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Quantum dissipative master equations: Some exact results
Y. Zhao and G. H. Chena)

Department of Chemistry, The University of Hong Kong, Hong Kong, People’s Republic of China
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With the help of quantum characteristic functions some exact results are found for two quantum
dissipative master equations which contain dissipative Liouvillian operators of the Lindblad-type
corresponding to two forms of dissipation mechanisms. Population relaxation is used to demonstrate
how dynamic information can be retrieved from these solutions. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1374537#
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I. INTRODUCTION

Quantum dissipation is a subject of widespread inte
in many fields of physics and chemistry.1–11 Central to the
problem of quantum dissipation is the question of comp
ibility between quantum mechanics and Markovian motio
which is manifested by the Lindblad exclusion principle
positivity, translational invariance, and approach to cano
cal equilibrium. While dissipation is well described in cla
sical mechanics by the Langevin or the Fokker–Planck eq
tions, a quantum description of dissipation has remaine
challenging task. The difficulty lies in the failure of a Ham
tonian description of those systems, and in the elusivenes
a quantization procedure that ensues.

Among various theoretical techniques applied to qu
tum dissipation, we mention especially the Redfield a
proach, the influence functional method, and the semigr
formalism. Popular in nuclear magnetic resonance and o
cal spectroscopy, the Redfield approach12 treats the system
bath coupling to second order in perturbation theory. It u
the energy eigenstate representation with no promise of c
plete positivity. For all but the simplest cases, no analyti
solutions can be found for the formidable Redfield equatio
The Feynman–Vernon influence functional formulation
quantum dynamics is based on Feynman path integrals.13–15

It offers significant advantages when dealing with larg
dimensional problems.16 While an intrinsically quantum me
chanical quantity unreachable by classical methods, the
fluence functional can only be obtained explicitly for ve
restrictive cases. The semigroup formalism,17,18 which is
positivity preserving by design, has recently attracted m
attention.5–9,11Under the assumption of Markovian dynami
and initial decoupling of system and bath, the semigro
approach adds dissipative dynamics to quantum master e
tions by means of the Lindblad dissipation operators, wh
are in fact operators in the system Hilbert space respons
for couplings with the bath. Semigroup methods can tr
simultaneously several distinct kinds of system–bath inte
tions including dissipation, dephasing, collisions and ene
transfer. In this paper we confine ourselves to quantum m
ter equations with dissipative Liouvillian operators deriv
from the semigroup formalism.

a!Electronic mail: ghc@everest.hku.hk
10620021-9606/2001/114(24)/10623/15/$18.00
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Quantum computing is one of the fields in which qua
tum dissipation finds the most recent applications. An imp
tant issue in quantum computer design is to reduce deco
ence in the system of interest due to interactions with
environment. Semigroup theories are used to construct fo
arbitrary Hamiltonian decoherence-free subspaces wi
which logical qubits are encodednot to decohere.6 The Lind-
blad dissipation operators serves as error generators in q
tum computing theories identified with generators of a L
algebra. Different error generators correspond to differ
decoherence processes. Quantum computing is of cours
the only field where the Lindblad-type master equation
plies. In physical chemistry, for example, semigroup theor
have been utilized to model dynamics of ultrafast predis
ciation in a condensed-phase or cluster environment,9 and
electronic quenching due to coupling of the adsorbate ne
tive ion resonance to the metal electrons in the desorptio
neutral molecules on metal surfaces.10 In nuclear physics, the
semigroup formalism is applied to model giant resonance
the nuclear spectra above the neutron emission threshold7 It
is therefore of great interest to systematically study the d
sipative dynamics within the Lindblad formalism. In this p
per we set out to solve analytically two Markovian mas
equations which contain dissipative Liouvillian operators
the Lindblad type corresponding to two different forms
dissipative mechanisms.

The paper is organized as follows. In Sec. II we intr
duce quantum master equations and the Lindblad formali
In Sec. III we demonstrate the methodology by rederivi
solutions to the traditional Agarwal master equations~2.5!.
In Sec. IV we apply the same approach to the Lindblad-ty
equation~2.16!. In Sec. V the equation of motion with pur
dephasing Eq.~2.7! is solved exactly up to second momen
We demonstrate in Sec. VI the usefulness of the soluti
obtained in previous sections by calculating time-depend
level populations. In Sec. VII we provide some connectio
between the master equations and the zero-temperature
lution of a coherent state. Discussions are presen
in Sec. VIII.

II. QUANTUM MASTER EQUATIONS

In absence of bath memory effects the displacement
classical oscillator in the Brownian motionqc(t) follows the
equation of motion
3 © 2001 American Institute of Physics
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d2qc~ t !

dt2
12g

dqc~ t !

dt
1v0

2qc~ t !5 f ~ t !, ~2.1!

wherev0 is the frequency of the oscillator, 2g is the phe-
nomenological damping coefficient, andf (t) represents a
random perturbation which is ad-correlated Gaussian pro
cess with a zero mean. Equation~2.1! may be replaced by
two first-order differential equations19 which are the Lange-
vin equations for the Brownian motion. Here we are co
cerned with the Brownian motion of a quantum oscillat
for simplicity, we start with a model Hamiltonian describin
only one primary oscillator of frequencyv0 and massm
coupled to a bath of secondary oscillators of frequencyvk

and massmk (kÞ0)

ĤA5\v0a†a1(
k

\vkbk
†bk1q(

k
gkqk

b , ~2.2!

whereq andqk
b are the coordinate observable for the syst

and the bath oscillators, respectively, which are related to
corresponding boson operators by

q5S \

2mv0
D 1/2

~a†1a!, qk
b5S \

2mkvk
D 1/2

~bk
†1bk!. ~2.3!

The HamiltonianĤA represents the excited manifold wit
one primary oscillator in the Brownian oscillator~BO!
model, which is an exactly solvable model serving as a pa
digm in the field of quantum dissipation~cf. Appendix A!.
Our discussion will also be confined to the thermal equilib
tion of the excited manifold while leaving out the groun
state manifold in the BO model. The bath oscillators can
modes of vacuum radiation fields into which an excited at
decays via spontaneous emission. Phonon modes in s
can also be described by those bath oscillators. Adopting
rotating-wave approximation~RWA! widely used in fields
such as quantum optics, our model Hamiltonian reduces

ĤRWA5\v0a†a1\(
k

vkbk
†bk1(

k
gk~bk

†a1bka
†!. ~2.4!

We note that the rotating-wave approximation neglects
rapidly oscillating terms of Eq.~2.2!. For simplicity we shall
set\51 in the master equations in the rest of the paper

If we consider the primary oscillator as the system
interest, then it is an open system which interacts with
bath oscillators. For open systems, the reduced system
sity matrix ~with the environment degrees of freedom trac
out from the full density matrix! is the focus of attention. If
the dissipative environment has a fast response, the time
lution of the system density matrix is not dependent on
history ~no memory effects!, is therefore Markovian. Maste
equations are usually derived for the reduced density ma
with a damping coefficient representing the dissipative eff
of the bath. Agarwal has obtained the Schro¨dinger-
representation master equation for the reduced density op
tor r in the limit of an infinite number of bath oscillator
((k→*dvkf (vk))

20
Downloaded 06 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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]t
52 iv@a†a,r#2gn̄@a1a†,@a1a†,r##

2g~a@a1a†,r#2@a1a†,r#a†22r!, ~2.5!

whereg5p f (v0)ugc(v0)u2 is the damping constant,f (v) is
the density of bath oscillators,gc(v) is the continuum form
of gk , n̄5(e\v/kBT21)21, v is the renormalized frequenc
of v0

21

v5v01PPE
0

`

dv
f ~v!ugc~v!u2

v2v0
, ~2.6!

and PP stands for the Cauchy principal part. Approxim
tions assumed in deriving Eq.~2.5! includes the Born ap-
proximation which treats the bath effects in the lowest or
and the short memory hypothesis for the bath.

