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Effective Hamiltonians of polymethineimine, polyazine and polyazoethene:
A density matrix variation approach
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Department of Chemistry, Hong Kong University of Science & Technology, Kowloon, Hong Kong
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A new variation method is proposed to determine the effective Hamiltonians for conjugated
mr-electron systems. This method is based on the minimization of the difference between the ground
state reduced single electron density matrix calculated from the effective Hamiltonian aid its
initio counterpart under a set of well-defined constraints. Applications are made to various
oligomers of polymethineimin€”Ml), polyazine(PAZ) and polyazoethen@PAE) at the Hartree—

Fock level. Calculated are also the optical gaps of these oligomers. The effective Hamiltonians
contain electron—electron Coulomb interactions and are suitable for the study of excited state
dynamic processes such as nonlinear optical propertiesr-gonjugated systems. @998
American Institute of Physic§S0021-9608)30630-3

I. INTRODUCTION lence electrons of each individual fragment was constructed
first, and that of the entire molecular system was then ob-
There is a growing interest in evaluating the electronictained by patching the contributions from all fragments.
dynamics of large and complex moleculéd initio calcula- Chen and Mukaméf have shown that under certain cir-
tions have been successful in determining ground and exumstances there is a one-to-one correspondence between
cited state properties of small and medium size moleculathe one-electron part of the effective electronic Hamiltonian
systems. However, calculating the properties, especialland its ground state reduced density matrix. As a Hamil-
those that involve the excited state dynamics of large systonian contains all dynamic information, the above theorem
tems, requires a very large amount of computational rein fact also claims an effective correlation between the dy-
sources. The burden of computation may be greatly reducesamic properties of excited states and the structural informa-
if only a fraction of electrons of a system is considered extjon of the ground electronic state. This is in the same spirit
plicitly. The effects of other electrons may be included in anof the density functional theorefhwhich states that the
effective Hamiltonian. Pseudopotentials and effective corgyround state electron density determines all properties of an
potentials have been developed to simulate the effects dfjectronic system. However, the new theorem that is based
core electrons=* Pariser and Patand Popl& (PP devised  on a semi-empirical effective Hamiltonian description needs
an empirical procedure to determine the effective Hamiltothe ground state reduced density matrix as its input, whereas
nians for 7 electrons in planar conjugated molecules. Thehe density functional theorem requires a three-dimensional
parameters of the PPP Hamiltonians can be determined Ryistribution of all electrons. Based on the new theoféian
theoretical fits to experimental data. Several parameterizatiogpproach at the Hartree—Fock level has been developed to
schemes have been propodédSemi-empirical methods construct the effective Hamiltonian from the ground state
such as CNDO, INDO, MNDO and AM1 employ empirical requced single-electron density mattf.Application to
Hamiltonians in a minimal basis set of atomic orbital$ polyacetylene oligomer6 CH=CH-), has been mad&and

Like the PPP Hamiltonians, these Hamiltonians are parampe resulting effective Hamiltonians are consistent with those
eterized to fit different sets of experiments. from the semi-empirical methodg:2°

Based on a formalism proposed by BranddvMartin In this work, we generalize the approach in Ref. 19 by

and Freeﬂ“.have recently developed a rigorous projectionyranosing a new variation method to determine the effective
method to investigate the foundation of PPP Hamiltonianyy,miitonian for electrons in conjugated polymer systems.
Demonstrations have been made in determining the effectivepis new method that will be developed in Sec. Il is based
Hamiltonians of several small conjugated molecdfesn 4 4 constrained density matrix variati@DMV) approach.

