional of the exact ele

trzp :e.nS'ty'llThe.t Kdor;n—Shar?(SI) formul?utgﬁ OT D'TT’ | guadratures, and the Hamiltonian diagonalization. The fast
which 1s well sulted for practical computation, 1S ClOS€ly ., 516 method(FMM),23-26 which was originally devel-

analogous to HF theory, in that a set of molecular orbitals is . . ;
: . S oped to evaluate the Coulomb interactions of point charges,
derived from an effective one-electron potential via a self-

. : . led to the linear-scaling computation of the two-electron
consistent procedure. To solve for excited states or investi- . . . .

. . . . . Coulomb integrals. The linear-scaling evaluation of the XC
gate properties involving time-dependent fields, the

Hohenberg—Kohn—Sham theory has been generalized %uadratures was achieved by exploiting the localized nature

treat time-dependent systems. It is based on the Runge@c XC potential and by employing the integral prescreening

Gross theorem. Time-dependent density-functional theory technique?.glﬂnghe Hamiltonian diggonalization 'S intrinsi-
(TDDFT) has become a powerful tool to calculate the ex_caIIyIO(N )“’ and .mostO(leaIgorlthms maI.<e use of the
cited state properties of molecules, such as polarizabilitied®Cality Or “nearsightedness® of reduced single-electron
hyperpolarizabilities, and excited state energies. Two typegens'ty matrixp. In the divide-and-conquefDAC) meth-

16,17 _ ;
of TDDFT formalisms exist. The first one relates directly ©d: ' p is patched together from the pieces that are calcu-

to the linear response of electron density and leads to thi@ted for smaller subsystems, and this avoids the diagonal-
density-based equation. This was suggested and enfation of the Hamiltonian matrix of an entire system.
ployed° prior to the rigorous proof of the Runge—Gross Density-matrix-based energy minimizatf8® provides an

theorem. The second formalism is based on the response 8fternative to the diagonalization, in which the energy is
minimized upon the variation op. Other linear-scaling

methods have been developed as well, such as, the Fermi

Much progress has been made for linear-scaling
DFT.}®22 The bottlenecks were the calculations of two-
%lectron Coulomb integrals and exchange-correlat@)

dCurrent address: Institute of Materials Science, University of Tsukuba, . 30 . S
1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8573 Japan. Operator ExpansiofFOE),”” the Fermi Operator projection
DElectronic mail: ghc@everest.hku.hk (FOP,* and the Orbital Minimization (OM).3%?
0021-9606/2003/119(17)/8794/10/$20.00 8794 © 2003 American Institute of Physics
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These works pave the way for the linear-scaling TDDFTspectra of alkanes and polyenes. The calculation details
method. and results are presented in Sec. lll. We discuss the further
The remaining obstacle for the linear-scaling TDDFT development of TDDFT-LDM method and conclude in

method lies in solving the TDDFT equation. The TDDFT Sec. IV.

equation is very similar to the time-dependent Hartree—Fock

(TDHF) equatior’®>3* The localized-density-matrixLDM)

method was deyeloped to s_olve the _TDHF equation, and itﬁ_ COMBINED TIME-DEPENDENT DENSITY

computational time scales linearly with the system Siz&. FUNCTIONAL THEORY AND LOCALIZED-DENSITY-

Instead of the many-body wave function, the LDM methodpaTRIX METHOD

solves for reduced single-electron density magrigf a mo-
lecular system from which its electronic excited state prop
erties are evaluated. The reduced single-electron density ma- When an external electromagnetic field is applied to a
trix p contains important information of an electronic system,molecule, its electronic response to the fig{d), and optical
and its elements are defined as the expectation values, fgignals may be observed. The EOM foihas been derived
instance,pijz<\P|ajTrai|\If), with ¥ being the many-body within the TDHF approximation? For TDDFT, the EOM
wave function any' (a;) the electron creatiotannihilation  can be derived in the similar way. Starting with the definition
operator at the local orbitalj). Expressed in an orthonor- of reduced single-electron density matgXr,r’,t) in the
mal basis set, the diagonal elementis the electron occu- spatial representation,