In a recent attempt to unify the Redfield and Fokke
Planck formulations of quantum dissipation,22 the equation
of motion~2.5! is generalized to include an additionalb term

]r

]t
52 iv@a†a,r#2b@a†a,@a†a,r##

2gn̄@a1a†,@a1a†,r##2g~a@a1a†,r#

2@a1a†,r#a†22r!. ~2.7!

Theb term on the right hand side adds pure dephasing to
original master equation~2.5!. Pure dephasing is an impor
tant mechanism in a variety of dynamical processes wh
deprives the system of coherence but leaves the energy
served. Applications of pure dephasing to interacting ma
body systems were implemented by means of tim
dependent Hartree–Fock~TDHF!.23

Equation ~2.5! has found applications in a variety o
fields despite of a well known fact that it violates the po
tivity requirements of the reduced density matrix.24–26,3

Semigroup theories pioneered by Lindblad demonstrated
for harmonic oscillators density-matrix positivity, transl
tional invariance and approach to thermal equilibrium can
be satisfied simultaneously. In addition, Lindblad17 showed
that a completely positive map can be generated by

LDr5(
m

@Vm ,rVm
† #1@Vmr,Vm

† # ~2.8!

from which the equation of motion of the density matrix c
be expressed as

]r

dt
1 i @H,r#5LDr. ~2.9!

Here theVms are the Lindblad dissipation operators. T
interaction Hamiltonian between the system and the bath
be written in terms ofVm and the bath operatorsBm ,

Ĥ int5(
m

Vm^ Bm . ~2.10!

The dissipation operators by themselves do not guara
approach of thermal equilibrium. Additional constraints mu
be imposed to ensure detailed balance. For example, ch
ing a single dissipation operator4
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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10625J. Chem. Phys., Vol. 114, No. 24, 22 June 2001 Quantum dissipative master equations
V5mq1 inp, V†5mq2 inp, ~2.11!

wherem, n arec-number constants which are determined
the quantum fluctuation–dissipation theorem, and the op
tors q andp are defined as

q5a1a†, ~2.12!

ip5a2a†, ~2.13!

one obtains

]r

dt
52 i @H22mnpq,r#2m2@q,@q,r##

22imn@q,@p,r#1#2n2@p,@p,r##. ~2.14!

If two sets of Lindblad dissipation operators are chosen:27

Vi5aiq1bip, i 51,2 ~2.15!

one obtains the equation of motion27,28

]r

]t
52 i @va†a1k@q,p#1 ,r#2D1@q,@q,r##

2D2@p,@p,r##2D~@q,@p,r##1@p,@q,r##!

2 iL~@q,@p,r#1#2@p,@q,r#1# !, ~2.16!

where D1 , D2 , and D are thec-number diffusion coeffi-
cients,L is the friction constant, andk introduces an addi-
tional term to the original system Hamiltonianva†a. Vari-
ants of Eq.~2.16! can also be derived from generalized We
and Wigner transformations.28 Due to the Schwartz inequa
ity and the way Eq.~2.16! is constructed from the dissipatio
operatorsV1 andV2 , Eq. ~2.16! is a master equation of th
Lindblad form if the following conditions are satisfied:

D1 ,D2.0, ~2.17!

D1D22D2>L/4. ~2.18!

Equation ~2.16! can be used to describe, for instance,
electromagnetic field mode interacting with an equilibriu
bath of bosons in quantum optics, or dynamics of open s
tems in heavy ion collisions.27

The Lindblad dissipation operators can also take for
other than linear inq and p @as in Eq.~2.15!#. In fact the
addedb term responsible for pure dephasing in Eq.~2.7! can
be derived from the semigroup formalism and by taking
system Hamiltonian (a†a) as the Lindblad dissipation opera
tor. Similar applications of the semigroup formalism can
found in quantum optics~phase-damped oscillators! corre-
sponding to a nondestructive measurement of pho
number.29–31

In quantum optics, atomic physics and chemical phys
master equations often need to be solved by numerical
proaches which may involve continuous evolution of t
density matrix as well as jumps at random instances.32 Here
we adopt an analytical approach and solve both Eqs.~2.16!
and ~2.7! exactly by introducing the quantum characteris
function x(l,l* )33

x~l,l* !5Tr~rela†
e2l* a!, ~2.19!
Downloaded 06 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
a-

l

n

s-

s

e

e

n

s,
p-

where the trace is taken over the system. Instead of dea
directly with the density matrix, we derive an equation
motion for the characteristic functionx(l,l* ) which is then
solved by method of characteristics. Details follow in Se
III.

III. THE TRADITIONAL EQUATIONS AND THEIR
SOLUTIONS

To illustrate our methodology we reproduce in this se
tion existing solutions to Eq.~2.5!. Following the master
equation~2.5! one readily obtains an equation forx(l,l* )

]x

]t
1@2 ivl1g~l1l* !#

]x

]l
1@ ivl* 1g~l1l* !#

]x

]l*

52gn̄~l1l* !2x. ~3.1!

Equation~3.1! was solved by the method of characteristics34

Here we give a brief derivation. Assuming the characteris
function

x~l,l* !5expF(
mn

Cmn~ t !lm~2l* !nG , ~3.2!

whereCmn(t) are the coefficients to be determined, one
rives at the set of differential equations forCmn :

Ċ105~ iv2g!C101gC01, ~3.3!

Ċ015~2 iv2g!C011gC10, ~3.4!

Ċ2052~ iv2g!C202g~n2C11!, ~3.5!

Ċ1152g~n2C11!12g~C021C20!, ~3.6!

Ċ02522~ iv1g!C022g~n2C11!. ~3.7!

The analytical solutions to the above equations of the co
ficients Cmn for arbitrary initial conditions are explicitly
given below for later comparisons. The first order coe
cients control the means of the density matrix Gaussians

C105
A1

g
e2(g1Ag22v2)t~ iv2Ag22v2!

1
A2

g
e2(g2Ag22v2)t~ iv1Ag22v2!, ~3.8!

C015A1e2(g1Ag22v2)t1A2e2(g2Ag22v2)t. ~3.9!

The second order coefficients are responsible for the Ga
ian widths:

C115n̄1
e22gt

g22v2
@2B1v21B1g2 cosh~2tAg22v2!

12i ~B22B3!gv sinh2~ tAg22v2!

1~B21B3!gAg22v2 sinh~2tAg22v2!#, ~3.10!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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C025
e22gt

2~g22v2!
@cosh~2tAg22v2!~2 iB1gv1B2g2

1B3g222v2B3!1Ag22v2 sinh~2tAg22v2!

3~gB122ivB3!1 iB1gv2g2~B22B3!#, ~3.11!

C205
e22gt

2~g22v2!
@cosh~2tAg22v2!~ iB1gv1B2g2

1B3g222v2B2!1Ag22v2 sinh~2tAg22v2!

3~gB112ivB2!2 iB1gv1g2~B22B3!#. ~3.12!

Here As andBs are the constants to be determined by
initial conditions.

If initially the primary oscillator is in a coherent stat
with a displacementa,35 i.e.,

r~ t50!5ua&^au, ~3.13!

then

B152n̄, B25B350. ~3.14!

