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Quantum dissipative master equations: Some exact results

Y. Zhao and G. H. Chen®
Department of Chemistry, The University of Hong Kong, Hong Kong, People’s Republic of China

(Received 18 August 2000; accepted 4 April 2p01

With the help of quantum characteristic functions some exact results are found for two quantum
dissipative master equations which contain dissipative Liouvillian operators of the Lindblad-type
corresponding to two forms of dissipation mechanisms. Population relaxation is used to demonstrate
how dynamic information can be retrieved from these solutions.20©1 American Institute of
Physics. [DOI: 10.1063/1.1374537

I. INTRODUCTION Quantum computing is one of the fields in which quan-
tum dissipation finds the most recent applications. An impor-
Quantum dissipation is a subject of widespread interesgnt issue in quantum computer design is to reduce decoher-
in many fields of physics and chemistry'* Central to the  ence in the system of interest due to interactions with its
problem of quantum dissipation is the question of compatenyironment. Semigroup theories are used to construct for an
ibility between quantum mechanics and Markovian motion arpitrary Hamiltonian decoherence-free subspaces within
which is manifested by the Lindblad exclusion principle of \yhich logical qubits are encodewtto decoherd.The Lind-
positivity, translational invariance, and approach to canoniyaq dissipation operators serves as error generators in quan-
cal equilibrium. While dissipation is well described in clas- {;m computing theories identified with generators of a Lie
sical mechanics by the Langevin or the Fokker—Planck equagigebra. Different error generators correspond to different
tions, a quantum description of dissipation has remained gecoherence processes. Quantum computing is of course not
challenging task. The difficulty lies in the failure of a Hamil- ¢ only field where the Lindblad-type master equation ap-
tonian Qesqription of those systems, and in the elusiveness Bfies. In physical chemistry, for example, semigroup theories
a quantization procedure that ensues. have been utilized to model dynamics of ultrafast predisso-
Among various theoretical techniques applied to quangijation in a condensed-phase or cluster environfertd
tum dissipation, we mention especially the Redfield ap-g|ectronic quenching due to coupling of the adsorbate nega-
proach, the influence functional method, and the semigrouye jon resonance to the metal electrons in the desorption of
formalism. Popular in nuclear magnetic resonance and optireytral molecules on metal surfac®sn nuclear physics, the
cal spectroscopy, the Redfield approddneats the system- semigroup formalism is applied to model giant resonances in
bath coupling to second order in perturbation theory. It useghe nuclear spectra above the neutron emission thredtipld.
the energy eigenstate representation with no promise of cons therefore of great interest to systematically study the dis-
plete positivity. For all but the simplest cases, no analyticakjpative dynamics within the Lindblad formalism. In this pa-
solutions can be found for the formidable Redfield equationsper we set out to solve analytically two Markovian master
The Feynman—Vernon influence functional formulation ofequations which contain dissipative Liouvillian operators of
quantum dynamics is based on Feynman path inted?a8.  the Lindblad type corresponding to two different forms of
It offers significant advantages when dealing with Iarge'dissipative mechanisms.
dimensional problem® While an intrinsically quantum me- The paper is organized as follows. In Sec. Il we intro-
chanical quantity unreachable by classical methods, the ingyce quantum master equations and the Lindblad formalism.
fluen_ce_ functional can only _be obtained e_:xplicitly_ for Very In Sec. Ill we demonstrate the methodology by rederiving
restrictive cases. The semigroup formali$mi? which is  so|utions to the traditional Agarwal master equatiéps).
positivity preserving by design, has recently attracted muchn sec. v we apply the same approach to the Lindblad-type
attention°~°**Under the assumption of Markovian dynamics equation(2.16. In Sec. V the equation of motion with pure
and initial decoupling of system and bath, the SemigrOUFUephasing Eq2.7) is solved exactly up to second moments.
approach adds dissipative dynamics to quantum master eJuze demonstrate in Sec. VI the usefulness of the solutions
tions by means of the Lindblad dissipation operators, whichyptained in previous sections by calculating time-dependent
are in fact operators in the system Hilbert space responsiblg,e| populations. In Sec. VIl we provide some connections
for couplings with the bath. Semigroup methods can treahetween the master equations and the zero-temperature evo-

simultaneously several distinct kinds of system—bath interacytion of a coherent state. Discussions are presented
tions including dissipation, dephasing, collisions and energyy sec. VIII.

transfer. In this paper we confine ourselves to quantum mas-
ter equations with dissipative Liouvillian operators derivedIl. QUANTUM MASTER EQUATIONS

from the semigroup formalism. In absence of bath memory effects the displacement of a
classical oscillator in the Brownian motiaj¥(t) follows the

3Electronic mail: ghc@everest.hku.hk equation of motion
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d?qS(t dg(t ap _
jtZ( )+2y qdi )+w§q°(t)=f(t), (2.2 E=—Iw[a*a,p]—yn[a+a*,[a+a*,p]]

. . . —y(ala+a’,p]—[a+a’,pla’2p), (2.5
where wg is the frequency of the oscillator,j2is the phe-

nomenological damping coefficient, arfdt) represents a Where?’? Wf(wo)|gc(wo_)|2is the damping congtarﬁ(w) is
random perturbation which is &-correlated Gaussian pro- the density of bath oscillatorg(w) is the continuum form
cess with a zero mean. Equatié2 1) may be replaced by of gi, n=(e"*’*sT—1)"!, w is the renormalized frequency
two first-order differential equatioﬁ%which are the Lange- of wOZl
vin equations for the Brownian motion. Here we are con- ) 2

: : ; - = f(0)|ge(w)|
cerned with the Brownian motion of a quantum oscillator; w=wy+PP| do——m—, (2.6
for simplicity, we start with a model Hamiltonian describing 0 W™ Wo

only one primary oscillator of frequency, and massm  anqg Pp stands for the Cauchy principal part. Approxima-
coupled to a bath of secondary oscillators of frequengy tions assumed in deriving Eq2.5 includes the Born ap-

and massn, (k#0) proximation which treats the bath effects in the lowest order
and the short memory hypothesis for the bath.
QA:ﬁwoafaJrE ﬁwkblbk+q2 gqu, (2.2) In a recent _attempt to unify th_e Red_field and Fol_<ker—
K K Planck formulations of quantum dissipatitfthe equation

of motion(2.5) is generalized to include an additiongkerm
whereq and qE are the coordinate observable for the system

and the bath oscillators, respectively, which are related to the 7P _ _ iw[a'a,p]— Blata[aa,p]]
corresponding boson operators by ot
172 12 —yn[a+a' [a+a’,p]]-y(a[a+a,p]
d (meo (@+a), a <2mkwk> (bby). (2.9 —[a+a',pla’™2p). (2.7