their method it requires the evaluation of some complex 0pThe novelty of the method is to introduce a set of constraints
erators which are computationally intensieBeratan and incorporate the structural information of polymers. As a

co-yvorker§5’16 have adopted a divide—conquer strategy inreqyit, the new methoCDMV) allows a more efficient ap-
which a large molecular system is treated as a collection ofyrgach to determine effective Hamiltonians and is applicable
overlapping fragments. The effective Hamiltonian for the va-1q more diversified conjugated polymer systems compared to
the previous approachi.Applications of the new method at
dCorresponding authors. Electronic mail: ghc@yangtze.khu.hk the Hartree—Fock level are made in Sec. lll to obtain the
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which describes the dynamics of each individaatlectrons

in the absence of other electronsH,, is the two-electron
contribution which represents the effective Coulomb interac-
tions among electrons. A zero differential overl&gpDO)
approximatiof! is adopted here. The nuclear charge for ev-
ery site is+ 1. Since the systems are spin symmetric, we may
omit the spin indexo or ¢’. We have thus converted the
quest of an effective Hamiltonian to the problem of finding
an optimal set of parametef$,,,,Vmat in Eq. (1). In the

N 3 5 _N N -
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following, we shall present a constrained density matrix
variation (CDMV) approach to determine the effective
Hamiltonian.

Let us denote as the ground state density matrix from
the effective Hamiltoniatd [Eq. (1)], andp as that from an
ab initio calculation. The accuracy gf together with the
effective Hamiltonian may be characterized by the following
CDMV functional:

H S:% Wmn(Pmn_;mn)Z"']:;o- (2

Here,W,,, is a positive weightingor penalty coefficient for
the deviation of the semi-empirical density matrix element

FIG. 1. Structures of PMI, PAZ and PAE. The numbers on PMI denote the®mn from its ab initio counterpartpmn. F, WhIC.h will be
 atomic orbitals. presented latefcf. Eq. (6)], consists of all additional con-

straints implied to the form of the effective Hamiltonian.
We adopt the Hokel's ansatz for the one-electron con-
m-electron effective Hamiltonians for the oligomers of tripytion H. [Eq. (1b)]. That is to set all non-neighboring
PAZ (-CH=N-N=CH-),, PMI (-CH=N-); and PAE resonance integrals to zero:
(-CH=CH-N=N-),. These polymer&-ig. 1) are structurally
similar to polyacetylene(PA). The effective electron— tmn=0;
electron Coulomb interactions in these conjugateelectron o ) )
systems are determined via a semi-empirical manner. TheiMPlifying the notation, we shall hereafter denote the neigh-
optical gaps of these polymer systems are evaluated to eOriNg resonance integral as
amine the validity of the new variation method and the reli- ., _, )
ability of the resulting effective Hamiltonians. In Sec. IV, we memmeLs
further compare our results to other calculations and conwe shall further introduce?, as the effective atomic orbital
clude the present paper with a brief summary. energy at the local orbitain in the presence of electron—
nuclear Coulomb interaction. It is given ¥y

if [m—n|>1. )

II. A DENSITY MATRIX VARIATION APPROACH TO

THE EFFECTIVE HAMILTONIAN
t;Etmm—i_; (an_vln)- (5)

A. The general methodology

The 7 electrons in conjugated systems such as PMIAs only the relative energies are of physical interest, we can
PAZ and PAE oligomergcf. Fig. 1) may be described by the choose the energy zero &g=0, which also results in}

following PPP-like effective Hamiltonian: =0.
H=H.+H (14 . We are now in a position to discuss the constraint fl_mc-
e ee tional Fin Eq. (2). We propose that the form of the effective
. Hamiltonian which characterizes the polymer configurations
He= %‘40 tmn@me@n (1D of interest should be retained as much as possible during the
functional minimizgtion process. We can thus presgrin
H,.— 2 anar;(ram(ra;o'an(r' . (10 the following form:

mnoo’

Here,a,  (an,) is an electron creatiotannihilation opera-
tor at a local orbitalm (n) with spin o. t,,, denotes the
one-electron on-sitenf=n) or resonancerfi#n) integral.  Here,sis the length of the repeating unit in the polymer. For
Vo is the effective two-electron Coulomb interaction be-examples,s=4 for PAZ (-CH=N-N=CH-), and PAE
tween two electrons residing separatelyraandn. There-  (-CH=CH-N=N-),, ands=2 for PMI (-CH=N-),. W,; and
fore, H, represents the one-electron part of the HamiltoniarWV, are two positive penalty constants. The first and second