This is the case of interest explored by a number
authors.36 For example, substituting the initial conditions
the set of solutions~3.8!–~3.12! gives the finite temperatur
solution for x(l,l* ,t) for an initial coherent-state densit
matrix first derived by Savage and Walls36 ~in their nota-
tions!

x~l,l* ,t !5exp@l~ua* 2va!2l* ~u* a2va* !

2n̄~l2uv1l* 2u* v !2n̄ulu2~ uuu21v221!#,

~3.15!

whereu andv are given by

u5
e2m2t1e2m1t

2
2 iv

e2m2t2e2m1t

m22m1
, ~3.16!

v5g
e2m2t2e2m1t

m22m1
~3.17!

with

m65g6Ag22v2. ~3.18!

The initial coherent state gives zero second order mom
(C20, C02, and C11! at t50. At thermal equilibrium,C11

FIG. 1. uuu21v221 for an underdamped case:g/v50.2. The initial state is
a coherent state.
Downloaded 06 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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reachesn̄ while C20 andC02 again vanish. In Figs. 1–3, we
show uuu21v221, and the real and imaginary parts ofuv,
respectively, for an underdamped case:g/v50.2. The sec-
ond order moments can be written as

C1152n̄~ uuu21v221!, C205C02* 52n̄uv. ~3.19!

From Fig. 1, C11 goes monotonically from zero ton̄ for
g/v50.2. The real parts ofC20 andC02 exhibit oscillations
with a decaying amplitude, and the imaginary parts vanish
the end of each period~cf. Figs. 2 and 3!. The average sys
tem energy in unit of\v can be calculated from

E

\v
5^a†a&5n̄~12uuu22v2!1~ua* 2va!~u* a2va* !

5n̄1~ uau22n̄!~ uuu21v2!22vRe~u* a2!.

~3.20!

In Fig. 4 we display the average energy for an initiala
50.5 andkBT5\v. Since the initial energyuau2\v is less
than n̄\v'0.582\v, the oscillator gains energy from th
bath during the relaxation process.

If the initial state is a squeezed state~instead of a coher-
ent state!

uj&5S~j!u0&, ~3.21!

wherej5reiu, and

S~j!5exp~ 1
2 j* a22 1

2 ja†2!, ~3.22!

the characteristic function att50 can be calculated from

FIG. 2. Re(uv) for an underdamped case:g/v50.2. The initial state is a
coherent state.

FIG. 3. Im(uv) for an underdamped case:g/v50.2. The initial state is a
coherent state.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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x~l,l* ,t50!5Tr~ uj&^juela†
e2l* a!

5^0uS†~j!ela†
e2l* aS~j!u0&. ~3.23!

Taking advantage of the fact thatS(j)S†(j)51, a pair of
S(j) andS†(j) can be inserted betweenela†

ande2l* a:

x~l,l* ,t50!5^0uS†~j!ela†
S~j!S†~j!e2l* aS~j!u0&.

~3.24!

The right hand side of~3.24! can be evaluated from

S†~j!ela†
S~j!5exp~la† coshr 2lae2 iu sinhr !, ~3.25!

S†~j!e2l* aS~j!5exp~2l* a coshr 1l* a†eiu sinhr !,
~3.26!

which follow from

S†~j!aS~j!5a coshr 2a†eiu sinhr , ~3.27!

S†~j!a†S~j!5a† coshr 2ae2 iu sinhr . ~3.28!

Therefore one obtains

x~l,l* ,t50!5exp~2ulu2 sinh2 r 2 1
4 l2e2 iu sinh 2r

2 1
4 l* 2eiu sinh 2r ! ~3.29!

by making use of the Baker–Hausdorff formula:

eA1B5eAeBe2
1
2[A,B] ~3.30!

for any two operatorsA andB such that

@A,@A,B##5@B,@A,B##50. ~3.31!

From Eq.~3.2!, the second order coefficients att50 are

FIG. 5. C11 for an underdamped case:g/v50.2, kBT5\v. The initial state
is a squeezed state withj51.

FIG. 4. The average energy in unit of\v for an underdamped case:g/v
50.2, kBT5\v. The initial state is a coherent state witha50.5.
Downloaded 06 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
C11~ t50!5n̄1B15sinh2 r , ~3.32!

C20~ t50!5B252 1
4 e2 iu sinh 2r , ~3.33!

C02~ t50!5B352 1
4 eiu sinh 2r . ~3.34!

In Fig. 5 we display the second momentC11(t) for
kBT5\v, g/v50.2, r 51, u50. For the initial squeezed
state the first moments are zero all the time. Therefore
system energy\v^a†a& can be written as\vC11(t) @cf. Eq.
~5.14!#. Because of the squeezing effect the initial seco
momentC11(0) equals sinh2(r) which is then relaxed ton̄
'0.582, at the thermal equilibrium, as shown in Fig. 5. O
cillations in the average system energy appear in the re
ation process although the system overall loses energy to
bath. The real and imaginary parts of the second momentC02

are plotted in Figs. 6 and 7, respectively. For the init
squeezed stateC02(t) has a value of2sinh(2r)/4 at t50 in
contrast to the case of an initial coherent state~cf. Fig. 2!.
The amplitudes of oscillations inC02(t) are more pro-
nounced compared with a coherent-state start. The real
of C02(t) in fact represents the difference in variance b
tween two canonically conjugate quadrature components@cf.
Eqs.~3.37! and ~3.38!#. Details will be presented later.

While the coherent state is generated by linear termsa
anda† in the exponent, the squeezed state requires quad
terms. Squeezed states have reduced fluctuations in
quadrature component at the expense of enhanced fluc
tions in the canonically conjugate quadrature componen

FIG. 6. Re(C20) for an underdamped case:g/v50.2, kBT5\v. The initial
state is a squeezed state withj51.

FIG. 7. Im(C20) for an underdamped case:g/v50.2, kBT5\v. The initial
state is a squeezed state withj51.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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order to comply with the uncertainty principle. To put it
more precise terms, we introduce Hermitian operators

Y15
1

2
~a1a†!, Y25

1

2i
~a2a†!. ~3.35!

The uncertainty relation for the two operators is

A~DY1!2~DY2!2> 1
4 . ~3.36!

If the initial state is a squeezed state withj5r (u50),

~DY1!25 1
4 1 1

2 ~C111C021C20!, ~3.37!

~DY2!25 1
4 1 1

2 ~C112C022C20!. ~3.38!

In Fig. 8 we showA(DY1)2 ~solid line!, A(DY2)2 ~dashed
line!, and their productA(DY1)2(DY2)2 ~dot-dashed line! as
functions of time. At t50, the error ellipse is elongate
along theY2 direction with A(DY1)2(DY2)251/4. At ap-
proximately vt'0.75, the increasingA(DY1)2 catches up
with the decreasingA(DY2)2 as the ellipse evolves. Suc
crossovers occur a few more times, each corresponding
node of Re(C02) in Fig. 6, before the error ellipse finall

settles into a circle withA(DY1)25A(DY2)25A2n̄11/2 at
the thermal equilibrium.

The quantum characteristic functionx(l,l* ) is the Fou-
rier transform of the phase space distribution funct
P(z,z* ) of the density matrixr,

x~l,l* !5E d2z exp~lz* 2l* z!P~z,z* !. ~3.39!

The phase space distribution functionP(z,z* ) is also called
Glauber–SudarshanP representation of the density matrixr
which plays the role of a quasiprobability:

r5E d2zP~z,z* !uz&^zu. ~3.40!