A _ _ . The B term on the right hand side adds pure dephasing to the
The Hz%mlltonlanl-]A repr_esents the ex_C|ted mgmfold with original master equatiof2.5). Pure dephasing is an impor-
one primary oscillator in the Brownian oscillatdBO)  (ant mechanism in a variety of dynamical processes which
model, which is an exactly solvable model serving as a paraggprjyes the system of coherence but leaves the energy con-

digm in the field of quantum dissipatioef. Appendix A.  garyeq. Applications of pure dephasing to interacting many-
Our discussion will also be confined to the thermal eqwhbra-body systems were implemented by means of time-
tion of the excited manifold while leaving out the ground dependent Hartree—Fo¢KDHF) 23

state manifold in the BO model. The bath oscillators can be Equation (2.5 has found applications in a variety of

modes of vacuum radiation fields into which an excited atonyq 4 despite of a well known fact that it violates the posi-

decays via spontaneous emission. Phonon modes in soli%ity requirements of the reduced density mafdx2®3

can also be described by those bath oscillators. Adopting thgemigroup theories pioneered by Lindblad demonstrated that

rotating-wave approximatiofRWA) widely used in fields 5 pharmonic oscillators density-matrix positivity, transla-

such as quantum optics, our model Hamiltonian reduces 0, jnvariance and approach to thermal equilibrium cannot
be satisfied simultaneously. In addition, Lindbiaghowed

Hewa=fwoata+7 > wbibc+ > gbla+bah. (2.9 that a completely positive map can be generated by
k k

Lop=2 [Vim.pVE1+[ Vo, V) (2.9
We note that the rotating-wave approximation neglects the bp %: Vi PVl +[Vinp Vi

rapidly oscillating terms of Eq2.2). For simplicity we shall
setA=1 in the master equations in the rest of the paper.

If we consider the primary oscillator as the system of
interest, then it is an open system which interacts with the dp .
bath oscillators. For open systems, the reduced system den- aﬂ[H’p]:LDp'

sity matrix (with the environment degrees of freedom traced ) o
out from the full density matrixis the focus of attention. If Here theVys are the Lindblad dissipation operators. The

the dissipative environment has a fast response, the time evteraction Hamiltonian between the system and the bath can
lution of the system density matrix is not dependent on thé®® Written in terms oV, and the bath operato,,

history (no memory effects is therefore Markovian. Master .

equations are usually derived for the reduced density matrix  Hin= > Vn®Bp. (2.10

with a damping coefficient representing the dissipative effect m

of the bath. Agarwal has obtained the Salinger- The dissipation operators by themselves do not guarantee
representation master equation for the reduced density operapproach of thermal equilibrium. Additional constraints must
tor p in the limit of an infinite number of bath oscillators be imposed to ensure detailed balance. For example, choos-
(Zy— Sdwyf(wy))?° ing a single dissipation operafor

from which the equation of motion of the density matrix can
be expressed as

(2.9
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V=ug+ivp, V'=uq-ivp, (2.11)

Quantum dissipative master equations 10625

where the trace is taken over the system. Instead of dealing
directly with the density matrix, we derive an equation of

whereu, v arec-number constants which are determined bymotion for the characteristic functiop(\,\*) which is then
the quantum fluctuation—dissipation theorem, and the operas|ved by method of characteristics. Details follow in Sec.

torsq andp are defined as

g=a+a', (2.12
ip=a—a', (2.13
one obtains
ap .
gt~ " 1[H=2uvpa.p]—p?a[a.p]]
—2ipvla,lp,p]+1-v*[p.[p.p]]- (2.14

If two sets of Lindblad dissipation operators are cho%en:

V|:a|q+b|p, |:1,2 (215)
one obtains the equation of motfdrt®
J
— = ~ilwa'at«[q,p].,p]-Dala,[q.p]]
_DZ[pv[pvp]]_D([qv[pip]]+[pv[q1p]])
—iA([a,[p,pl+]1=[p.[A.p]+ D), (2.19

whereD4, D,, and D are thec-number diffusion coeffi-
cients, A is the friction constant, and introduces an addi-
tional term to the original system Hamiltoniama'a. Vari-
ants of Eq.(2.16 can also be derived from generalized Weyl
and Wigner transformatiorf§.Due to the Schwartz inequal-
ity and the way Eq(2.16) is constructed from the dissipation
operatorsvV; andV,, Eq.(2.16 is a master equation of the
Lindblad form if the following conditions are satisfied:

(2.17)
(2.18

D,,D,>0,

D,D,—D?=A/4.

lll. THE TRADITIONAL EQUATIONS AND THEIR
SOLUTIONS

To illustrate our methodology we reproduce in this sec-
tion existing solutions to Eq(2.5. Following the master
equation(2.5) one readily obtains an equation fQ{\,\*)

&—X+[—iw7\+ (>\+)\*)]a—X+[iw)\*+ (NH+N)] oX
it Y N Y N

17

—yn(A+1*)%y.

(3.9

Equation(3.1) was solved by the method of characterisfits.
Here we give a brief derivation. Assuming the characteristic
function

X(7\,7\*)=6XI{E Crn(ONT(=N")"], (3.2

whereC,,,(t) are the coefficients to be determined, one ar-
rives at the set of differential equations G, ,,:

Ci0=(i@=¥)Cio+ ¥Co1, 3.3
Cor=(—i®=¥)Co1+ yCio, (39
Co0=2(iw—y)Cpo— y(n—Cyy), (3.9
C11=2%(n=C19)+2%(Coz+ Cso), (3.6
Coz= —2(iw+¥)Cor— ¥(n—C1y). 3.7

Equation(2.16) can be used to describe, for instance, an

electromagnetic field mode interacting with an equilibrium "' ) o o -
Sf_|C|ents Cmn for arbitrary initial conditions are explicitly

bath of bosons in quantum optics, or dynamics of open sy
tems in heavy ion collision%.

The analytical solutions to the above equations of the coef-

given below for later comparisons. The first order coeffi-

The Lindblad dissipation operators can also take formscients control the means of the density matrix Gaussians:

other than linear img and p [as in Eq.(2.15]. In fact the
addedg term responsible for pure dephasing in E2}7) can

be derived from the semigroup formalism and by taking the

system Hamiltoniang'a) as the Lindblad dissipation opera-

tor. Similar applications of the semigroup formalism can be

found in quantum opticg§phase-damped oscillatgrsorre-

sponding to a nondestructive measurement of photon

number?®-31

A 3
Clo:7lei(er 7MoY 0?)

A
+72e*<H =i+ 52— @?), (3.9
Cor=Ase” V7 =0t A e=(r=Vr"—ui)t, (3.9

In quantum optics, atomic physics and chemical physicsThe second order coefficients are responsible for the Gauss-
master equations often need to be solved by numerical apan widths:

proaches which may involve continuous evolution of the

density matrix as well as jumps at random instanéddere
we adopt an analytical approach and solve both E24.6

and (2.7) exactly by introducing the quantum characteristic

function y(x,A*)33

YOS ) =Tr(perd'e 2 2), (2.19

— 2yt

— €

C]_l: n+ ﬁ[_ Blw2+ Bl’yz COSHZI vV ’}/2_ (1)2)
Y T w

+2i(B,—B3) yo sintP(tyy*— 0?)
+(B,+ B3) yvy?— w? sinh(2t\y*— 0?)], (3.10
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wt

FIG. 1.|u|?+v?—1 for an underdamped casg:o=0.2. The initial state is
a coherent state.

=2yt

COZZW[COSI’(ZIZ\/ ’yz—wz)(—iBl’yaH- Bz’yz
Y'—w

+B3y?—2w?B3) + \y?— w? sinh( 2t y*— w?)
X(yB1—2iwB3)+iB;yo—y4(B,—B3)], (3.11)
— 2yt

CZOZZ(Z—Z)[COS“Zt\/ yz—wz)(iBlya)-l- Bz’yz
Y T w

+B3y?— 2w?B,) + Vy?— w? sinh(2t\/y?— »?)