pation number at a local orbité) and the off-diagonal ele-
ment p;; (i #j) measures the electronic coherence between
two orthogonal local orbitals,andj. An equation of motion
(EOM) for p has been solved to calculate linear and nonlin-
ear electronic responses to external fiétl¥ and thus, Where gu(r,t) is the kth occupied molecular orbita]MO)
probe the properties of the excited states. This EOM is base@nd the summation is over all occupied MOs. The reduced
on the TDHF approximatiof**and the computational time Single-electron density matrix in the atomic orbital(AO)

for solving it in the time domain scales &(N%). In fre-  basis setis given by

guency domain, the computational time for solving it via

diagonalization  scales aO(N® and _the Davidson pij(t)ZJ drf dr” ¢ (r")p(r,r',t)é(r), 2
diagonalizatio’ can reduce the computational time substan-

tially. It has been shown that the ground state off-diagonalyhere ¢(r) is theith atomic orbital.

elementsp;; are negligible when the distancg betweeni From the time-dependent Scinger equation,
andj is larger than a critical length,.®® This is a conse-

A. Time-dependent local density approximation

occ

p(r,r',t>=2k G (b)), 1)

quence of “the nearsightedness of equilibrium systerfs.” 0 -

When the system is subjected to an external figlt), the i = di(r, ) =F(n(r,),r,.H¢(r,1), 3
field induces a changép in the reduced density matrix. o R

The induced density matridp has a similar “nearsighted- F=h(t)+1f(1), 4

ness,” i.e., off-diagonal elementp;; is approximately
zero, as the distance betweeérand | is large enough®
Different orders of responses #(t) have different critical
lengths. Usually the higher the order of responsas, R
the longer the critical length, is, i.e.,lg<l;<l,<lz=<---. f(t)y=e&(t)r, (6)

We may truncate thath-order-induced density matrigp(" ) A

(note that dp=p P+ p@+6p@®+--) by setting wheren(r,t) is the electron density(t) is the Fock opera-

its elementsﬁpi(j") to zero ifr;>I,. This truncation leads tor and f(t) is the interaction between an electron and the
to a drastic reduction of the computational time. Sinceexternal field(t). The first and second terms in E®) are
TDDFT and TDHF have similar EOMs fgs, we may com-  the electron kinetic energy and the potential energy produced
bine the TDDFT and LDM methods just as TDHF-LDM DY the nuclei, respectively. The third terms in E§) repre-
method® The computational time of the resulting Sents the Coulomb interaction among the electrons and the

TDDFT-LDM method should thus scale linearly with the fourth term,v*(r,t) is the exchange-correlation interaction

R 1 "
h(t)=—§V2+U(r)+fdr’%wtvxc(r,t), (5)

system size. within the local density approximatiofi.DA).
In this manuscript we present the TDDFT-LDM method ~ The time derivative of Eq(1) may be expressed as
for calculating the excited state properties of very large occ

m_oIecuIar systems and its applications to polyacetylene ihﬁp(r,r’,t)=2 Fou(r,O i (r',1)
oligomers and alkanes. In Sec. Il we outline the TDDFT k
method, and, in particular, its local density approximation N -
(TDLDA) approach. The TDLDA method is combined _Ek: S O Fr', ). @)
with the LDM method, and the resulting TDLDA-LDM

formalism is presented. To test its validity, we apply The EOM for the reduced single-electron density magtrir
the TDLDA-LDM method to calculate the absorption the AO representation can be thus expressed as

occ
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9 occ . We partition the reduced single-electron density matrix
iﬁﬁpij(t):; (DilF | (r, )i, 0)] ;) p(t) into two parts:

oce . p(t)=p P+ 8p(t), (16)
- ; (il tn(r, O Wl D) |F| ;)

e where p© is the DFT ground state reduced single-electron

A density matrix in the absence of the external field, ap¢t)
:; % (BilFl ¢m)Cmid ) RO bnl ¢7) is the difference betweep(t) and p(©, i.e., the induced
occ reduced single-electron density matrix &§t). Similarly, the
> > <¢i|¢m>cmk(t)C:k(t)<¢n|'E|¢j> Fock matrixh(t) is decomposed in the form
k  mn
h(t)=h©@+ sh(t), 17