The corresponding equation of motion forP(z,z* ) in the
Schrödinger representation has the form

FIG. 8. A(DY1)2 ~solid line!, A(DY2)2 ~dashed line!, and their product
A(DY1)2(DY2)2 ~dotted–dashed line! as functions of time for an under
damped case:g/v50.2, kBT5\v. The initial state is a squeezed state wi
j51.
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a

]P~z,z* !

]t
5 ivH ]@zP~z,z* !#

]z
2

]@z* P~z,z* !#

]z* J
1gH ]@~z2z* !P~z,z* !#

]z
1c.c.J

2gn̄S ]

]z
2

]

]z*
D 2

P~z,z* !. ~3.41!

Here c.c. stands for complex conjugate. In applications i
preferable to employ the master equations for the pha
space distribution functions which correspond to density m
trix in the interaction picture:

r̃5E d2zP̃~z,z* !uz&^zu, ~3.42!

where

r̃5eiva†atre2 iva†at. ~3.43!

In the interaction representation and under a RWA wh
neglectsaa and a†a† terms, the equation of motion fo
P̃(z,z* ) takes the form

1

g

] P̃~z,z* !

]t

52n̄
]2P̃~z,z* !

]z]z*
1

]@zP̃~z,z* !#

]z
1

]@z* P̃~z,z* !#

]z*
.

~3.44!

We shall make use of Eq.~3.44! later in Sec. V.

IV. THE LINDBLAD-TYPE EQUATIONS

The generality of the Lindblad-type master equation, E
~2.16!, allows descriptions of various physical processes
proper combination of parametersL, k, D1 , D2 and D is
chosen. For example, Eq.~2.16! can be used to model th
correlated-emission laser that uses atoms prepared in a
herent superposition of the states between which the l
emission takes place.37 The density matrix for the field mode
a (a is the annihilation operator! follows

ṙ5L1~a†ra2raa†!1L2~ara†ra2a†ar!

1L3~ra†22a†ra†!1L4~a†2r2a†ra†!

1 f @a†,r#1H.c., ~4.1!

where thec-number parametersL i can be easily expressed i
terms ofL, k, D1 , D2 andD. Another example is a single
mode of electromagnetic field coupled with a squeez
bath38 for which the density matrix master equation takes
form

ṙ5g~N11!~2ara†2a†ar2ra†a!1gN~2a†ra

2aa†r2raa†!2gM ~2a†ra†2a†a†2ra†a†!

2gM* ~2ara2aar2raa!. ~4.2!

Again the master equation is a special case of Eq.~2.16!.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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In this section we solve Eq.~2.16! borrowing the tech-
nique of the previous section. The equation for the char
teristic function follows from Eq.~2.16!:

]x

]t
52 ivS l*

]

]l*
2l

]

]l D x14Ll* lx

24LS l*
]

]l*
1l

]

]l D x12k~l* 21l2!x

24kS l
]

]l*
1l*

]

]l D x1D2~l* 2l!2x

2D1~l1l* !2x12iD ~l* 22l2!x ~4.3!

from which one then arrives at the set of differential equ
tions for Cmn :

Ċ105~ iv24L!C1014kC01, ~4.4!

Ċ015~2 iv24L!C0114kC10, ~4.5!
r
l
st
s

q
n-
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Ċ2052~ iv24L!C2014kC1112k1D22D122iD , ~4.6!

Ċ11528LC1118k~C021C20!24L12D212D1 , ~4.7!

Ċ02522~ iv14L!C0214kC1112k1D22D112iD .
~4.8!

The solutions to the above equations for arbitrary initial co
ditions are given below. The first order coefficients are

C105e24Lt@A1 cosh~Vt !1V21~ ivA114kA2!sinh~Vt !#,
~4.9!

C015e24Lt@A2 cosh~Vt !1V21~4kA12 ivA2!sinh~Vt !#,
~4.10!

whereA1 andA2 are determined by initial conditions, and

V5A16k22v2. ~4.11!

The second order coefficients are
second
C115
16L@D1~L2k!1~D222L12k!~L1k!#18Dkv1~D11D222L!v2

4L~16L22V2!
14~B21B3!kV21e28Lt sinh~2Vt !

1V22e28Lt@2B1v224ikv~B22B3!1~16k2B114ikvB224ikvB3!cosh~2Vt !#, ~4.12!

C025
@D1~L2k!2D2~L1k!#~4L2 iv!22iD ~4L224k22 iLv!

2L~16L22V2!
2

1

LV
e28Lt@cosh~2Vt !~22ikvB118k2B2

18k2B32v2B3!1V sinh~2Vt !~2kB12 ivB3!12k~ ivB124kB214kB3!#, ~4.13!

C205
@D1~L2k!2D2~L1k!#~4L1 iv!22iD ~4k224L22 iLv!

2L~16L22V2!
2

1

LV
e28Lt@cosh~2Vt !~2ikvB118k2B218k2B3

2v2B2!1V sinh~Vt !~2kB11 ivB2!12k~2 ivB114kB224kB3!#. ~4.14!

HereBs are the constants to be determined by initial conditions. The long time asymptotic value for the sum of three
order coefficients has a simple form:

~C201C111C02!u t5`5
32L~L2k!~D12L2k!28Dv~L2k!1~D11D222L!v2

4L~16L22V2!
. ~4.15!
ll

of
One can readily show thatC20, C02, and C11 in the
previous section can be recovered by setting

L5k5
g

4
, D15gS n̄1

1

2D , D25D50. ~4.16!

By settingD250, however, complete positivity is no longe
preserved, and Eq.~2.5! is known to exhibit pathologica
behavior of the density matrix. It is obvious from the fir
two ~linear! equations forCmn that translational invariance i
retained only ifk5L. This will be discussed in detail in
Sec. VIII.

Our general solutions for the second moments E
~4.12!–~4.14! can accommodate various forms of initial de
sity matrices. If the initial state is a squeezed state,uj&
s.

5S(j)u0& with j5reiu, the first moments are zero for a
times. The operator average^a†2&1^a2& which equals to
C021C20 has a simple time dependence

C021C2052
V

L
e28Lt~B21B3!cosh~2Vt !

2
4k

L
e28LtB1 sinh~2Vt !1const. ~4.17!

The constant term above is in fact the asymptotic value
C021C20 at long times:

~C021C20!u t5`5
D1~L2k!2D2~L1k!12Dv

16L2216k21v2
. ~4.18!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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This term vanishes when the Lindblad-type equation~2.16!
is reduced to Agarwal’s equation giving the final thermaliz
state an error circle (A(DY1)25A(DY2)2). However, it is
not generally true for the Lindblad-type master equat
~2.16!. From Eqs.~3.37! and ~3.38!,

~DY1!22~DY2!25C021C20 ~4.19!

the solution of Eq.~2.16! will start from a squeezed stat
with j5r and u50, and ends up in a state with an err
ellipse with (DY1)22(DY2)2 given by Eq.~4.18!. Further-
more the asymptotic value ofA(DY1)2 at long times can be
calculated from Eqs.~3.37! and ~4.15!.

The semigroup formalism does not guarantee appro
of thermal equilibrium without extra constraints. This can
easily demonstrated as follows. Under a RWA which n
glectsaa anda†a† terms, theD term in Eq.~2.16!

2D~@q,@p,r##1@p,@q,r##! ~4.20!

vanishes. Provided that

D15gS n̄1
1

2D , L1k5
g

2
, L2k5D2 , ~4.21!

the Lindblad-type equation under RWA takes the form

ṙ52 iv@a†a,r#1@g~ n̄11!12D2#~2ara†2a†ar2ra†a!