X(yB;+2iwB,)—iByyw+ y?(B,—B3)]. (3.12

E
Here As andBs are the constants to be determined by they

initial conditions.

If initially the primary oscillator is in a coherent state

with a displacemeni,* i.e.,

p(t=0)=|a)(al, .13
then
B,=—n, B,=B;=0. (3.14

This is the case of interest explored by a number of

Y. Zhao and G. H. Chen

Re[uv]

wt
2 \47 6 8 10

~0.02

-0.04

-0.06

FIG. 2. Re(iw) for an underdamped cas¢/w=0.2. The initial state is a
coherent state.

reaches while C,5 and Cy, again vanish. In Figs. 1-3, we
show |u|?+v?—1, and the real and imaginary parts wf,
respectively, for an underdamped caséw=0.2. The sec-
ond order moments can be written as

(3.19

From Fig. 1,C;; goes monotonically from zero ta for
vlw=0.2. The real parts of,; and Cg, exhibit oscillations
with a decaying amplitude, and the imaginary parts vanish at
the end of each periottf. Figs. 2 and 3 The average sys-
tem energy in unit ofiw can be calculated from

C11: _F(|U|2+U2_1), CZO:C’OCZZ _FUU.

=(a'a)=n(1-|u|>*~v?)+(ua* —va)(u* a—va*)

=n+(|a|>~n)(Ju|>+v?) —2vRe(u* a?).

(3.20
In Fig. 4 we display the average energy for an initial
=0.5 andkgT=%w. Since the initial energya|*4 w is less
than niw~0.58%iw, the oscillator gains energy from the
bath during the relaxation process.
If the initial state is a squeezed stdbestead of a coher-

authors®® For example, substituting the initial conditions in ent statg

the set of solution$3.8)—(3.12 gives the finite temperature
solution for y(\,\*,t) for an initial coherent-state density

matrix first derived by Savage and W&figin their nota-
tions

x(MAF D =exdAN(ua* —va)—N* (U a—va*)

—n(\2uv +A*2u*v) —n|A|2(Ju]?+v?-1)],

(3.195
whereu andv are given by
efﬂ-—l_’_ e7/’-+t efﬂ-—t_efl’urt
u= ) , (3.19
2 Moo= oy
efﬂ—t_efﬂw—t
v=y———— (3.17
M= My
with
pe=y*r VY= 0. (3.18

1£)=5(£)|0), (3.21)
where¢=re'?, and
S(§)=expzé*a’~ 3¢a'?), (3.22

the characteristic function @&=0 can be calculated from

] wt
2 v\s/ 10

Im[uv

-0.02

-0.04

-0.06

-0.08

-0.1

-0.12

The initial coherent state gives zero second order moment§g. 3. im(yv) for an underdamped cas¢lw=0.2. The initial state is a

(Cyo, Cp2, andCyq) at t=0. At thermal equilibrium,Cy;

coherent state.
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FIG. 4. The average energy in unit bf» for an underdamped case!
=0.2, kgT=rw. The initial state is a coherent state with=0.5.

XOLNE t=0)=Tr(|€)(gle'e "7

=(0[s'(ge*eMa5(g)l0). (323
Taking advantage of the fact th&(¢)S'(¢)=1, a pair of
S(¢) andS'(¢) can be inserted betwee® ande™*2:

XONA* t=0)=(0|S!(£)e's(¢)ST(£)e " 25(¢)[0).
(3.29

The right hand side of3.24) can be evaluated from
Sf(e)erd's(&)=expral coshr—rae ’sinhr),  (3.25

St(&)e 2 25(¢)=exp(—N*acoshr +\*a'e'?sinhr),

(3.26

which follow from
S'(¢é)as(¢)=acoshr —a'e'?sinhr, (3.27
S'(¢)a's(¢)=a' coshr —ae "?sinhr. (3.28

Therefore one obtains
XN A% t=0)=exp( — |\|?sint r—i\%e"’sinh 2r

— 1x*2e?sinh 2r) (3.29
by making use of the Baker—Hausdorff formula:
eATB=gheBe™ %[A'B] (3.30
for any two operatorg\ andB such that
[A,[A,B]]=[B,[A,B]]=0. (3.3)

From Eq.(3.2), the second order coefficientstat 0 are

Ccl1
1.4

/\ wt

0.6

FIG. 5. C4, for an underdamped casgtw=0.2, kKgT=7% w. The initial state
is a squeezed state with=1.

Quantum dissipative master equations 10627

Re[C02]

wt

\//\V
2 4 8 10

]
(=)
W o N

FIG. 6. ReC,g) for an underdamped casglw=0.2, kgT=%w. The initial
state is a squeezed state with 1.

Cy(t=0)=n+B;=sinltr, (3.32
Coo(t=0)=B,=— e '’sinh 2, (3.33
Coa(t=0)=Bz=— %e'’sinh 2. (3.39

In Fig. 5 we display the second mome@t(t) for
keT=fw, y/o=0.2,r=1, §=0. For the initial squeezed
state the first moments are zero all the time. Therefore the
system energyi w(a'a) can be written as wC(t) [cf. Eq.
(5.14]. Because of the squeezing effect the initial second
momentCy;(0) equals sinf(r) which is then relaxed tm
~0.582, at the thermal equilibrium, as shown in Fig. 5. Os-
cillations in the average system energy appear in the relax-
ation process although the system overall loses energy to the
bath. The real and imaginary parts of the second morGgnt
are plotted in Figs. 6 and 7, respectively. For the initial
squeezed stat€y,(t) has a value of-sinh(2)/4 att=0 in
contrast to the case of an initial coherent state Fig. 2.

The amplitudes of oscillations irCy,(t) are more pro-
nounced compared with a coherent-state start. The real part
of Cy(t) in fact represents the difference in variance be-
tween two canonically conjugate quadrature componlefits
Egs.(3.37) and(3.38]. Details will be presented later.

While the coherent state is generated by linear ternas in
anda' in the exponent, the squeezed state requires quadratic
terms. Squeezed states have reduced fluctuations in one
quadrature component at the expense of enhanced fluctua-
tions in the canonically conjugate quadrature component in

FIG. 7. Im(C,) for an underdamped casetw=0.2, kgT=%Aw. The initial
state is a squeezed state with 1.
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2 4 6 8

10 12 14

FIG. 8. J(AY,)? (solid line), V(AY,)? (dashed ling and their product
J(AY)Z(AY,)? (dotted—dashed lineas functions of time for an under-
damped casey/ w=0.2, kgT=%w. The initial state is a squeezed state with
&=1

order to comply with the uncertainty principle. To put it in
more precise terms, we introduce Hermitian operators

1 1
Y,==(a+a'), Y,==(a—a"). (3.35
2 2i
The uncertainty relation for the two operators is
VIAY1)?(AY,)?= 3. (3.3

If the initial state is a squeezed state witkr (6=0),

(AY1)?=3+ 3(Cy1+ Cppt+Cyp), (3.37

(AY;)?=%+ 3(C11—Cg—Cyp). (3.38

In Fig. 8 we showy/(AY;)? (solid line), V(AY,)? (dashed
line), and their product/(AY;)?(AY,)? (dot-dashed lineas
functions of time. Att=0, the error ellipse is elongated
along theY, direction with \(AY,)?(AY,)?=1/4. At ap-
proximately wt~0.75, the increasing/(AY;)? catches up
with the decreasing/(AY,)? as the ellipse evolves. Such

Y. Zhao and G. H. Chen

dP(z,7*) B
at

.