F=W, % (T —t% )2+ W, % (th—tr .92 (6)
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terms in Eq.(6) penalize the mismatches of the effective minimization,T is varied from high to low values, and even-

orbital energies and resonance integrals, respectively, in thieally approaches zero. In all calculations to be described in

repeating units of the polymer. the next section, we s&V/,,,=1.0 andW;=W,=0.1. Six

In principle,S=0 in Eq.(2) can only be achieved when different values of the temperaturd are used: T

the effective Hamiltonian produces the exact ground density=1.0,101,1072,10 3,10 * and 10 °. At each temperature

matrix p and at the same time the constraints are also satighe above process is repeated a num@ér of times. N

fied. For a semi-empirical Hamiltonian as Hg), this ideal ~=200,300,1500,500,100 and 100 for these six temperatures,

case is practically impossible. We shall thus optimize theespectively.

effective HamiltoniarH [Eq. (1)] or more precisely the set of It is obviously that the efficiency of above mentioned

parameter$t,,,Vmnt that characterized, so that the result- CDMV approach depends greatly on the number of the

ing reduced ground state density magipptimally overlaps ~Hamiltonian parameters involving in the minimization pro-

with the ab initio reduced density matrix. In this case, the Ccedure. We have used the ékel's ansatd Eq. (3)] which

CDMV functional S[Eq. (2)] is minimal greatly reduces the .number .of one-electron parameters
{tmn}- In the following section, we shall focus on
PAZ (-CH=N-N=CH-),, PMI (-CH=N-), and PAE

B. Monte Carlo implementation in the Hartree—Fock (-CH=CH-N=N-), systems, in which the Coulomb interac-

scheme tionsV,, will be determined in a semi-empirical manrjef.

gq. (10)]. As a result, the parametelg,,,} will no longer be

of implementing the above CDMV approach. Tak initio con_S|dered as the m.|n|m|zat|on variables. The final survival
variables are the diagonal one-electron integrals and the

ground state density matrﬁat the Hartree—Fock level is nearest-neighborina resonande Edq. (41 ft. . t' . m
evaluated first and saved for the later reference in construct: , M}g Here%/l is the ri[umbecr].éf)ghénmgr,bﬂél%s' in
ing the CDMV functionalS [Eq. (2)]. The Hartree—Fock con’s.ic.i(.ar’atic;n
equation for an effective Hamiltoniad is '

We shall now present in detail a Hartree—Fock schem

lll. APPLICATIONS TO PMI, PAZ AND PAE
2 Ny = €iConi - () OLIGOMERS

Here, ¢, is the coefficient of local atomic orbitah in the A Semi-empirical approach to electron—electron
i-th molecular orbital with energy, . The Fock matrix ele- 'nteraction

menth,,, in Eq. (7) may be expressed &s Let us start with a semi-empirical method to determine
the effective Coulomb interactiod,,, in PMI (-CH=N-),,
hmn:tmn_vmnpmn+25mn2 VP - (8) PAZ (-CH=N-N=CH-), and PAE(-CH=CH—-N=N-), sys-
[

tems. The effective Coulomb interaction is usually unknown.