:E (Fimpmn‘Snj_5iumnFnj) ) ] )
mn whereh(© is the Fock matrix wheg(t) =0 andsh(t) is the

external field induced Fock matrix,
ZE (Fimpmj_pimij)- (8)
Here we assume the AOs are orthonormal. For a nonorthogo-  Shij(t) = dv{f’+ % Opmn(t) Vijmn s (18
nal basis set, a similar EOM can be derived with the inclu-
sion of overlap matrixa.>° where

Within the TDDFT formalism, a closed nonlinear self-

consistent EOM s yielded for the reduced single-electron X N
density matrixp(t), Svmn= | dr ¢p(r)svInen(r)
ifip(t)=[h(t)+1(t),p(1)], 9 _f drf A (1) v )
whereh(t) is the Fock matrix, - me sn(r’)y T
XCj
hmn(t):tmn'{'v)r(r?n(t)‘l'z Pij(t)vmnip (10 :f drf dr’ ¢*(r)¢ (r)m
i m " ony(r’)
1 2
tmn=(bml = 5 V=+U(r)[¢n) XX i(r')pijdF(r')
i
1 (11)
= | dr ¢}(r)| — 5V2+U } :
f r¢m(r) 2 (r) ¢n(r) :; 5Pij(t) )r(r?nij!
v (t)=f dr ¢X(r)v*n](r,t)¢,(r), (12
" ' o= [ [ a0
1
v --=Jerdr’¢>*(r)¢> () ——7 ¢ (1) y(r'), (13) 5°E*n
mnij m n |I’—r | ! J XW&E(E,)#‘(W)‘M(W) (19)
with t,,, being the one-electron integral element between or-
bitalsm andn, V,,;; the two-electron Coulomb integral, and Sv*In(r)
v*n](r,t) is the exchange-correlation potential, which is =f dr ¢§1(f)¢n(f)T(r)¢f(f)¢j(f),
defined as the functional derivative of the exchange correla-
tion functional A, and, thus,
© _ O In]  SEIn] . 14
HNIND= S0 T angny Y (0 (4 81 ()=2 8pmal ) (Vijmn+ Vifinn)- (20
wheren, denotes the electron density evaluated at the time ) i
the unknown functionah*® is approximated by, which is With Egs. (16) and(17), we can rewrite Eq(9) as

the exchange-correlation functional of time-independent, .- ., (o 0 0
Kohn—Sham theory, anB*° is further approximated by the #.0p=[h®,8p]+[o0,p T +[f.p' )]+[f’6p]+[5h’5€2]i)
local density approximatiofiLDA).23%% Note thatA* is a

functional of a functiom over both time and space ad® Equation(21) is the EOM for dp under the TDLDA ap-

is a functional of a functiom; over space only. This is re- proximation. To the first order ir£(t), the EOM for the
ferred to as the adiabatic approximation in which the statidirst-order-induced reduced single-electron density matrix
LDA functional evaluated at the time-dependent density issp(!) is expressed as

used forv*n](r,t). The matrix elements df(t) are evalu- o
ated as i 5pY=[h®,5p M+ [ 50D, p @+ [f,pO]. (22

fn(1) =€E(1) - { pplT| Pp). (15 More specifically,
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) Although the number of summations ouers finite for each

it 5pij = 2 (hi' dpii’ = dpi’nid) pair of i andj, the number of summations over andn is
O(N). This leads to an overalD(N?) floating point opera-
tions for the second term on the rhs of Eg3). We separate

h(D 5 (0) _ (0) 5p(1)
+2k (Shiipiy = pikc ONig') the induced Fock matrixh®) into
shV'=sht+ sh*e, (30
+Zk (fipkd = i fip), (23
5hu 2 5Pmn ijmn s (31)

where the first-order induced Fock matrix element,
h(l> 2 5p(1)(V,Jmn+Vf‘]$nn (24 5hx° E 5P<1)V.Xﬁnn (32
We integrate Eq(23) numerically in the time domain and Equation(29) can thus be rewritten as

solve for the time evolution of the polarization vecet).
Within the dipole approximatior(t) may be expressed as Z (Shipld - plY sh )+2 (Sl — piohi). (39