N 7| dl(z—z a)ZP(z,z )] +c.c.]

dzP(z,z*)] d[z*P(z,z*)]
Iz - az*

(3.41

’ 2F’( *)
——— z,7%).
9z*

Here c.c. stands for complex conjugate. In applications it is
preferable to employ the master equations for the phase-
space distribution functions which correspond to density ma-
trix in the interaction picture:

:’:f d?zP(z,7*)|2)(7, (3.42
where
'b': eiwaTatpefiwaTat' (3.43

In the interaction representation and under a RWA which
neglectsaa and a'a' terms, the equation of motion for

P(z,z*) takes the form
1 9P(z,z*)
vy ot

_9*P(z,z*) d[zP(z,z*)] d[z*P(z,2*)]
=2n + + .
929z* Jz Jz*
(3.44
We shall make use of Eq3.44) later in Sec. V.

IV. THE LINDBLAD-TYPE EQUATIONS

The generality of the Lindblad-type master equation, Eq.
(2.16), allows descriptions of various physical processes if a
proper combination of parametess, x, D;, D, andD is
chosen. For example, EQR.16 can be used to model the
correlated-emission laser that uses atoms prepared in a co-

crossovers occur a few more times, each corresponding tolrent superposition of the states between which the laser

node of ReCy,) in Fig. 6, before the error ellipse finally
settles into a circle with/(AY;)?=V(AY,)?=V2n+1/2 at
the thermal equilibrium.

The quantum characteristic functigf\ ,\*) is the Fou-

rier transform of the phase space distribution function

P(z,z*) of the density matrixp,

X()\,)\*)=f d?zexp\z* —\*z)P(z,2*). (3.39

The phase space distribution functiBiiz,z*) is also called
Glauber—Sudarshan representation of the density matpx
which plays the role of a quasiprobability:

pzf d?zP(z,z*)|z)(z|. (3.40

The corresponding equation of motion f&(z,z*) in the
Schralinger representation has the form

emission takes plac€.The density matrix for the field mode
a (a is the annihilation operatpfollows

p=A,(a’pa—paa’)+A,(apapa—a’ap)
+Ag(pa’?—a'pa’) +Aya"?p—a’pa’)
+f[a',p]+H.c., 4.

where thec-number parameters; can be easily expressed in
terms ofA, «, D4, D, andD. Another example is a single
mode of electromagnetic field coupled with a squeezed
batt?® for which the density matrix master equation takes the
form

p=7y(N+1)(2apa’—a'ap—pa'a)+ yN(2a'pa
—aa'p—paa’)—yM(2a'pa’—a'a’—pa'a’)
(4.2

Again the master equation is a special case of(Bd.6.

—yM*(2apa—aap—paa).

Downloaded 06 Nov 2006 to 147.8.21.97. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 114, No. 24, 22 June 2001 Quantum dissipative master equations 10629

. In this section we solvg Eq2.16 borr(_)wing the tech- Coo=2(iw—4A)Cog+ 4kCyy+ 2k +D,—D;—2iD, (4.6
nigue of the previous section. The equation for the charac-

teristic function follows from Eq(2.16): C11= —8ACy;+8k(Cgp+ Cpp) —4A+2D,+2D;, 4.7

Ix . d .
i —Iw( \* Y “A o X HAANT X Cop=—2(iw+4A)Cop+4KCqy+2k+D,y—D;+2iD.
(4.9
J J The solutions to the above equations for arbitrary initial con-
—AA| N —— N — | y+ 2k (NF 2422 n : q rary
( INF o | X w( )X ditions are given below. The first order coefficients are
L0 i , Cio=e *M[A; coshQt) +Q  L(iwA;+4kA,)sinh(Qt)],
— 4k 7\&)\* +A o x+tDo(N*—=N)x 4.9

43  Co=e “M[AycosiQt) + Q™ 4kA;—iwA)sinh( QD)],

— *\2 i *2_\2
Di(N+N")“x+2iD (A A)x 4.10

from which one then arrives at the set of differential equa-

tions for C - whereA; andA, are determined by initial conditions, and
Cio=(iw—4A)Cyg+4xCoy, (4.4 O =16k>— w’. (4.11
Cor=(—iw—4A)Cp+4kCyy, (4.5  The second order coefficients are

B 16A[D(A—k)+(Dy—2A+2k)(A+k)]+8Dkw+ (D +Dy—2A) w?
4A(16A%—Q2)
+0 2e M —Bw?—4i kw(B,— B3) + (16«°B; + 4i kwB,— 4i kwBz)cosh2Q1)], (4.12

11 +4(Bz+ Bg)K\(l_le_BAt SInf‘(ZQt)

[Dy(A—k)—Dy(A+k)](4A—iw)—2iD(4A°—4k’—iAw) 1
2A(16A%—0?) AQ
+8k°B3— w?B3) + Q sinh(20t)(2«B; — i wB3) + 2k (i B, — 4xB,+4kB3)], (4.13

e M cosH20t)(— 2i kwB;+ 8«?B,

02—

[Dy(A—k)—Dy(A+k)](4A+iw)—2iD(4k?>—4A?—iAw) 1
2A(16A%2—Q32) AQ
— w?B,)+ QO sin(Qt)(2«B; +iwB,)+ 2k(—iwB; +4kB,— 4kB3)]. (4.19

HereBs are the constants to be determined by initial conditions. The long time asymptotic value for the sum of three second
order coefficients has a simple form:

20= e M cosi201t)(2i kwB; +8x%B,+ 8k?B,

32A(A—k)(D;—A—k)—8Dw(A—k)+(D;+Dy—2A)w?

Coot C114+ Coo)lien= (4.15
(Ca0t+ C1a+ Colt AA(16A2—02)
|
One can readily show that,;, Co,, and Cqy in the  =&)|0) with é=re'?, the first moments are zero for all
previous section can be recovered by setting times. The operator averaga'?)+(a?) which equals to
1 Cgot Cy has a simple time dependence
A=K=%/, D=7 F+§ , D,=D=0. (4.1

Q
Cozt Cao= — & **(B2+By)cosh20)
By settingD,=0, however, complete positivity is no longer
preserved, and Eq2.5 is known to exhibit pathological
behavior of the density matrix. It is obvious from the first

two (linearn equations folC,,, that translational invariance is o )
retained only ifx=A. This will be discussed in detail in The constant term above is in fact the asymptotic value of

4k )
- Te‘g’“B1 sinh(2Qt)+const.  (4.17)

Sec. VIII. CootCy at long times:
Our general solutions for the second moments Egs.
(4.12—(4.14) can accommodate various forms of initial den- (¢ ¢ _ Di(A=x)~Dy(A+x)+2Dw 41
. . o . (Cozt Co0)lt== 2 5. 2 : (4.18
sity matrices. If the initial state is a squeezed stdfo, 16A°—16k“+ w
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This term vanishes when the Lindblad-type equati@ri6