For a system oM = electrons, the ground state reducedHowever, its functional form may be derived from many-
single electron density matrix may then be evaluated as  body theory or determined empirically. In this work, we
M/2 adopt the Ohno formula to describe the effective Coulomb

interaction®®
Pmn:Z C:;icmi- 9)
. . UAB
Equations(7)—(9) summarize the Hartree—Fock approach to ~ Vmn= 7———- (10
: : V1+(rmn/ag)
calculate the ground state electron density matrifor a mn
given effective Hamiltonian. Here,r,, is the distance between theorbitalsm andn. A

In order to find the optimal effective Hamiltoniahthat  and B denote the atoms that in this work may be carbon C or
minimizes the CDMV functionaB [Eg. (2)], we employ an  nitrogen N where the orbitals1 and n reside, respectively.
annealing Monte Carlo procedure as described follows. Beb g determines the overall amplitude of interaction between
ginning with an initial guesd(® for the effective Hamil-  two electrons located at atoms A and B separately. Its value
tonianH, we solve for its Hartree—Fock ground state densitymay be considered as the effective on-site repulsion if the
matrix p(®) via Egs.(7)—(9), and then evaluate the CDMV two electrons are on the same atpeh Eq.(10)]. It has been
functional S using Eq.(2) for the chosen values &/, demonstrated that the Ohno formula describes well the effec-
W; and W,. We shall now(i) vary randomly the current tive interaction among = electrons in conjugated
parameters iH(%) to generate a trighV); (ii) evaluatep™  polymers’'°In Ref. 19, the Ohno formula was applied to the
via Egs.(7)—(8) andSM) [Eq. (2)] for the trialH®); (iii) and electrons in polyacetylene, and the valuelhfc was de-
decide whether to retaill(®) or to acceptH*) for the next termined by fitting to the experimental optical gap of
step of iteration according to their survival probabilities, (-CH=CH-); oligomer. It has also been illustrated that the
which are assumed to be proportional to their correspondingffective Hamiltonian is not sensitive to the value &f as
values of exp—S%T] and exp—S/T], respectively. Here, long as it is of the same magnitude as the bond leftjie
T>0 is the simulation temperature. The above procedure ofetag=1.0 A for all three types of polymers in study,,, in
(i)—(iii) shall be repeated many times to gener@atisti- Eq. (10) will be determined via theb initio calculation for
cally) better and better approximations, and eventually leadeach individual oligomer. The Coulomb repulsion amplitude
to the true effective HamiltoniaH. During the process @ Uy or Uyc will be approximated as
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Uen=Upne~ m (12) TABLE I. Structure parameters of PMI, PAZ and PAE.

PMI PAZ PAE

In Ref. 19, the repulsion amplitudé.c for two 7 electrons R 1264 1288 —
in carbon atoms was determined to be 6.62 eV. We shall " 1 300 - 1.464
evaluateUy using the CDMV approach developed in the Rr._. - - 1.322

last section. Rec - 1.473 -
Rn=n - - 1.281

Rn-n - 1.473 -
@ 120.2 113.7 119.5

B. Determination of U
NN 3Bond lengthRc_y, Rens Re—c» Re.c Ry—n andRy.y are in units of A;

Let us consider a theoretical oligoméN=N-);. The bond anglea between adjacent double and single bonds in degrees.
first step of the CDMV approach is to constructéts initio

ground density matriﬁ We use Gaussian 94 with the mini-
mal basis set STO-3G in our calculation. From the resultingc. Effective Hamiltonians for various oligomers
Hartree—Fock ground state wave function, we derive the cor-

responding reduced density matgixof the oligomer in the -
. . . =6.62 eV andUcy=+UccUnn=5.59 eV, we are now
4 CN CCYNN )
Natural Atomic OrbitalSNAOSs) basis sef* The NAOs are ready to evaluate the effective Hamiltonians of PMI, PAZ

the orthonormal "?‘“’2"'0 Orb't‘?"s of maX|maI occupancy for 8and PAE oligomers via the procedure described in Sec. Il B.
given wave functiorf> They diagonalize the atomic reduced

. . . . Y\/e first determine the structures of PMI, PAZ and PAE
single-electron density matrix, and thus provide a compac

. ; : . ligomers via theab initio Hartree—Fock geometry optimi-
representation of electronic properties. During the process of_;. . . )
e L . X Zation calculation. The 6-31G basis set is employed. For PMI
obtaining theab initio ground density matrix, the geometry

of (-N=N-), is optimized and thus the value of,, in Eq. oligomers, we choose J&=N—~(HC=N)s—N=CH, for op-