P(t)=—2, &(¢lf]b))pij (D). (25 Due to the slow decaying nature ofr lih the Coulomb po-
. tential, one cannot simply cut off individual interactions be-
The first-order responge(*)(t) is low a certain threshold. We have to include all the pairwise
interactions between these charge distributions. This yields
POt =—2> (¢ |F ;) dpi(1). (26)  O(N?) floating point operations to evaluate the first term of
1

Eq. (33). To achieve a linear-scaling calculation of the first
To obtain the optical absorption spectrum, we perform derm of Eq.(33), we resort to the FM¥~*° to evaluate

Fourier transformation oP()(t), shj; . In the calculationsh and 5h*® are first calculated in
the nonorthogonal basis set and then transformed to the or-
P ()= fw dtPO(tyeiot (27)  thogonal basis set.
— For shY, it contains the Coulomb interaction between

The ratio between the imaginary part BfY)(w) and &(w), the charge distributions and the induced charge distributions,

i.e., IMPY(w)/&(w)], is the absorption amplitude at fre- .
quencyw where&(w) is the Fourier transform of(t). ohj Jdrf dr’ d;;( r)| 2 8dmn(r’), (34
B. Localized-density-matrix approximation and FMM dij(r):¢>i*(r)¢j(r), (39
evaluation of Coulomb interaction , . ,

Odmn(r )= 0pmn®m(r") dn(r’). (36)

The key for theO(N) scaling lies in the reduction of the
dimension of the reduced single-electron density matrix. Thi¢1€re we definel; anddd;; as the charge distribution and the
reduction is based on the fact that the density matrix has duced charge distribution for a pair of atomic orbitaisd

localized character or a “nearsightednes8.This “near- , respectively. Note that the numbers @f and 5d;; are
sightedness” holds not only for the(® but also for 5p.38 O(N) since the overlap betweerandj decays exponentlally

Specifically,pf 0) s set to zero for;>1o, and, consequently, over their distance. For instance, the product of twe 1

h(O) becomes zero for the samg [see Eq(10)]; and 5p(1) Gaussian basis functions is expressett as
is set to zero when;;>1,, which leads to a reduction of the N p ap 5
dimension ofsp(*) from O(N?) to O(N): 33 Gis(r—R)GL(r—Rj)=ex _m|Ri_Rj|

(0) — ifor.. .
Pij 0, if r|1>|01 a+ﬁ(r_ Rp), (37)

G;g(r—R)zex;:[—a(r—R)Z], (39)

whereR; and R; are the centers of orbitalandj, respec-
tively, @ and B are the exponents, and

Spi=0, if rij>1;. 8
Herel, andl, are two cutoff lengths. For a fixed pair of

i andj, these approximations result in the finite number of

summations in Eq(23) for k on the right-hand sidérhs),

which leads tadO(N) floating point operations for evaluation aR;+ BR;

of the first and third terms on the rhs of E83). The second RP:W’

term on the rhs of Eq(23) can be expanded as

(39

is defined as the center of the product of the Gaussian basis
(1) 0)_ o) (I, functions.
2 E 2 (OpmnVikmnPkj' ~ Pik OPmnYkjmn) Figure 1 shows the Coulomb interaction between the
charge distributionsd;; and odn,,. The whole physical
n S <1>V (O (0) 5,1y 29 space with all the charges and induced charges are contained
2 2 E (OpmaVikmbly’ ~ ik 9pmaVigme)- (29 in a large cube. The cube is then divided in half along each
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m A n

FIG. 1. Coulomb interaction between charge distribu-
tion d;; and induced charge distributiad,,,,. A andB
are the center of chardgej and induced charge, n,
respectively.

Cartesian axis and thus each cube contains eight children 20

cubes. This process is continued recursively until the charges Ma:m%A (Xml " mnal Xn) Pmn (40)
in each cube at the lowest level is approximately constant.