Y. Zhao and G. H. Chen

approach to equilibrium in the framework of semigroup

is reduced to Agarwal’s equation giving the final thermalizedtheories. Since the final thermalized state has an error circle,

state an error circle\(AY,)?=(AY,)?). However, it is

setting Eq(4.18 equal to zero puts a necessary condition on

not generally true for the Lindblad-type master equationthe c-number parameters in Eq2.16). Efforts along this

(2.16. From Eqgs.(3.37) and(3.39,

(AY1)2=(AY,)?=Cpy+Cy (4.19

direction for semigroup master equations have been a matter
of much recent intereét**° For instance, Gao has proposed
a master equation constructed from one single Lindblad dis-

the solution of Eq.(2.16 will start from a squeezed state sipation operator which is linear in bothanda' with the

with é=r and #=0, and ends up in a state with an error proper

ellipse with (AY;)?—(AY,)? given by Eq.(4.18. Further-

proportionality coefficients to sustain detailed
balance! The positivity requirement in Gao’s approach is

more the asymptotic value af(AY;)? at long times can be marginally satisfied withD;D,=A?/4. Gao’s construction

calculated from Eqs(3.37) and(4.15.

of Lp via a single Lindblad dissipation operator has recently

The semigroup formalism does not guarantee approacfound support from a first-principle derivation of master
of thermal equilibrium without extra constraints. This can beequations for collision-driven dissipative evolution.
easily demonstrated as follows. Under a RWA which ne-

glectsaa anda'a' terms, theD term in Eq.(2.16

—D(a,[p,p]]+[p,[d,p]] (4.20
vanishes. Provided that
_ 1 Y
D]_:’)/ n+§ y A+K:§, A_K:D2, (42])

the Lindblad-type equation under RWA takes the form
p=—iw[a'a,p]+[y(n+1)+2D,](2apa’—atap—pa'a)

(4.22

+yn(2a'pa—aa'p—paal).

V. ADDITION OF PURE DEPHASING

In the previous section the two Lindblad operators re-
sponsible for positivity-preserving dissipation are linear in
a' anda. If the Lindblad dissipation operator is chosen as the
system Hamiltoniara'a, dissipation is added to the system
dynamics in forms of pure dephasing. The resulting master
equation with the pure-dephasimgterm, Eq.(2.7), which
has recently been propos&dcan be solved exactly up to
second moments by similar means as in the previous sec-
tions. Compared with Eq3.1), the 8 term in Eq.(2.7) adds

We note that the above master equation has an explicit Lind-

blad form

priolaap]=Lpp=2 (2VmpVi=ViVmo=pViVi),
(4.23

where we have defined the Liouvillian operatdy, and the
dissipation operatorsV,, are such that[Vm,V;] are

c-number constants. The two Lindblad dissipative operator

V,, (m=1, 2) here are proportional ta and a', respec-
tively, andLj and Ly differ only by a constant number.
Complete positivity is therefore guaranteed for E4.22).

Assuming A greater thanx, or equivalently,D,>0, the
downward transition rate$rom number states+ 1 ton) are
increased by an amountD2 in Eq. (4.22. On the other
hand, if we assume that

D=y A+K=%, k—A=D,>0, (4.29

_+1
n 5]

i.e., k is greater tharh while keepingD, positive, the equa-
tion of motion under RWA will be changed to

p=—iw[a'a,p]+ y(n+1)(2apa’—a'ap—pata)

(4.295

Thus the upward transition rat€ékom number states to
n+1) are increased by an amourD2. This shows that the

+[yn+2D,](2a’pa—aa’p—paah).

Lindblad-type equation does not provide approach to thermal
equilibrium because detailed balance is easily violated with

the added, term in both cases.

Detailed balance, however, can be imposed onto Eg.
(2.16 in the forms of parameter constraints to ensure final

2
X(NAF)

(5.9

d
=B N=——A*
'8( 2N INF

to the equation of motion for the characteristic function
x(NN*):

X L ion+ v )X L fian* + y(h+ 2 X
at GATY gy nen Ty N
P 2
= — yn(NFA*)2y— Bl A= —\* . :
YNNENT) ) ,3(?\[”\ A | X (5.2

We proceed to derive the differential equations@y,,.
The first order equations differ little from those in Sec. llI
except for an addeg@ term:

C10=(i@—¥)C10+ ¥Co1— BC1o, (5.3

Cor=(—i®=7)Cor+ yCag~ BCo1. (5.4
This B term, however, breaks the translation invariance as
will be addressed later. The solution to the above equations
is straightforward:

ClO: e (Bt

A; coshityy’— w?)

%sinm\/yz—wz)l, (5.5
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Therefore, one merely needs to diagonalize the 3 by 3 ma-
Coi=e BN A, coshityy’— w?) trix, and the solutions to the differential equations are then
straightforward. We display the three eigenvalues, which are
YA —iwA solutions of a third-order equation
- %sinht\/yz—wz)l, (5.6
VY —o x3+2(3y+4B)X°+ 4(w%+ 29>+ 8By+4B8%)x
whereA; andA, are determined by initial conditions. +8y(w?+2By+4B%) =0, (5.19
The second order equations appear more complicated
than the first order ones: labeled as; (i=1,2,3):
Czo: 2(io—7y)Cyo— v(N—Cyq) — B(4Cyo+ ci(g, (5.7 2 413 , , , 213
. Xl:_§(4ﬁ+3’y)+¥(4ﬁ +3‘y —3w )+T,
C11=2y(n—Cy9) +2¥(Cpot+ Cs0) +28C1C10, (5.9 (5.20
Cor=—2(iw+y)Cop— y(N—C11)— B(4C,+ C3). (5.9
02 (fo+7y)Co—¥( 10— B(4Cp2+Chy). (5.9 (i3+1)2% ) ) )
It proves fruitful to relateC,,, to the following operator av- Xo=" §(4B+37)_ 3c (4B°+3y"—3w%)
erages:
(iy3—1)2%%
(a)=Co1, (5.10 L — (5.21)
(a')=Cyo, (5.12)
2 (iN3+1)2s
(a%)=2Co+ Coy, (5.12 Xg= = 3(4B+3y)+ ————(4B?+39*~30)
(a'?)=2Cyt Cly, (5.13 (i V3—1)22% oo
= s 5.2
(a'a)=Cyy+CyCos. (5.14 6

Therefore one may derive equations of motion for those opwhere
erator averages from the second order equations:

q B c=[168°~128%y—15y°~ 18yw?+3(2B+7)(5y*+ 6w?)
a(aTa>=2y(n—(aTa>)+ y((a'?)+(a?), (5.19 + 2 = (4877 37— 30?)%+ B8R+ 977+ 18w?)2] M3

1d — (5.23
s i@ =r(@a)-n-(ie+r+2p)(a*, (516

The complete solutions for Eq5.18 can be conve-
1d B niently expressed by the three roats(i=1,2,3) in a com-
- —(a"=y(afa)—n+(iw—r-2p)a?. (5.17  pactform. Below we give the detailed forms(af'a), (a?),
2 dt and(a'?) as a function ot:
Since theB term introduces pure dephasiggdoes not enter
Eq. (5.15 which describes the evolution of the average sys-
terp energy. Below we give the solutions {@?), (a'2), and
(a'a).