(10) is obtained for each pair af orbitals. The ground state timization. The lengths for all the doubl€=N) bonds are

. . set equal, and those for all the singlé—N) bonds are as
is found to be dransstructure. The resulting bond lengths of
the double and single bonds are 1.27 A and 1.49 A, respe well. The bond angles for all CNGNCN) or HCN are kept

tively. The angles between two adjacent bonds is 105.3°. %he same. The resulting structure is similar to that used by

We are now in the position to apply the COMV ap- Champagne and co-worke¥sSimilarly, we obtain the opti-

proach described in Sec. 11 B to determine the effectivemIZEd structures of

Hamiltonian of the theoretical moleculeN=N-); which H,C=N-N=CH-HC=N-N=CH),~CH=N-N=CH, and

. . H,C=CH-N=N-(HC=CH-N=N),—CH=CH—-N=NH,.
contains 14 electrons, each from a nitrogen atom. The .
The resulting structure parameters for the above three poly-

effective Hamiltonian in this case refers to the two-electron : : .
: mer molecules are listed in Table I. These parameters will be
parameterU,y together with the complete set of one- : )
R ) . employed, respectively, for all PMI, PAZ and PAE oligo-
electron parametefm,t,,—1:M=2,...,14 in the Hwck- 4 : I
) m . mers in later calculations. Theab initio Hartree—Fock
el's ansat4Eq. (3)]. By employing the Ohno formulgEq. i — )
(10], we can determine the effective Hamiltonians Ofground state density matrixfor each oligomer of thérans-
PMI, PAZ and PAE with 2 to 20 double bonds is calculated

(-N=N-); up to an overall undetermined scaling factor. In _ ; ) :
order to determine the value of this scaling factor, one physiPY Using the same procedure described in the last subsection
for (-N=N-);. Note that we use the STO-3G basis set for

cal quantity such as the optical gag, (i.e., absorption peak . o . . :
d y ' 98R ( P pea evaluating theab initio density matrices, instead of the 6-

is required® As (-N=N-); is not available experimentally, X y e
we estimatedt  via the following relation: 31G that_wag used in the geometry optimization. The effec-
tive Hamiltonians for all these oligomers are then determined
accordingly via the CDMV approach described in Sec. Il B.
Z@Ac- (12) Listed in Table Il are the three sets of initial valuestgf
oEc used for all PMI, PAZ and PAE oligomers. For the same
type oligomers, e.g-CH=N-),, only one set of initial;; is
Here, SEy=11.16 eV is the energy difference between theemployed for all with different repeating units.
LUMO and HOMO of(-N=N-); molecule evaluated via the
ab initio calculation, whileSE-=10.26 eV is that fo(-CH
=CH-) obtained previousI)]/? The experimental value of the tag| g 1. initial guess oft;; for PMI, PAZ and PAE oligomergin eV).?
optical gap Ac is 3.18 eV?® We have thereforeAy

Having obtained the values dfyy=4.72 eV, Ucc

Ay

=3.46 eV, and can thus determine unambiguously the ef- t*(N) t(C=N) t(C-N) t(C=C) t(C-O t(N=N) t(N-N)
fective Hamiltonian of-N=N-); such that it reproduces the ™ 15 31 21 B ~ — ~
optical gas ofAy=3.46 eV. The average values of the re- paoz -16 -3.3 _ _ 19 _ 19
sulting resonance integrals through the double and singleAe -1.3 - -22 31 - -35 -

bonds arety=—2.42 eV andt;=—1.30 eV, respectively. , _ _ ,
&*(N) is the effective atomic energy of the local orbital on NC=N),