1gn̄~2a†ra2aa†r2raa†!. ~4.22!

We note that the above master equation has an explicit L
blad form

ṙ1 iv@a†a,r#5LD8 r[(
m

~2VmrVm
† 2Vm

† Vmr2rVm
† Vm!,

~4.23!

where we have defined the Liouvillian operatorLD8 , and the
dissipation operatorsVm are such that @Vm ,Vm

† # are
c-number constants. The two Lindblad dissipative opera
Vm (m51, 2) here are proportional toa and a†, respec-
tively, andLD8 and LD differ only by a constantc number.
Complete positivity is therefore guaranteed for Eq.~4.22!.
Assuming L greater thank, or equivalently,D2.0, the
downward transition rates~from number statesn11 ton! are
increased by an amount 2D2 in Eq. ~4.22!. On the other
hand, if we assume that

D15gS n̄1
1

2D , L1k5
g

2
, k2L5D2.0, ~4.24!

i.e.,k is greater thanL while keepingD2 positive, the equa-
tion of motion under RWA will be changed to

ṙ52 iv@a†a,r#1g~ n̄11!~2ara†2a†ar2ra†a!

1@gn̄12D2#~2a†ra2aa†r2raa†!. ~4.25!

Thus the upward transition rates~from number statesn to
n11) are increased by an amount 2D2 . This shows that the
Lindblad-type equation does not provide approach to ther
equilibrium because detailed balance is easily violated w
the addedD2 term in both cases.

Detailed balance, however, can be imposed onto
~2.16! in the forms of parameter constraints to ensure fi
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approach to equilibrium in the framework of semigrou
theories. Since the final thermalized state has an error ci
setting Eq.~4.18! equal to zero puts a necessary condition
the c-number parameters in Eq.~2.16!. Efforts along this
direction for semigroup master equations have been a m
of much recent interest.2,4,30 For instance, Gao has propose
a master equation constructed from one single Lindblad
sipation operator which is linear in botha and a† with the
proper proportionality coefficients to sustain detail
balance.4 The positivity requirement in Gao’s approach
marginally satisfied withD1D25L2/4. Gao’s construction
of LD via a single Lindblad dissipation operator has recen
found support from a first-principle derivation of mast
equations for collision-driven dissipative evolution.2

V. ADDITION OF PURE DEPHASING

In the previous section the two Lindblad operators
sponsible for positivity-preserving dissipation are linear
a† anda. If the Lindblad dissipation operator is chosen as t
system Hamiltoniana†a, dissipation is added to the syste
dynamics in forms of pure dephasing. The resulting mas
equation with the pure-dephasingb term, Eq.~2.7!, which
has recently been proposed,22 can be solved exactly up to
second moments by similar means as in the previous
tions. Compared with Eq.~3.1!, theb term in Eq.~2.7! adds

2bS l
]

]l
2l*

]

]l*
D 2

x~l,l* ! ~5.1!

to the equation of motion for the characteristic functi
x(l,l* ):

]x

]t
1@2 ivl1g~l1l* !#

]x

]l
1@ ivl* 1g~l1l* !#

]x

]l*

52gn̄~l1l* !2x2bS l
]

]l
2l*

]

]l*
D 2

x. ~5.2!

We proceed to derive the differential equations forCmn .
The first order equations differ little from those in Sec.
except for an addedb term:

Ċ105~ iv2g!C101gC012bC10, ~5.3!

Ċ015~2 iv2g!C011gC102bC01. ~5.4!

This b term, however, breaks the translation invariance
will be addressed later. The solution to the above equati
is straightforward:

C105e2(b1g)tFA1 cosh~ tAg22v2!

1
ivA11gA2

Ag22v2
sinh~ tAg22v2!G , ~5.5!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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C015e2(b1g)tFA2 cosh~ tAg22v2!

1
gA12 ivA2

Ag22v2
sinh~ tAg22v2!G , ~5.6!

whereA1 andA2 are determined by initial conditions.
The second order equations appear more complic

than the first order ones:

Ċ2052~ iv2g!C202g~n2C11!2b~4C201C10
2 !, ~5.7!

Ċ1152g~n2C11!12g~C021C20!12bC01C10, ~5.8!

Ċ02522~ iv1g!C022g~n2C11!2b~4C021C01
2 !. ~5.9!

It proves fruitful to relateCmn to the following operator av-
erages:

^a&5C01, ~5.10!

^a†&5C10, ~5.11!

^a2&52C021C01
2 , ~5.12!

^a†2&52C201C10
2 , ~5.13!

^a†a&5C111C10C01. ~5.14!

Therefore one may derive equations of motion for those
erator averages from the second order equations:

d

dt
^a†a&52g~ n̄2^a†a&!1g~^a†2&1^a2&!, ~5.15!

1

2

d

dt
^a2&5g~^a†a&2n̄!2~ iv1r 12b!^a2&, ~5.16!

1

2

d

dt
^a†2&5g~^a†a&2n̄1~ iv2r 22b!^a†2&. ~5.17!

Since theb term introduces pure dephasing,b does not enter
Eq. ~5.15! which describes the evolution of the average s
tem energy. Below we give the solutions for^a2&, ^a†2&, and
^a†a&.

The set of equations for̂a2&, ^a†2&, and^a†a&, which
incorporate two types of dissipation mechanisms quanti
by the two parametersb and g, can be recast in a matri
form:

d

dt S ^a†a&2n̄

^a2&

^a†2&
D

5S 22g g g

2g 22iv22g24b 0

2g 0 2iv22g24b
D

3S ^a†a&2n̄

^a2&

^a†2&
D . ~5.18!
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Therefore, one merely needs to diagonalize the 3 by 3
trix, and the solutions to the differential equations are th
straightforward. We display the three eigenvalues, which
solutions of a third-order equation

x312~3g14b!x214~v212g218bg14b2!x

18g~v212bg14b2!50, ~5.19!

labeled asxi ( i 51,2,3):

x152
2

3
~4b13g!1

24/3

3c
~4b213g223v2!1

22/3c

3
,

~5.20!

x252
2

3
~4b13g!2

~ iA311!24/3

3c
~4b213g223v2!

1
~ iA321!22/3c

6
, ~5.21!

x352
2

3
~4b13g!1

~ iA311!24/3

3c
~4b213g223v2!

2
~ iA321!22/3c

6
, ~5.22!

where

c5@16b3212b2g215g3218gv213~2b1g!~5g216v2!

12A2~4b213g223v2!31b2~8b219g2118v2!2#1/3.

~5.23!

The complete solutions for Eq.~5.18! can be conve-
niently expressed by the three rootsxi ( i 51,2,3) in a com-
pact form. Below we give the detailed forms of^a†a&, ^a2&,
and ^a†2& as a function oft:

^a†a&5n̄1C1(
i

exp~xi t !g~xi !@xi
214~g12b!xi

14~g21v214bg14b2!#

1gC2(
i

exp~xi t !g~xi !@xi12~g2 iv14b!#

1gC3(
i

exp~xi t !g~xi !@xi12~g1 iv14b!#,

~5.24!

^a2&52g2C3(
i

exp~xi t !g~xi !12gC1(
i

exp~xi t !g~xi !

3@xi12~g2 iv14b!#1C2(
i

exp~xi t !g~xi !

3@xi
214~g12b22iv!xi12g218bg24igv#,

~5.25!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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^a†2&52g2C2(
i

exp~xi t !g~xi !12gC1(
i

exp~xi t !g~xi !