(@afa)=n+C,> expxit)g(x)[x+4(y+2B)x

2 2 2
The set of equations fara?), (a'?), and(a'a), which Ay T AByT457)]
incorporate two types of dissipation mechanisms quantified '
by the two parameterg and y, can be recast in a matrix +7C22i exp(xt)g(x)[Xi+2(y—iw+4p)]
form:
(a'a)—n +9Ca2 expxit)g(x)[xi+2(y+iw+4p)],
I
(22)
d (5.29
(a')
2y Y Y (8%)=27°C32 expxit)g(x)+2yC12 expxitig(x)
=| 2y —-2iw—2y—4pB 0 : :
2y B 0 Zw=2y=4p X[X;+2(y—iw+4B)]+Co>, expxt)g(x)
(aa)—n '
x| (@ . (5.18 X[ X2+ 4(y+2B—2i0)X+2y*+8By—4diyo],
(a'?) (5.29
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<a*2>=2y2022i exrxxit>g<xi>+2yc12i exp(xt)g(x;)

X[x+2(y+io+4B)]+Cs, expxt)g(x)

X[X2+4(y+2B+2iw)x+ 27>+ 8By+4iyol,
(5.26)

whereC,, C,, andC; are constants determined by initial
conditions, andy(x) is an auxiliary function defined by

g(X)=[x*>+4(3y+4B)x+4(w?+2y*+8By+48%)] L.
(5.2

VI. LEVEL POPULATIONS

Y. Zhao and G. H. Chen

S=[1+n(1—e 2% 1, (6.7)

Carrying out the quadruple integral over the complex
variablesz andw, one arrives afcf. Appendix B

Po(t)=(0]p|0)= 5exp — 5| a|%e

We note that at=0, p, equalse”!?/” following the Poisson
distribution for the number states, and &ato, py=(1
+n) "1 in the thermalized state.

Similarly, one can obtairicf. Appendix B

27t

(6.9

p()=(1|p|1)=[a|?e” 2"+ n(1—e 2")]6?

X exp( — 8| al?e”2M). (6.9

Again att=0,£l=|a|_2e‘|“|2 obeys the Poisson distribution.
At t=o, p;=n/(1+n)?=pye "“/keT reflecting thermaliza-

The solutions we have so far presented for the thredion.

guantum master equations, E¢®.5), (2.16), and(2.7), con-

For highern, straightforward evaluations gf,(t) be-

tain an enormous amount of information of the underlyingcomes cumbersome. However, one may derive a recurrence
quantum dissipative systems, which can be subjects for maniglation forp,(t). Following Eq.(3.40, the diagonal density
further studies. To illustrate this point we only need to lookmatrix elementgn|p|n) are related to the phase space dis-
at the simplest among the three—the solutions in Sec. llltribution functionP(z,z*) by

Even this set of solutions proves to be too complex for many
purposes here. We therefore further limit ourselves to the
case of the underdamped systems which is characterized by

y<w. We assume that the oscillator is initially in a coherentTherefore it follows from Eq(3.44) that

state with a displacement,® i.e

p(t=0)=|a)(al. 6.1

The parameteun in Sec. Ill reduces t@~ "', andv to 0.
The diagonal elements of the density maipixn the coher-

(n|p|n)= jdzz P(z,z* )| i e~ 17%, (6.10
Pa(t)=2yNNp,_1(1)+27(1+n)(N+1) Py (1)
—2y[n(2n+1)+n]p,(t). (6.1

Equation (6.11) allows one to recursively obtain all

ent state representation are related to the quantum charactg@i(t) from py(t), p1(t). For example,p,(t) is obtained

istic function y(\,A*) by*3
1
<z|p|z>=;f d®Ax(N A )exp(— [N2=NZF +7*2). (6.2

Because the density matrix can be expanded directly in
terms of its diagonal coherent state matrix eleménts

-2 [

Therefore the probability of finding bosons can be calcu-
lated from

pn(t)E<I’l|p|n>

|z+w){z—w|

(z— W|z+w> ©.3

e (2] p|2).

1
— d2 d2 NG5 __ *N
—Trzf f z d*w(z|p|z)(z+w)"(z—w)

X exf —|w|?—(z* —w*)(z+w)]. (6.9
Making use of the identity
fm - dx dy e ax 2+yY)+x(b+o)+iy(b—c) = exp{bc ,
Y P a a
(6.5

we obtain from Eq(6.2) after the simple integration ovar
(zlplzy=sexy — 8|z— ae™' 7], (6.6

where

from po(t), p1(t) anddp,(t)/dt as follows. First, a straight-
forward calculation gives

p1(t)= & exp(— 8| a|?e™ 2" 82| a|*e *"(1+n)

+d8lal?e#(n?~1-n(n+3)e ")
+ne 2M—n2e 21— 2], (6.12
Then from Eqgs(6.8), (6.9), and(6.12, it follows that
p1(t) = Npo(t) +(3n+1)py(t)
2(1+n)
=po([ (67 = 1) "PL[X(D)],
whereL [ x(t)] are the Laguerre polynomials, and
x(t)=—8(6"1—1) "1 a|?%e 2" (6.19

For arbitraryn, taking into account the recurrence relations
of the Laguerre polynomials:

po(t)=

(6.13

XLp(x)=nLy(x) —nLy_1(X), (6.15

(n+1)L,1(xX)=(2n+1—Xx)Ly(X)—nL,_1(x). (6.16
It can be easily showicf. Appendix Q that

Pa(t)=po()[ (6~ =1) "L [x(1)] (6.17)

satisfy Eq.(6.11). We would like to point out that the Bolt-
zmann distribution is ensured at long times by the fact that
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lim L,[x(t)]=1, (6.18 100

t—ow
and, therefore, 10

_ pa(t)

lim =g Ne/keT 6.1 il

t—oo pnfl(t) ( 9 —

| .
In particular, whemp,/p,_4 is independent of, a popula- 01}
tion temperature which does not dependnamay be defined
by 0.01}
kB ( Pn ) -t
T,(t)=—|-—In| — (6.20 , ,
ol fiw \ Pp-1 000753 07 05 06 07 08 097

A Boltzmann-type distribution is necessary in order to define

Tp. The Taylor series of the Laguerre polynomials are giverF'G- 9. The relative difference between the p(_)pula_ttion temperdtyiand
the bath temperatur& (T,—T)/T, y=w/2. Initial displacementgr=0.4

by (solid ling), «=0.3 (dashed ling anda= 0.2 (dotted ling. kgT=10A w.
" nix"—s
La(0)=2 (=" S (6.21)
frvry (n=s)!(n—s)!s! ho|al
One can examine the near-equilibrium properties of the vi- > kg (6.28

brational manifold from the asymptotic behavior of the La-

guerre polynomials for smat: Figure 9 illustrates the process of approaching thermal

equilibrium for an underdamped oscillatoy€ w/2) with
L,(x)=1—nx+0(x?). (6.22  initial displacementsa=0.4 (solid line), «=0.3 (dashed
line), andw= 0.2 (dotted ling. The bath temperature is high
compared with the oscillator frequendyg(T= 10k w) so that
n~kgT/%hw=10. Plotted in log scale in Fig. 9 is the relative
|a|2e~ 2" difference between the population temperatlifeand the
H(l_e_zyt)[ﬂg(l_e_zyt)] <1, (6.23 bath temperaturd: (T,—T)/T. The oscillator reaches full
thermal equilibrium with the bath at a time scale of
the population temperature of the vibrational manifold which(2y) "= w~1. However, a Boltzmann-type distribution is
establishes a Boltzmann-type distribution follows formed with a population temperature well defined at a time
_ scale of 0.b~! which is ten times smaller tham~*. The
1 kg|x(t)] T N
—— (6.24) larger the initial displacement, the slower such a distribution
T ho comes in place, and the higher the population temperature
The time scalég to satisfy Eq.(6.23 can be much smaller When compared at the sarhecf. Fig. 9.
than the time scale 142at which the system reaches full The concept of the population temperature here bears
thermal equilibrium with the dissipative bath. This happensclose resemblance to a spectral temperature defined in the
for example, when the bath temperature is sufficiently higteontext of the Kennard—Stepanov relatf3* This spectral