The cor_resporjdlng value dﬂNN |3242'77_2 ev. The C(_)Upled t(C-N), t(C=C), t(C-0O), t(N=N), andt(N—-N) are the resonance integrals
electronic oscillatof CEO) method*?” is employed in the  fo; c=N, C-N, C=C, C~C, N=N and N-N, respectively, and the efec-

evaluation of the optical gap. tive atomic energy* (C) was set to zero.
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TABLE llI. Effective Hamiltonians of PMI oligomerg-CH=N-), .2 TABLE V. Effective Hamiltonian of the PAE oligomer
(-CH=CH-N=N-), .2

X ty/eVv tdeVv t*(C) —t*(N)/leV AleV
x  tg(C=C)eV t4(N=N)eV tJeV t*(C)—t*(N)leV AleV

2 -3.13 —-2.20 1.03 5.57
4 -3.11 —-2.19 1.13 4.23 1 -3.18 —-3.47 —-2.14 1.38 5.95
8 -3.11 —-2.19 1.17 3.49 2 —-3.05 —3.69 —-2.13 1.38 4.61
12 -3.11 —-2.19 1.19 3.27 4 -3.01 —3.69 —-2.11 1.39 3.85
16 -3.11 —-2.19 1.19 3.19 6 -3.00 —3.65 -2.11 1.38 3.74
20 -3.11 —-2.19 1.20 3.15 8 —-2.99 —-3.64 -2.11 1.38 3.69
10 —3.00 —3.63 —-2.11 1.39 3.67

%4 andtg are the average resonance integrals fertNCand N-C, respec-

tively. t*(C) andt* (N) are the average effective atomic orbital energies for %4(C=C),ty(N=N) and t; are the average resonance integrals ferCC

7 orbitals of C and N atoms, respectively.is the optical gap. N=N and C—N(or N-C), respectively;t* (C) andt*(N) are the average
effective atomic orbital energies for the orbitals of C and N atoms,
respectively A is the optical gap.

In Tables Ill, IV and V, we list the resulting parameters
in the effectivc_a Hamiltonians of PMI, PAZ anq PAE oligo- IV. DISCUSSION AND CONCLUSION
mers, respectively. These data are reported in terms of the
average resonance integrdlg and t; for the double and The optical gaps of PMI, PAZ and PAE were previously
single bonds, respectively, and the average effective atomigbtained via theab initio crystal orbital calculatiof® For
orbital energy difference* (C)—t* (N) between ther orbit-  PMI, it was also evaluated in the MND®and valence ef-
als on C and N atoms. In Table I¥%,(C—C) andts(N-N) are  fective HamiltonianVEH)%? schemes. In Table VI, we com-
both listed for the two types of single bonds in PAZ; whereaspare our resulting optical gaps of PMI, PAZ and PAE with
in Table V,t4(C=C) andty(N=N) are for the two types of those obtained earlier via other approaches. Our results are
double bonds in PAE. The mean differerjtg—ts| between chosen from the oligomers that contain 20 double bonds. As
the double and single bonds are 0.92 eV(i@H=N-),;,  can be seen, the optical gap of each polymer molecule ob-
128 eV in (-CH=N-N=CH-);p and 1.21 eV in tained from the present work is much smaller than that of the
(-CH=CH-N=N-)q, respectively, as indicated in the last ab initio or VEH calculation, but closer to the MNDO’s re-
rows of Tables Ill, IV and V. Note the values a@f(C)  sult. Noted that the sameab initio crystal orbital
—t*(N) of the PMI oligomerg(cf. Table 1) range from 1.03  calculatiori® resulted in the optical gap of 6.47 eV in poly-
to 1.20 eV, which are consistent with the result of 1.06 eVacetyleng(PA). In contrast, a calculation based on the same
obtained recently by Jacquemin and co-workér€ompar-  CEO method’?2as this work led to the experimental optical
ing the data in Tables Ill, IV and V, we observe that PAZ gap of about 2 eV in PA. Using the effective Hamiltonians
oligomers have the largest average effective atomic orbitadbtained in this work to study the nonlinear optical proper-
energy differencél.6 eV). Included in these tables are also ties of the PMI, PAZ and PAE oligomers has been carried
the optical gapA calculated via the CEO meth@df’ for  out and the results will be published elsewh&re.
every individual oligomer. At any given number of double  Jacquemin and co-workéfeemployed a PPP-like effec-
bonds, the PAZ oligomer possesses the largest optical gafive Hamiltonian in their calculation of static hyperpolariz-
This may be explainable by the fact that the PAZ oligomerabilities of PMI oligomers. The energies of the atomic orbit-
have larger resonance integral differerftg-ts| compared als of C and N were used to approximate the effective atomic
with those of PAZ and PAE counterparts. For orbital energies ofr orbitals at C and N sites, respectively.
(-CH=N-N=CH-),, its optical gap is 3.89 eV, and the This approximation led ta* (C)—t*(N)=1.06 eV, regard-
corresponding wavelength is 3190 A which is outside theless the size of-: CH=N-), oligomer. In the present work, the
visible wavelength range. Thus, PAZ is apparently transparvalues oft* (C)—t* (N) increase from 1.03 to 1.20 eV as the
ent. oligomer size increase&f. Table Ill). For the resonance
integrals, two approximations were used in Ref. 29. One was
proposed by Pariser and Parr,