3@xi12~g1 iv14b!#1C3(
i

exp~xi t !g~xi !

3@xi
214~g12b12iv!xi12g218bg14igv#,

~5.26!

whereC1 , C2 , and C3 are constants determined by initi
conditions, andg(x) is an auxiliary function defined by

g~x!5@x214~3g14b!x14~v212g218bg14b2!#21.
~5.27!

VI. LEVEL POPULATIONS

The solutions we have so far presented for the th
quantum master equations, Eqs.~2.5!, ~2.16!, and~2.7!, con-
tain an enormous amount of information of the underlyi
quantum dissipative systems, which can be subjects for m
further studies. To illustrate this point we only need to lo
at the simplest among the three—the solutions in Sec.
Even this set of solutions proves to be too complex for ma
purposes here. We therefore further limit ourselves to
case of the underdamped systems which is characterize
g!v. We assume that the oscillator is initially in a cohere
state with a displacementa,35 i.e.,

r~ t50!5ua&^au. ~6.1!

The parameteru in Sec. III reduces toe2gt1 ivt, andv to 0.
The diagonal elements of the density matrixr in the coher-
ent state representation are related to the quantum chara
istic functionx(l,l* ) by33

^zuruz&5
1

pE d2lx~l,l* !exp~2ulu22lz* 1l* z!. ~6.2!

Because the density matrixr can be expanded directly i
terms of its diagonal coherent state matrix elements39

r5
1

p2E E d2z d2w
uz1w&^z2wu
^z2wuz1w&

e2uwu2^zuruz&. ~6.3!

Therefore the probability of findingn bosons can be calcu
lated from

pn~ t ![^nurun&

5
1

p2E E d2z d2w^zuruz&~z1w!n~z2w!* n

3exp@2uwu22~z* 2w* !~z1w!#. ~6.4!

Making use of the identity

E
2`

` E
2`

`

dx dy e2a(x21y2)1x(b1c)1 iy(b2c)5
p

a
expS bc

a D ,

~6.5!

we obtain from Eq.~6.2! after the simple integration overl

^zuruz&5d exp@2duz2ae2 ivt2gtu2#, ~6.6!

where
Downloaded 06 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
e

ny

I.
y
e
by
t

ter-

d5@11n̄~12e22gt!#21. ~6.7!

Carrying out the quadruple integral over the compl
variablesz andw, one arrives at~cf. Appendix B!

p0~ t ![^0uru0&5d exp~2duau2e22gt!. ~6.8!

We note that att50, p0 equalse2uau2 following the Poisson
distribution for the number states, and att5`, p05(1
1n̄)21 in the thermalized state.

Similarly, one can obtain~cf. Appendix B!

p1~ t ![^1uru1&5@duau2e22gt1n̄~12e22gt!#d2

3exp~2duau2e22gt!. ~6.9!

Again att50, p15uau2e2uau2 obeys the Poisson distribution
At t5`, p15n̄/(11n̄)25p0e2\v/kBT reflecting thermaliza-
tion.

For highern, straightforward evaluations ofpn(t) be-
comes cumbersome. However, one may derive a recurre
relation forpn(t). Following Eq.~3.40!, the diagonal density
matrix elementŝ nurun& are related to the phase space d
tribution functionP(z,z* ) by

^nurun&5E d2z P~z,z* !
uzu2n

n!
e2uzu2. ~6.10!

Therefore it follows from Eq.~3.44! that

ṗn~ t !52gn̄npn21~ t !12g~11n̄!~n11!pn11~ t !

22g@ n̄~2n11!1n#pn~ t !. ~6.11!

Equation ~6.11! allows one to recursively obtain a
pn(t) from p0(t), p1(t). For example,p2(t) is obtained
from p0(t), p1(t) anddp1(t)/dt as follows. First, a straight-
forward calculation gives

ṗ1~ t !5d3 exp~2duau2e22gt!@d2uau4e24gt~11n̄!

1duau2e22gt~ n̄2212n̄~ n̄13!e22gt!

1n̄e22gt2n̄2e22gt~12e22gt!#. ~6.12!

Then from Eqs.~6.8!, ~6.9!, and~6.12!, it follows that

p2~ t !5
ṗ1~ t !2n̄p0~ t !1~3n̄11!p1~ t !

2~11n̄!

5p0~ t !@d~d2121!21#2L2@x~ t !#, ~6.13!

whereLn@x(t)# are the Laguerre polynomials, and

x~ t !52d~d2121!21uau2e22gt. ~6.14!

For arbitraryn, taking into account the recurrence relatio
of the Laguerre polynomials:

xLn8~x!5nLn~x!2nLn21~x!, ~6.15!

~n11!Ln11~x!5~2n112x!Ln~x!2nLn21~x!. ~6.16!

It can be easily shown~cf. Appendix C! that

pn~ t !5p0~ t !@d~d2121!21#nLn@x~ t !# ~6.17!

satisfy Eq.~6.11!. We would like to point out that the Bolt-
zmann distribution is ensured at long times by the fact th
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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lim
t→`

Ln@x~ t !#51, ~6.18!

and, therefore,

lim
t→`

pn~ t !

pn21~ t !
5e2hv/kBT. ~6.19!

In particular, whenpn /pn21 is independent ofn, a popula-
tion temperature which does not depend onn may be defined
by

Tp~ t ![2F kB

\v
lnS pn

pn21
D G21

. ~6.20!

A Boltzmann-type distribution is necessary in order to defi
Tp . The Taylor series of the Laguerre polynomials are giv
by

Ln~x!5(
s50

n

~21!n2s
n!xn2s

~n2s!! ~n2s!!s!
. ~6.21!

One can examine the near-equilibrium properties of the
brational manifold from the asymptotic behavior of the L
guerre polynomials for smallx:

Ln~x!512nx1O~x2!. ~6.22!

At a certain time scaletB , the absolute value ofx(t) is
sufficiently small, i.e.,

ux~ t !u5
uau2e22gt

n̄~12e22gt!@11n̄~12e22gt!#
!1, ~6.23!

the population temperature of the vibrational manifold wh
establishes a Boltzmann-type distribution follows

Tp~ t !5F1

T
2

kBux~ t !u
\v G21

. ~6.24!

The time scaletB to satisfy Eq.~6.23! can be much smalle
than the time scale 1/2g at which the system reaches fu
thermal equilibrium with the dissipative bath. This happe
for example, when the bath temperature is sufficiently h
such that

S \v

kBTD 2

uau2~12e22gtB!22e22gtB;1. ~6.25!

If uau is of order 1, one has

tB;S \v

kBTD 1

2g
!

1

2g
. ~6.26!

For the same temperatures,tB is reached earlier for smalle
initial displacementsuau. This means that it takes longer fo
the thermal field to wipe out the initial Poisson distributio
for oscillators with larger initial displacements. In gener
the vibrational manifold is able to achieve a Boltzmann-ty
distribution at a time scale

tB;uauS \v

kBTD 1

2g
~6.27!

before it comes into full thermal equilibrium with the bath
the temperature of the bath satisfies
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\vuau

kB
. ~6.28!

Figure 9 illustrates the process of approaching therm
equilibrium for an underdamped oscillator (g5v/2) with
initial displacementsa50.4 ~solid line!, a50.3 ~dashed
line!, anda50.2 ~dotted line!. The bath temperature is hig
compared with the oscillator frequency (kBT510\v) so that
n̄'kBT/\v510. Plotted in log scale in Fig. 9 is the relativ
difference between the population temperatureTp and the
bath temperatureT: (Tp2T)/T. The oscillator reaches ful
thermal equilibrium with the bath at a time scale
(2g)215v21. However, a Boltzmann-type distribution i
formed with a population temperature well defined at a ti
scale of 0.1v21 which is ten times smaller thanv21. The
larger the initial displacement, the slower such a distribut
comes in place, and the higher the population tempera
when compared at the samet ~cf. Fig. 9!.