At a certain time scaldg, the absolute value ok(t) is
sufficiently small, i.e.,

x(t)]=

P

such that temperature approaches the ambient tempergthee bath
5 temperaturgeupon thermal equilibration of the emitting elec-
(ﬁ_‘“) |a|2(1— e 278) "2~ 2Me 1 6.25 f[ronic manifold. E)fperimentally such a spectral tempgzrature
kgT is usually well defined from the steady-state absorption and

fluorescence spectra, but its deviations from the ambient
temperature in many cases remain quite a puZzldhe time
hw) 1 1 dependence of the spectral temperature was recently studied
B~(|(B_-|-) Z,< 2y (628 in the framework of the Brownian oscillator modd!.

. ) To conclude, we have studied the evolution of level
For the same temperaturds, is reached earlier for smaller o5 ations for an oscillator initially in a coherent state with
initial displacement$a|. This means that it takes longer for displacement in the underdamped regime. We found that
the thermal field to wipe out the initial Poisson distribution e vibrational manifold establishes a Boltzmann-type distri-
for oscillators with larger initial displacements. In general, ytion characterized by a population temperafUigét) be-
the vibrational manifold is able to achieve a Boltzmann-typesre it reaches full thermal equilibrium if the bath tempera-

If || is of order 1, one has

distribution at a time scale ture is sufficiently high.
ho| 1 6.2
te~]af ksT) 2y (627 1. ZERO TEMPERATURE COHERENT STATES
before it comes into full thermal equilibrium with the bath if In this section we look into the zero-temperature evolu-
the temperature of the bath satisfies tion of a coherent statgr) defined bya| a)=a|a>.35 The
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coherent state, regarded as a quantum mechanical statdere for ohmic dissipation, the magnitude of the complex
which approaches a classical state, is labeled by the compladisplacement parametei(t) decreases as follows:
numbera. The real part otx represents the average position
of the oscillator, and the imaginary part, the average momen- <p>o +(t) (7.12
tum. We confine ourselves to zero temperature here, and
seek to provide connections between the master equatiofsr the underdamped oscillatoy€ ») and an initial real
and the zero-temperature evolution of a coherent state.  displacement(t=0), one finds from Eq(7.5),

At zero temperature, the form of a coherent state is pre-
served in the time evolutioif:*? The time evolution of the
coordinate and momentum expectation values can be evalu-

2y
gilel®=— 7 <Q>oG+(t)+

=2yt

Ia(t)lz=%e (7.13

ated in a functional integral approach frb

(P)o

()= <Q>0G+(t)+—G (1), (7.1

(P)i=m(q)oG+ (1) +(P)eG (1), (7.2

where (q)o and (p), are the expectation values &0,
G, (1) is the inverse Laplace transform of

1
s°+2sy+ w?

G.(s)= (7.3
for frequency-independent frictioc | (t) therefore has the

form

2 2 2 2
e—yt(et\y —w _e—t Y —w )

20—

G ()= (7.4

The complex time-dependent displacement parameter can ()=

then be calculated fror® , (t) as follows:

Mo ) 1 .
a(t)=\ A Dt \ 57 (P (7.5
Since the coherent state is related to the number jstateia
|a)= e”*”E Im (7.6

one can obtain the probabilify,(t) of residing in the num-
ber statgn)

(7.7

a2l @@
pa(t) =g~ =0 T

From p,(t), one may try to derive relaxation rates be-

tween vibrational levels. First we assume that only nearest

levels exchange populations

pn: “Pnkn-1ntPn-1Knn—1FtPn+1Knn+1~ Pnkn+1ns
n#0; (7.8
Po= P1K0 1~ Pok10, (7.9

wherexkp, , denotes the rate from levalto levelm. Next we
require that detailed balance apply

Kn,m: eB(m7 I"I)me n

(7.10

Therefore from EQ(7.11), k=27, which agrees with the
zero temperature form of E¢6.11):

Pn(t)=2y(N+1)pyi1(t)—2ynpy(t). (7.14

For finite temperatures, however, coherent states are no
longer preservetf*? For moderate to strong damping, non-
nearest neighbor transitions in the vibrational manifolds may
also become important.

It is interesting to compare E@7.7) to results from so-
lutions of the Agarwal master equations. For the under-
damped Brownian oscillator, agreements can be found be-
tween EqQ.(6.17) at zero temperature and E((.7) for y
<w. For example, if the initial average momentump),
=0, i.e.,a(t=0) is real, from Eq.(7.5), one obtains fory

<w,
/m .
— e~ yte th'
2h

This agrees with Eq6.17) at T=0. Similarly a conclusion
can be drawn whefig),=0. However, the same is not true
for the overdamped oscillator.

For the overdamped oscillatoy> w, one has

(7.195

2
u= %[e— (w /2y)t+e—27t]’

(7.19
(7.17)

The diagonal elements of the reduced density matiiix the
coherent state representation takes the form

(w2 _
vz%[e (o /2y)t_e 2yt]‘

1 1 oyt 2
(z|p|z):\/iex —F[Im(a)e "+1m(z)]

1
Xexp(——[Re(a)e (@72t Re(z)]}, (7.18

wherer=1+n(1—e "), s=1+n[1—e" “M1]. At zero
temperature, one finds for real initial displacementgd
=0)=Re (@)=a’ ({(p)o=0)

pi()=a'2e” (@M iexd —a'2e” (@IM1]; (7.19
and for purely imaginary initial displacemenig(t=0)
=ilm(a)=ia" ((q)o=0)

pl(t)za172e74yt exq_a172e747t).