Figure 2 shows the first three levels of division. We evaluate 3 1

the Coulomb potential aP due to the induced charges in Qup= X <Xm|§rmnarmnﬁ_Eéaﬁrrznn|)(n>5pﬁ10n’
cubeA, assuming|R|>|r | applies for all of the induced mneA

charges within the cub (cf. Fig. 3). The Coulomb potential 1
can be expressed as the multipole expansion, Oupy= 2 <Xm| rmna mngl mny ™ 2 mn(fmncﬁﬁy
Z w,R, Qu.R.R; O,z R,RR
V(I’)=—+M +Q A B-l- By A Yy . +rmn55a7+rmnyéaﬁ)|){n>5pgon!
R RS R® R’

whereR=r—r,, r, is the center of the cub#, r is any

7 2 s s point outside the cubey=Xx, Vv, Z, r . iS the « component

Pl pmn' of the position vector fovd,,,, measured with respect to the
center of the cubd\, andS,,=f dr xm(r) xn(r). xn is the
nonorthogonal atomic orbitah, and 6p”° is the induced
density matrix in a nonorthogonal basis set. The multipole
expansions of the potential caused by the induced charges of
A A a a a cube at levell(—1) can be constructed from those multi-
pole expansions of the cubes at the lower |dlj)ehs follows:

IR R 200= 5 S0t

mneA|,1

cl e} c] el e] e :z ESmnﬁp E Z (41)

A|EA|_1 mneA| |E -1

A el e cf ¢f ¢f ¢ /-Lg_l): 2 <Xm|rmna |Xn>5p

B B B mneAj_q

» | s \ s | = 3 S bt x50

A|EA| 1 mne A |

- 3 g 3l

B

\ AleAi_ AleAi—
etc., wherg Sga is thea component of the position vector for

j a child cube(l) with respect to the center of its parent cube
B (I-1). A is defined as cub& at levell. The multipole
moments from all child cubes are summed and stored for the
parent cube. Figure 4 shows the schematic relation between a
parent cube and a child cube. At this point, we have a mul-
FIG. 2. Hierarchy of cubes. tipole expansion for each cube representing all the charge
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FIG. 3. Coulomb potential formed byd,,, on the
point P.

distributions contained in it. Since the number of cubedowest level, andN is the number of charged;;'s of the
scales linearly with the system size and the number of chargentire system. The number of induced chargdg,,’s within
distributions in the lowest level is chosen to be independengéach lowest level cube is independent of the system size, i.e.,
of the system size, the CPU time for evaluating the multipoleM is approximately a constant. Thus, the computational time
moments for cubes at different levels should therefore scaléor evaluating near-field interaction scales linearly with the

linearly.
The induced Coulomb potential inside a cuBeat the

system size. The farfield potential atis decomposed into
the contributions from the farfield cubes of different levels.

lowest level is partitioned into the near-field and farfield For instance, at the lowest level the contribution/g(r) is

contributioné* as
V(r) :Vfar(r) +Vnea(r)

* (! ' AO
_ 2 V(F=Tap) + 2 dr,)(m(r IXn(r") 0pmn

Acfar mne near |I‘— | '

(42

from those farfield cubes whose parents are considered as
near-field; the contribution from the next higher leypér-

entg is thus from the farfield parent cubes whose grandpar-
ents are of near-field, and so on. At a particular level, the
multipole expansions of the potentiqts. Eq. (40)] from the
contributing farfield cubes at the same level are converted
into local Taylor expansions about the center of the current

wherer g is defined as the displacement vector of the centefuUbeB, and the expansion coefficients from different cubes

of cubeA with respect to the center & andr is the charge
position with respect to the center 8f If their center-to-
center distance is less thajD along thex, y, andz direc-
tions, whereg, is the size of a cube at levélandD is a
positive integer, then cub& andB are said to be the near-

field cubes, otherwise, they are considered as farfield cubel.— T ag| @

For the near-field contribution whedkand &d are close in

are summed. The Taylor expansion coefficients are computed
by expanding each term of E¢40) in r which is the dis-
placement vector from the center of cuBefor example,