The concept of the population temperature here be
close resemblance to a spectral temperature defined in
context of the Kennard–Stepanov relation.40,41 This spectral
temperature approaches the ambient temperature~the bath
temperature! upon thermal equilibration of the emitting elec
tronic manifold. Experimentally such a spectral temperat
is usually well defined from the steady-state absorption
fluorescence spectra, but its deviations from the amb
temperature in many cases remain quite a puzzle.40 The time
dependence of the spectral temperature was recently stu
in the framework of the Brownian oscillator model.41

To conclude, we have studied the evolution of lev
populations for an oscillator initially in a coherent state w
displacementa in the underdamped regime. We found th
the vibrational manifold establishes a Boltzmann-type dis
bution characterized by a population temperatureTp(t) be-
fore it reaches full thermal equilibrium if the bath temper
ture is sufficiently high.

VII. ZERO TEMPERATURE COHERENT STATES

In this section we look into the zero-temperature evo
tion of a coherent stateua& defined byaua&5aua&.35 The

FIG. 9. The relative difference between the population temperatureTp and
the bath temperatureT: (Tp2T)/T, g5v/2. Initial displacementsa50.4
~solid line!, a50.3 ~dashed line!, anda50.2 ~dotted line!. kBT510\v.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



st
p
n
e
a
tio

re

a

c

e-
re

a

lex

no
n-
ay

er-
be-

e

e
-

as
the

10634 J. Chem. Phys., Vol. 114, No. 24, 22 June 2001 Y. Zhao and G. H. Chen
coherent state, regarded as a quantum mechanical
which approaches a classical state, is labeled by the com
numbera. The real part ofa represents the average positio
of the oscillator, and the imaginary part, the average mom
tum. We confine ourselves to zero temperature here,
seek to provide connections between the master equa
and the zero-temperature evolution of a coherent state.

At zero temperature, the form of a coherent state is p
served in the time evolution.36,42 The time evolution of the
coordinate and momentum expectation values can be ev
ated in a functional integral approach from15

^q& t5^q&0Ġ1~ t !1
^p&0

m
G1~ t !, ~7.1!

^p& t5m^q&0G̈1~ t !1^p&0G1~ t !, ~7.2!

where ^q&0 and ^p&0 are the expectation values att50,
G1(t) is the inverse Laplace transform of

Ḡ1~s!5
1

s212sg1v2
~7.3!

for frequency-independent friction.G1(t) therefore has the
form

G1~ t !5
e2gt~etAg22v2

2e2tAg22v2
!

2Ag22v2
. ~7.4!

The complex time-dependent displacement parameter
then be calculated fromG1(t) as follows:

a~ t !5Amv

2\
^q& t1 iA 1

2\mv
^p& t . ~7.5!

Since the coherent state is related to the number stateun& via

ua&5e2 1/2 uau2(
n50

`
an

An!
un&, ~7.6!

one can obtain the probabilitypn(t) of residing in the num-
ber stateun&

pn~ t !5e2ua(t)u2 ua~ t !u2n

n!
. ~7.7!

From pn(t), one may try to derive relaxation rates b
tween vibrational levels. First we assume that only nea
levels exchange populations

ṗn52pnkn21,n1pn21kn,n211pn11kn,n112pnkn11,n ,

nÞ0; ~7.8!

ṗ05p1k0,12p0k1,0, ~7.9!

wherekm,n denotes the rate from leveln to levelm. Next we
require that detailed balance apply

kn,m5eb(m2n)vkm,n . ~7.10!

At zero temperature, this means that all upward rates
zero. One may start fromk0,1, for zero temperature,

k0,15
ṗ0~ t !

p12p0e2bv
52uau22

d

dt
uau2, ~7.11!
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where for ohmic dissipation, the magnitude of the comp
displacement parametera(t) decreases as follows:

d

dt
uau252

2gm

\v F ^q&0G̈1~ t !1
^p&0

m
Ġ1~ t !G2

. ~7.12!

For the underdamped oscillator (g!v) and an initial real
displacementa(t50), one finds from Eq.~7.5!,

ua~ t !u25
mv

2\
e22gt. ~7.13!

Therefore from Eq.~7.11!, k0,152g, which agrees with the
zero temperature form of Eq.~6.11!:

ṗn~ t !52g~n11!pn11~ t !22gnpn~ t !. ~7.14!

For finite temperatures, however, coherent states are
longer preserved.36,42 For moderate to strong damping, no
nearest neighbor transitions in the vibrational manifolds m
also become important.

It is interesting to compare Eq.~7.7! to results from so-
lutions of the Agarwal master equations. For the und
damped Brownian oscillator, agreements can be found
tween Eq.~6.17! at zero temperature and Eq.~7.7! for g
!v. For example, if the initial average momentum̂p&0

50, i.e., a(t50) is real, from Eq.~7.5!, one obtains forg
!v,

a~ t !5Amv

2\
e2gte2 ivt. ~7.15!

This agrees with Eq.~6.17! at T50. Similarly a conclusion
can be drawn when̂q&050. However, the same is not tru
for the overdamped oscillator.

For the overdamped oscillator,g@v, one has

u5 1
2@e2 ~v2/2g! t1e22gt#, ~7.16!

v5 1
2@e2 ~v2/2g! t2e22gt#. ~7.17!

The diagonal elements of the reduced density matrixr in the
coherent state representation takes the form

^zuruz&5
1

Ars
expH 2

1

r
@ Im ~a!e22gt1Im~z!#2J

3expH 2
1

s
@Re~a!e2 ~v2/2g! t2Re~z!#2J , ~7.18!

wherer 511n̄(12e24gt), s511n̄@12e2 (v2/g) t#. At zero
temperature, one finds for real initial displacementsa(t
50)5Re (a)5a8 (^p&050)

p1~ t !5a82e2 ~v2/g! t exp@2a82e2 ~v2/g! t#; ~7.19!

and for purely imaginary initial displacementsa(t50)
5 i Im(a)5 ia9 (^q&050)

p1~ t !5a92e24gt exp~2a92e24gt!. ~7.20!

However, the results from Eq.~7.7! for g@v and short times
generate only one time scale 4g regardless of whether th
initial a is real or purely imaginary. This points to the re
stricted validity of the Agarwal master equation, which w
derived under the Born approximation. The solutions of
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Agarwal master equations have been used by several au
for the overdamped case.36 Caution needs to be taken whe
results from the Agarwal master equation are extended
overdamped regimes.

VIII. DISCUSSIONS

Two generalized quantum Markovian master equatio
one with the Lindblad dissipation operators linear in the p
sition and momentum operators, and the other with an ad
pure-dephasing term, have been solved exactly to sec
moments, and the solutions are now available for many
plications to come. To our knowledge those explicit forms
the exact solutions have appeared for the first time.

We study a generalized Markovian master equation c
structed with two sets of Lindblad dissipation operators.17,27

With the aid of quantum characteristic functions, we ha
obtained an explicit form of exact solutions to the Lindbla
type master equation~2.16!. Results in the form of the quan
tum characteristic functionx(l,l* ) can be used for calcu
lations of various dynamic quantities of interest. F
example, the coordinate-space distribution function ha
mean related to the first order coefficientsC011C10, and a
variance determined by the second order coefficientsC20,
C11, andC02. As a demonstration level populations are d
rived in the underdamped regime from the characteri
functionsx(l,l* ) in Sec. VI. It is found that the vibrationa
manifold can reach a Boltzmann-type distribution charac
ized by a population temperatureTp(t) before it comes into
full thermal equilibrium with the surrounding bath if the ba
temperature is sufficiently high.