TABLE IV. Effective Hamiltonians of PAZ  Oligomers tij=—6442 e~ 56864 vy (13)
(-CH=N-N=CH-), .2

x  tgdeV t(N-NJeV t(C-OleV t*(C)—t*(N)ev AleV

TABLE VI. A comparison of the optical gaps of PMI, PAZ and PAi&
-3.35 —1.89 1.58 6.35

1 units of eV).
2 -345  -1.94 217 1.62 5.04
4 -321 -l182 —2.03 161 4.12 Ourresult  Ab initio® MNDOP VEH®
6 -321  —1.82 ~2.03 1.62 3.96
8 -320  -1.82 -2.03 1.62 3.91 PMI 3.15 8.48 3.46 5.4
10 -321  -1.83 —2.04 1.62 3.89 PAZ 3.89 9.56 - -
PAE 3.67 9.62 - -

&4, ts(N=N) andt,(C-C) are the average resonance integrals ferN;
N-N and C-C, respectivelyt* (C) andt*(N) are the average effective 2From Ref. 30.
atomic orbital energies for the orbitals of C and N atoms, respectively. From Ref. 31.
is the optical gap. ‘From Ref. 32.
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TABLE VII. Five structural variations of the PMI oligom&rCH=N-),,.? T T T T T T 1

15| E
a b c d e
Re-n 1.277 1.264 1.252 1.232 1.217
Re_n 1.377 1.390 1.402 1.422 1.437
AR 0.100 0.126 0.150 0.190 0.220

3All data are given in A; the bond angles are kept at 120.2°.

ot/ eV

which led toty=—4.87 eV andt;=—2.38 eV for PMI.
Another approximation was proposed by Schulten and
co-workers®

t”:_26+321(r”_13gn ev, (14)

which led toty=—3.03 eV andt,=—2.62 eV for PMI. S o o ove ove om0 oo
Using the above two approximations, Jacquemin and .

co-worker$® obtained the values for the static first hyperpo- SR/A

larizability g that differ in magnitude and in sign. The FiG. 2. The relationship betweast=t,—t, and SR=Rs— R, for the PMI
CDMV method developed in this paper provides a system4CH=N-)y, oligomer. The line is the best linear fit to the détits.
atic approach to determine the effective Hamiltonian. It al-

lows us to incorporate the effective electron—electron inter- .
action in a self-consistent manner. Whether the cpmyCDPMV approach has been applied successiully to several

method implies a certain kind of semi-empirical relation be-PMI. PAE _and PAZ oligomers. Compared .to the approach
tweent;; andr,,, is yet to be answered. However, we haveemploye(_:i in Ref. 19, _the CDMV approach is more general,
found there may be a linear relation between the differenc&nd @pplicable to a wider spectrum of molecules.
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