Z Z Zr
e — ﬂ.r.{_...,

DY:!

distance, explicit analytical integration is used to ensure high (43
accuracy. The computational time of the near-field interac-

tion betweerd and éd is of O(NM), whereM is the number
of induced charge#$d,,,s within the nearby cubes at the

6dmn
,(&
{BO
Child A
Parent

FIG. 4. The connection between the parent cube and his child.

p(r—rag)  —pTag
3 3
Ir =1 agl I'AB

‘rag)l
M B(M AB AB.r+

5
I'AB I'AB

The above Taylor expansion begins at the top level and then
transverse downward. The information of the parent cubes
are translated to the children and is continued to the lowest
level. Vi, (r) of a cube at the lowest level is a Taylor expan-
sion that contains the potential of all induced charge distri-
butions from all the farfield cubes. Given a cube at ldyel
the number of its near-field cubes is@2 1)3. The number

of its farfield cubes whose parents are of the near-field is thus
7x (2D +1)3, assuming there af®, cubes at level and the
Taylor coefficients are evaluated for every cube. Thus, the
CPU cost for calculating these Taylor expansions is propor-
tional to

B[7(2D+1)3]. (44)

At the next higher level —1, there areB,_;=B,/8 cubes,
and the CPU time to calculate the Taylor expansions for
these cubes is thus proportional to
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7B, 3 ' ' ' ‘ ' ’ '
?[(2D+1) 1. (45) 40 j
Therefore, the total CPU time for calculating the Taylor ex- g
pansions is proportional to E 30 r
B[7X(2D+1)3]+B,_,[7X(2D+1)%] £
T 20t
+B,_,[7X(2D+1)3]+--- S
[=5
3 Blowest 3 § 10 |
=Biowesl 7X (2D +1)°]+ T[?x(ZDJrl) ] 2
B 0 — ' : : :
+ |0V;’eSt[7X(2D+1)3]+,,, (46) 3] 12 14 16 18 20
8 eV
<8Blowes(ZD + 1)3' FIG. 5. Absorption spectra for gHg,. The solid line is for GyHg, and|

. . =25A, and the dashed line for the full TDDFT calculation, where no cut-
where Blowest 1S the number of cubes in the lowest level. offs are introduced. The phenomenological dephasing conktaftl eV.

SinceByuestincreases linearly with the system size, the com-
putational time for evaluatiny/;,, for all the cubes at the
lowest level scales also linearly with the system size.

For Vi, We resort to numerical integration to calcu- a generalized LDM(GLDM) method that adopts nonor-
late it since the analytical results cannot be obtained, evethogonal basis functions. The GLDM method was found sen-
using Gaussian orbitals. In order to achieve the high accusitive to the cutoffs and sometimes divergent during the nu-
racy, sophisticated multicenter quadrature schéffé4?are  merical simulations. We start from Gaussian AOs. Each of
used. The integrals are partitioned over atomic centers usirigiese orbitals is localized at a particular atom. However, they
a weight scheme, and a further decomposition into radial andre not orthogonal. To implement TDDFT with the LDM
angular components of each atomic contribution is intro-method, we need to orthogonalize the AOs while maintaining
duced*?~**Since the number of grid points is proportional to the localized nature of the basis functions. Cholesky trans-
the size of the molecule, and we have to calculate the inteformation has been used to orthogonalize AOs and it has
grals over four orbital indices, the numerical integration ofbeen found that the resulting orthonormal AOs are quite lo-
Vi€, is anO(N®) computational process. Taking advantagecalized in spacé” Subsequently, both the density and Fock
of the fast decaying nature of Gaussian basis functions, themgatrices are evaluated in terms of the orthonormal basis set,
are only a limited number of basis functions with non-and the EOM$Egs.(21)—(23)] need no modifications. Spe-
negligible value at a given grid point. The computationalcifically, the transformation is based on the Cholesky decom-
time is therefore proportional to the number of grid points. Inposition of the overlap matri$ to orthogonalize the atomic
addition, we discard the integrals when the differential over-orbitals (AOs). The Cholesky decomposition partitions a
lap between any two orbitals is negligible, i.e., positive definite matrix into a lower triangular matrix times

an upper triangular matri¥,
VI =0, if S4<1Xx107%4 PP g

—1T
where k, or=i,j,m, orn. (47) S=U'U, (48)