Equation~2.16! is designed to preserve positivity at th
sacrifice of other desirable traits of the master equations.
example, ifkÞL, the time derivative of the position opera
tor expectation value differs from the momentum opera
expectation value, and therefore, translational invarianc
in general violated. This is readily shown by adding E
~4.4! and ~4.5! together:

d

dt
^a1a†&52 iv^a2a†&24~L2k!^a1a†&. ~8.1!

If kÞL, Eq. ~8.1! violates the Ehrenfest theorem which e
presses a formal connection between the time dependen
expectation values of canonically conjugate variables and
Hamiltonian equations of classical mechanics. Applicatio
of Eq. ~2.16! are therefore restricted only to systems oth
than extended ones.

If the Lindblad dissipation operator is chosen as the s
tem Hamiltoniana†a, dissipation is added to the system d
namics in forms of pure dephasing. Applications to intera
ing many-body systems have been implemented in
framework of TDHF.23 Exact solutions of the first moment
as well as second moments^a2&, ^a†a&, and ^a†2& shall
facilitate studies of dissipation dynamics with pur
dephasing. Equation~2.7! again breaks translational invar
ance for arbitraryb as is evident from adding the two firs
order equations~5.3! and ~5.4!:

d

dt
^a1a†&52 iv^a2a†&2b^a1a†&. ~8.2!
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For nonzerob, the damping of the average oscillator di
placement̂ a1a†& depends on̂a1a†& itself, and thus the
translational invariance is broken.

A master equation for thenth level populationpn(t)
similar to Eq.~6.11! appeared in the literature43–45 based on
a phenomenological approach including a radiative de
term and a driving term to represent picosecond excitatio

ṗn~ t !1anpn~ t !5(
l

@gnlpl~ t !2g lnpn~ t !#1kn~ t !, ~8.3!

wherean is the intrinsic~fluorescence plus nonradiative! de-
cay rate of thenth number state, andkn(t) is the time depen-
dent excitation pulse which drives thenth level. The rates
gnl are given by the detailed balance

gnl5k~n11!d l ,n111ke2\v/kBTnd l 11,n , ~8.4!

wherek is the rate constant which characterizes the syste
bath interactions. Equation~8.3! without the driving term
kn(t) but containing a phenomenological decay coefficie
an which is linear in the energy has been solved by Sesh
and Kenkre.46 It is found that for initial Boltzmann distribu-
tions at temperatures different from that of the bath the
cited state will maintain the Boltzmann distribution with
time-dependent temperatureTp(t) which is defined in a simi-
lar way as the population temperature in Eq.~6.20!. How-
ever,Tp(t) in their theory does not asymptotically go to th
bath temperature.

There are some recent developments utilizing the M
kovian, Lindblad-type master equation that deserve co
ments. Burghardt modeled the effect of an environment
ultrafast predissociation in terms of the semigroup formali
in the coordinate representation.9 Frequency components i
the Liouvillian spectra were found to directly correspond
those observed in pump–probe spectra in the impulsive lim
Of particular interest is the numerical comparison betwe
the Lindblad and the Redfield forms of the dissipative mas
equation in which very similar results were found for th
two, and slightly negative values showed up in the diago
elements of the density matrix evolving according to t
Redfield form. Yanet al. reformulated the Redfield theory a
the operator level in an effort to bridge the theory with
class of Fokker–Planck equations.22 The new form of the
Redfield equation is of the Lindblad type if operators perta
ing to dissipative modes are Hermitian~such as theb term
with a†a as the dissipation operator!, although positivity is
not preserved in general.
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APPENDIX A: THE BROWNIAN OSCILLATOR MODEL

In the Brownian oscillator model, the system is taken
be a two electronic-level system with some primary nucl
coordinates coupled linearly to the electronic systems:

Ĥ5ug&Ĥg^gu1ue&Ĥe^eu1Ĥ8, ~A1!

where
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Ĥg5(
j

F pj
2

2mj
1

1

2
mjv j

2qj
2G , ~A2!

Ĥe5hveg
0 1(

j
F pj

2

2mj
1

1

2
mjv j

2~qj1dj !
2G , ~A3!

Ĥ85(
n

F pn
2

2mn
1

mnvn
2

2 S xn2(
j

cn jqj

mnvn
2D 2G . ~A4!

Here pj (pn), qj (xn), andmj (mn) represent the momen
tum, the coordinate, and the mass of thejth ~nth! nuclear
mode of the primary~bath! oscillators, respectively.dj is the
displacement for thejth nuclear mode.H8 describes the bath
oscillators and their coupling to the primary oscillators w
a coupling strengthcn j .

APPENDIX B: DERIVATION OF POPULATIONS
FOR THE ZEROTH AND THE FIRST NUMBER
STATES

The derivation ofp0(t) is straightforward. From Eq
~6.4!,

p0~ t !5
d

p2E E d2z d2w

3exp~2uzu21w* z2z* w2duz2ae2gte2 ivtu2!.

~B1!

The integral overw produces twod functions (d(x) and
d(y), z5x1 iy). Therefore one immediately arrives at E
~6.8!.

Now we turn top1(t). From Eq.~6.4!,

p1~ t !5
d

p2E E d2z d2w exp~2uzu21w* z2z* w

2duz2ae2gte2 ivtu2!~ uzu22uwu21z* w2zw* !.

~B2!

The first term withuzu2 vanishes. The rest of the three term
contain derivatives with respect tox andy. Making use of the
identities

E
2`

`

ei2xvdv5pd~x!, ~B3!

E
2`

`

vei2xvdv5
p

2
d8~x!, ~B4!

E
2`

`

v2ei2xvdv5
p

4
d9~x!, ~B5!

one obtains Eq.~6.9!. Taking derivative of Eq.~6.9! with
respect tot, one finds
Downloaded 06 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
]p1~ t !

]t
5d5 exp~2duau2e22gt!$uau4e24gt~11n̄!

1uau2e22gt@~12e22gt!2n̄31~12e22gt!

3~123e22gt!n̄22~112e22gt!n̄21#

1n̄e22gtd22@ n̄~12e22gt!21#%. ~B6!

APPENDIX C: DERIVATION OF POPULATIONS
FOR HIGHER NUMBER STATES

In this Appendix we show thatpn(t) of Eq. ~6.17! sat-
isfies the master equation~6.11!. From Eq.~6.17!, a straight-
forward calculation yields

]pn~ t !

]t
5n̄e22gtd4@d~d2121!21#n22

3exp~2duau2e22gt!$duau2@11n̄~12e24gt!#

3Ln21
1 @x~ t !#1n̄Ln@x~ t !#~12e22gt!

3@~11n̄!duau2~12e22gt!1n2n̄~12e22gt!#%,

~C1!

whereLn21
k @x(t)# are the associated Laguerre polynomia

defined by47

Ln
k~x!5~21!k

dk

dxk
@Ln1k~x!#. ~C2!

In general, fork.21,

Ln
k~x!5(

0

n

~21!m
~n1k!!

~n2m!! ~k1m!!m!
xm. ~C3!

Making use of Eq.~6.15!, one quickly finds that Eq.~6.11! is
obeyed.
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