(7.20

At zero temperature, this means that all upward rates arelowever, the results from E¢7.7) for y> w and short times

zero. One may start fromyg ;, for zero temperature,

Po(t)
—Po

Ko,1= (71])

generate only one time scaley4egardless of whether the
initial « is real or purely imaginary. This points to the re-
stricted validity of the Agarwal master equation, which was
derived under the Born approximation. The solutions of the
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Agarwal master equations have been used by several authdfsr nonzeroB, the damping of the average oscillator dis-
for the overdamped cas@ Caution needs to be taken when placementa+a') depends ofa+a') itself, and thus the
results from the Agarwal master equation are extended ttranslational invariance is broken.

overdamped regimes. A master equation for thath level populationp,(t)
similar to Eq.(6.11) appeared in the literatuf&*° based on
VIIl. DISCUSSIONS a phenomenological approach including a radiative decay

. . . __term and a driving term to represent picosecond excitations:
Two generalized quantum Markovian master equations,

one with the Lindblad dissipation operators linear in the po--
sition and momentum operators, and the other with an addeldr
pure-dephasing term, have been solved exactly to second

moments, and the solutions are now available for many apwherean is the intrinsic(fluorescence plus nonradiatjvee-

plications to come. To our knowledge those explicit forms ofcay rate 9f thenth number.state,_ arkh(t) is the time depen-
the exact solutions have appeared for the first time dent excitation pulse which drives thgh level. The rates

We study a generalized Markovian master equation con?n! are given by the detailed balance
structed with two sets of Lindblad dissipation operafdr<. Y= k(N+1) 6 ni+ e keTng o, (8.4)
With the aid of quantum characteristic functions, we have h is the rat tant which ch teri th tem—
obtained an explicit form of exact solutions to the Lindblag- V"erex 1S the rate constant Which characterizes the system
type master equatiof2.16). Results in the form of the quan- bath mteracﬂorysz Equatio(8.3 W|thou_t the driving ter_m_
tum characteristic functiory(\,\*) can be used for calcu- Kn(t) t.)Ut _co_nta|n|r_19 a phenomenological decay coefﬂment_
lations of various dynamic quantities of interest. For %n which is linear in the energy has been solved by Seshadri

. A . and Kenkre®® It is found that for initial Boltzmann distribu-
example, the coordinate-space distribution function has .
. i lons at temperatures different from that of the bath the ex-
mean related to the first order coefficiei@g;+C,o, and a

variance determined by the second order coeffici€ys, '(t:ilrf:- dséataenc\;\glrthear:]taelrgtgjre (tB)O\I/:[/ﬁriZﬂr:Q dd;itr:féj?':; !:/r':: a
Cq1, andCy,. As a demonstration level populations are de- P P 5

rived in the underdamped regime from the characteristicIar way as the population temperature in £.20. How-

functionsy(\,A*) in Sec. VI. It is found that the vibrational ever, Ty(t) in their theory does not asymptotically go to the
. o bath temperature.
manifold can reach a Boltzmann-type distribution character- o
There are some recent developments utilizing the Mar-

ized by a populla'tlo.n tem.peratuTreé(t) befgre It comes Into kovian, Lindblad-type master equation that deserve com-
full thermal equilibrium with the surrounding bath if the bath !
ments. Burghardt modeled the effect of an environment on

temperature is sufficiently high. . T . .
Equation(2.16) is designed to preserve positivity at the _uItrafast predissociation in terms of the semigroup formalism

o . . . in the coordinate representatidfErequency components in
sacrifice of other desirable traits of the master equations. F%e Liouvillian spectfa were found tcl) direitly co?respon d o
example, ifk# A, the time derivative of the position opera-

tor expectation value differs from the momentum operatorthose opservgd n pump—probe speptra in the |mpuIS|ve limit.
f particular interest is the numerical comparison between

ﬁ\xgzcr;[ggnv;ﬁ!;ga_aq_?]i?gi‘:’;ﬁh;iﬂ?@?g;' ;g\é?rr]snégsl_ e Lindbl_ad an_d the Redﬁelpl forms of the dissipative master
(4.4) and (4.5) together: equation in which very similar results were _found f_or the
two, and slightly negative values showed up in the diagonal
elements of the density matrix evolving according to the
Redfield form. Yaret al. reformulated the Redfield theory at

f iol he Ehrent h hich the operator level in an effort to bridge the theory with a
If k#A, Eq.(8.D) violates the Ehrenfest theorem which ex- . s5" o Fokker—Planck equatioffsThe new form of the

presses gformal connect|on_ between_ the time erendence REdfield equation is of the Lindblad type if operators pertain-
expectation values of canonically conjugate variables and thﬁ]g to dissipative modes are Hermitiésuch as theg term

Hamiltonian equations of classical mechanics. Applications, ., a'a as the dissipation operalpmlthough positivity is
of Eq. (2.16 are therefore restricted only to systems othernot preserved in general

than extended ones.
If the Lindblad dissipation operator is chosen as the sys-

tem Hamiltoniara'a, dissipation is added to the system dy- ACKNOWLEDGMENT

namics in forms of pure dephasing. Applications to interact- The authors thank Y. J. Yan for enlightening discus-

ing many-body systems have been implemented in thsions.

framework of TDHF? Exact solutions of the first moments

as well as second momen{a?), (a'a), and(a'® shall APPENDIX A: THE BROWNIAN OSCILLATOR MODEL

facilitate studies of dissipation dynamics with pure-

dephasing. EquatiofR.7) again breaks translational invari-

ance for arbitraryB as is evident from adding the two first

order equation$5.3) and(5.4):

(1) +anpn(t)= EI [yniPI (D) = yinPn(D ]+ kn(D), (8.3

d :
a(a+a*)=—|w(a—aT>—4(A—K)<a+aT>. (8.1

In the Brownian oscillator model, the system is taken to
be a two electronic-level system with some primary nuclear
coordinates coupled linearly to the electronic systems:

I:II|g>|:|g<g|"’|e>ﬂe<e|"'ﬂ,’ (A1)

i(ewreﬂ)z—i (a—a'y—p(a+a) (8.2
dt @ ' ' where
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~ pp 1 P _ ¢ _ 2a— 29t 4o—4ytq L
Hg—; [m+2mjw qj} (A2) o =0 exp(—dlal®e” ) {[ale M (14n)
2 1 +]al?e 2"[(1-e )P+ (1-e M)
_J _ _
hweg+z [ +5 mjw (qj+d) } (AS) X(1_36—2yt)n2_(1+2e—27t)n_1]
2 +ne "5 n(1-e Y —17}. (B6)
mnwﬁ CnjqQj [ Iy
n n I Mpop APPENDIX C: DERIVATION OF POPULATIONS

FOR HIGHER NUMBER STATES

In this Appendix we show thap,(t) of Eq. (6.17) sat-
isfies the master equatid@f.11). From Eq.(6.17), a straight-
h forward calculation yields

Herep; (pn), d; (X,), andm; (m,) represent the momen-
tum, the coordinate, and the mass of fltte (nth) nuclear
mode of the primarybath oscillators, respectively; is the
displacement for thggh nuclear modeH’ describes the bat
oscillators and their coupling to the primary oscillators with (?pn(t) — B I

a coupling strengtic,,; . ot e oo -1t

X exp( — 8| a|?e 2 {5l 1+n(1—e *"]

APPENDIX B: DERIVATION OF POPULATIONS 1 Y -2yt
X — Y
FOR THE ZEROTH AND THE FIRST NUMBER La-alx(O]+nLalx(D](1-e )
STATES X[(1+n)8lall(1-e 2" +n-n(1-e 2N},
The derivation ofpg(t) is straightforward. From Eq. (C1
6.4, where Lﬁ,l[x(t)] are the associated Laguerre polynomials
5 defined by’
Po(t) = —Zf f d?z dPw ) ¥
™ La(x)=(—-1) @[Lmrk(x)]- (C2
X exp(—|z|?+w*z— 2*w— 8|z— ae” e 1Y?),
In general, fork>—1,
(B1)
K " (n+k)! "
The integral overw produces twod functions (§(x) and Ln(x)=; (-1 n=mi (kemimi (C3)
8(y), z=x+1iy). Therefore one immediately arrives at Eq. ' o
(6.9). Making use of Eq(6.15), one quickly finds that Eq6.11) is
Now we turn top4(t). From Eq.(6.4), obeyed.
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