This results in at©(N) computational time for evaluating all WhereU is an upper triangular matrix. For symmetric posi-
VI... To further reduce the computational time, we ex-live definiteS the Io_vver trlangula_r matrix is just the trans-
ploited the locality of the exchange-correlation potential and?©S€ Of the upper triangular matrix, and the Cholesky trans-
confine its contribution at a given grid point to a relatively formation to an orthonormal basis can be written as

small region around it with. a neglig_ible Ios_s of accuracy. potho— |y ,A0YT:  portho— [y ~THAOY ~1, (49)

In Eqg. (23) the summation ovek is restricted to a finite
range, which does not depend on the valueNofvhen the  The transformed reduced density matrix is found to have the
size is large enough. Since the number of non-negligiblasame sparsity as the reduced density matrix in an AO basis,
5pi(j1) is proportional taN, the total number of steps required and the transformed Fock matrix has similar sparsity as the
to integrate scales linearly witN. Therefore, the overall reduced density matrix.

computational time is proportional 9. The computational cost of Cholesky factorizatifg.
(49)] is given by®
C. Transformation between atomic orbital basis set N
and orthogonal atomic orbital basis set CPU time< >, m’(mY+3)/2, (50)
i=1

The LDM method was originally developed for semi-
empirical models which adopt orthogonal basis sets. FirstwheremiU is the number of nonzero elements in ilie row
principles methods employ the localized Gaussian basis sets U andN is the number of basis functions. Taking advan-
whose orbitals are nonorthogonal. In Ref. 39, we developethage of the sparsity of overlap matt&miU remains approxi-
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FIG. 6. Absorption spectra for gH;,, usingly=1,=25A. The phenom-

enological dephasing constait-0.1 eV. FIG. 8. CPU time for the Cholesky transformation.

mately constant regardless of the system size. Similar resule plot the absorption spectrum of¢l;,,. In Figs. 5 and 6,
hold for the computation of inverse Cholesky matrix. Theabsorptions start at about 8 eV for both molecules. This is
CPU time thus goes up linearly with. consistent with the observegto ¢* transition at about 150
nm wavelength in alkané$. The absorption spectrum of
CuoHg, and GH1,, are overall similar, except for the slight
difference between 11 and 13 eV.

Now we are ready to examine whether the TDLDA-

To demonstrate that the TDLDA-LDM method is indeed LDM method is indeed a linear-scaling method. We perform
a linear-scaling method, we have carried out calculations othe TDLDA-LDM calculates on a series of linear alkanes
a series of linear alkanes. Gaussian basis set 6-31G has bewith the number of atoms ranging from 62 to 602. To save
used. We apply the electric fielé(t) parallel to the linear computational time, we limit our simulatiom ta 1 fsinter-
alkanes. The time step of the simulation is set to 0.005 fs andal. The CPU time of each calculation is recorded. The com-
the total simulation time is 70 fs. The accuracy of the calcu{putational time spent in solving the DFT ground state is neg-
lation is determined by the values lgf andl,. For simplic-  ligible. In Fig. 7, we plot the CPU time versihé Clearly the
ity, we chosely,=1,;=1 in our calculation. In Fig. 5, we CPU time scales linearly witN for N between 62 and 602.
present the absorption spectrum oflds, usingl=25A. To  The linear scaling of computational time versus the system
examine the accuracy of the calculation, we perform a fullsize has been convincingly achieved. We have also examined
TDDFT calculation with no cutoff for the same molecule. the CPU time of Cholesky transformation versus the system
The dashed line represents the results of the full TDLDAsize. Figure 8 shows the computational time of Cholesky
calculation. The agreement between the results of twdransformation scales linearly with the molecular size.
TDLDA calculations are excellent. This value=25 A will

be employed in the calculation of larger alkanes. In Fig. 6,5 TDDFT calculations on polyacetylene oligomers

Ill. RESULTS

A. Linear-scaling calculation on linear alkanes

We have also performed the TDLDA-LDM calculations

200000 ' on several polyacetylene oligomers. Their excitation energies
] are presented in Table I. A 6-31G basis set is employed and
’ no cutoff is used in the calculation§(t) is set parallel to the
150000 molecules. The time step and total time of the simulation are
0.005 and 70 fs, respectively. We study the excitation to the
D optically allowed 1'B, state. Compared with the available
g 100000 r A experimental excitation energies for the oligomers, it is con-
=
50000 | ’ TABLE I. Excitation energiegeV) of polyacetylene oligomers.
e N TDLDA Expt.
o L7 - - - ' ' 2 8.20 7.65(Ref. 50
100 200 300 400 500 600 4 6.01 5.92(Ref. 50
Number of atoms 6 4.70 4.95(Ref. 50
8 4.22 4.41(Ref. 50
FIG. 7. CPU time for alkanes withNN=62, 92, 122, 242, 362, 602. Each 10 3.98 4.02Ref. 50
calculation is performed during the time interval betwee®.5 and 0.5 fs 20 2.25 2.80(Ref. 57

with time step 0.005 fd.=25 A is used.
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300 - - T i sity matrix are proportional to the molecular size because of
its localized nature. One should also notice that DFT Fock
o= 250 ] and density matrices are normally much less sparse than the
5 semiempirical ones. In order to attain the same accuracy,
£ 200 | 1 longer cutoff length should be chosen compared to that of
£ semiempirical method®:3%5253 The only approximation
3 150 1 made here relates to the feature of a reduced single-electron
5 density matrix, i.e., the locality gf and dp. This fact guar-
E.- 100 | T antees the wide applicability of the method. To improve our
2 TDDFT-LDM method, we may adopt other XC functionals,
< 50t T such as, GGA' >’ and B3LYP?® We may also improve our
FMM by the CFMM® or GVFMM?® approach. The current
0 0 1 2 3 4 5 bottleneck of the TDLDA-LDM method is the evaluation of
oV Ssh at each simulation step. We may update the farfield part

of sh" every few simulation steps. Another issue is the sta-
FIG. 9. Absorption spectra for gH,,. bility of the simulation. The numerical simulations may
sometimes diverge, caused by an unphysical numerical fluc-
_ _ ~ tuation, leading to a positive feedback fép*). We may
firmed that our TDLDA-LDM code yields reasonable predic- 5qopt a purification procedure to suppress the unphysical nu-
tions for excitation energies. The general trend of decreasing,erical fluctuation.
excitation energy with the chain length is correctly repro- 1, summarize, we have developed a linear-scaling

duced. For molecule £gH,, the calculated excitation en- 1p| pa-LDM method. The calculations on the linear al-
ergy is less than the experiment result. This may be due tRanes and polyacetylene oligomers demonstrate its accuracy
the structural difference between the experiment and calCusnq efficiency. This makes possible the first-principles calcu-
lation. Long polymers tend to bend or rotate compared 0 theytion of the excited state properties of very large molecular

optimized structure adopted in the calculations, which leadgy stems. Although the linear response has been the focus, a
to the r_educt|on of conjugation length and the _blue shifts of,onlinear response may easily be evaluated via a slight gen-
absorptlo_n spectra. We calculate the absorptlon spectra @fajization of the method.

longer oligomers, such as,gH,,, whose absorption spec-

trum is given in Fig. 9. The optical gap of longer oligomers ockNOWLEDGMENTS

is believed to saturate at about 2 eV, which contrasts our ]
calculation result for gH,,. This may again be due to the Support from the Hong Kong Research Grant Council
structural distortions of long polyacetylene oligomers in ex-(RGO and the Committee for Research and Conference
periments. Of course, this may also imply that the TDLDA Grants(CRCG of the University of Hong Kong is gratefully
calculation is not adequate for longer polyacetylene oligo2cknowledged.
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