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Effective Hamiltonians of polymethineimine, polyazine and polyazoethene:
A density matrix variation approach

GuanHua Chena) and ZhongMin Su
Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong

ZhenWen Shen and YiJing Yana)

Department of Chemistry, Hong Kong University of Science & Technology, Kowloon, Hong Kong

~Received 5 March 1998; accepted 5 May 1998!

A new variation method is proposed to determine the effective Hamiltonians for conjugated
p-electron systems. This method is based on the minimization of the difference between the ground
state reduced single electron density matrix calculated from the effective Hamiltonian and itsab
initio counterpart under a set of well-defined constraints. Applications are made to various
oligomers of polymethineimine~PMI!, polyazine~PAZ! and polyazoethene~PAE! at the Hartree–
Fock level. Calculated are also the optical gaps of these oligomers. The effective Hamiltonians
contain electron–electron Coulomb interactions and are suitable for the study of excited state
dynamic processes such as nonlinear optical properties inp-conjugated systems. ©1998
American Institute of Physics.@S0021-9606~98!30630-3#
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I. INTRODUCTION

There is a growing interest in evaluating the electro
dynamics of large and complex molecules.Ab initio calcula-
tions have been successful in determining ground and
cited state properties of small and medium size molec
systems. However, calculating the properties, especi
those that involve the excited state dynamics of large s
tems, requires a very large amount of computational
sources. The burden of computation may be greatly redu
if only a fraction of electrons of a system is considered
plicitly. The effects of other electrons may be included in
effective Hamiltonian. Pseudopotentials and effective c
potentials have been developed to simulate the effect
core electrons.1–4 Pariser and Parr5 and Pople6 ~PPP! devised
an empirical procedure to determine the effective Hami
nians for p electrons in planar conjugated molecules. T
parameters of the PPP Hamiltonians can be determined
theoretical fits to experimental data. Several parameteriza
schemes have been proposed.7,8 Semi-empirical methods
such as CNDO, INDO, MNDO and AM1 employ empiric
Hamiltonians in a minimal basis set of atomic orbitals.9–12

Like the PPP Hamiltonians, these Hamiltonians are par
eterized to fit different sets of experiments.

Based on a formalism proposed by Brandow,13 Martin
and Freed14 have recently developed a rigorous projecti
method to investigate the foundation of PPP Hamiltoni
Demonstrations have been made in determining the effec
Hamiltonians of several small conjugated molecules.14 In
their method it requires the evaluation of some complex
erators which are computationally intensive.14 Beratan and
co-workers15,16 have adopted a divide–conquer strategy
which a large molecular system is treated as a collection
overlapping fragments. The effective Hamiltonian for the v

a!Corresponding authors. Electronic mail: ghc@yangtze.khu.hk
2560021-9606/98/109(6)/2565/7/$15.00
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lence electrons of each individual fragment was construc
first, and that of the entire molecular system was then
tained by patching the contributions from all fragments.

Chen and Mukamel17 have shown that under certain ci
cumstances there is a one-to-one correspondence bet
the one-electron part of the effective electronic Hamilton
and its ground state reduced density matrix. As a Ham
tonian contains all dynamic information, the above theor
in fact also claims an effective correlation between the
namic properties of excited states and the structural infor
tion of the ground electronic state. This is in the same sp
of the density functional theorem18 which states that the
ground state electron density determines all properties o
electronic system. However, the new theorem that is ba
on a semi-empirical effective Hamiltonian description nee
the ground state reduced density matrix as its input, whe
the density functional theorem requires a three-dimensio
distribution of all electrons. Based on the new theorem,17 an
approach at the Hartree–Fock level has been develope
construct the effective Hamiltonian from the ground sta
reduced single-electron density matrix.19 Application to
polyacetylene oligomers~-CH5CH-!x has been made19 and
the resulting effective Hamiltonians are consistent with tho
from the semi-empirical methods.5,7,20

In this work, we generalize the approach in Ref. 19
proposing a new variation method to determine the effec
Hamiltonian forp electrons in conjugated polymer system
This new method that will be developed in Sec. II is bas
on a constrained density matrix variation~CDMV! approach.
The novelty of the method is to introduce a set of constra
that incorporate the structural information of polymers. As
result, the new method~CDMV! allows a more efficient ap-
proach to determine effective Hamiltonians and is applica
to more diversified conjugated polymer systems compare
the previous approach.19 Applications of the new method a
the Hartree–Fock level are made in Sec. III to obtain
5 © 1998 American Institute of Physics
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p-electron effective Hamiltonians for the oligomers
PAZ ~-CH5N-N5CH-!x , PMI ~-CH5N-!x and PAE
~-CH5CH-N5N-!x . These polymers~Fig. 1! are structurally
similar to polyacetylene~PA!. The effective electron–
electron Coulomb interactions in these conjugatedp-electron
systems are determined via a semi-empirical manner.
optical gaps of these polymer systems are evaluated to
amine the validity of the new variation method and the re
ability of the resulting effective Hamiltonians. In Sec. IV, w
further compare our results to other calculations and c
clude the present paper with a brief summary.

II. A DENSITY MATRIX VARIATION APPROACH TO
THE EFFECTIVE HAMILTONIAN

A. The general methodology

The p electrons in conjugated systems such as P
PAZ and PAE oligomers~cf. Fig. 1! may be described by th
following PPP-like effective Hamiltonian:

H5He1Hee, ~1a!

He5 (
mns

tmnams
1 ans , ~1b!

Hee5 (
mnss8

Vmnams
1 amsans8

1 ans8 . ~1c!

Here,ams
1 (ans) is an electron creation~annihilation! opera-

tor at a local orbitalm (n) with spin s. tmn denotes the
one-electron on-site (m5n) or resonance (mÞn) integral.
Vmn is the effective two-electron Coulomb interaction b
tween two electrons residing separately atm and n. There-
fore, He represents the one-electron part of the Hamilton

FIG. 1. Structures of PMI, PAZ and PAE. The numbers on PMI denote
p atomic orbitals.
Downloaded 13 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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which describes the dynamics of each individualp electrons
in the absence of otherp electrons.Hee is the two-electron
contribution which represents the effective Coulomb inter
tions among electrons. A zero differential overlap~ZDO!
approximation21 is adopted here. The nuclear charge for e
ery site is11. Since the systems are spin symmetric, we m
omit the spin indexs or s8. We have thus converted th
quest of an effective Hamiltonian to the problem of findin
an optimal set of parameters$tmn ,Vmn% in Eq. ~1!. In the
following, we shall present a constrained density mat
variation ~CDMV! approach to determine the effectiv
Hamiltonian.

Let us denoter as the ground state density matrix fro
the effective HamiltonianH @Eq. ~1!#, andr̄ as that from an
ab initio calculation. The accuracy ofr together with the
effective Hamiltonian may be characterized by the followi
CDMV functional:

S5(
mn

Wmn~rmn2 r̄mn!
21F>0. ~2!

Here,Wmn is a positive weighting~or penalty! coefficient for
the deviation of the semi-empirical density matrix eleme
rmn from its ab initio counterpartr̄mn . F, which will be
presented later@cf. Eq. ~6!#, consists of all additional con
straints implied to the form of the effective Hamiltonian.

We adopt the Hu¨ckel’s ansatz for the one-electron co
tribution He @Eq. ~1b!#. That is to set all non-neighboring
resonance integrals to zero:

tmn50; if um2nu.1. ~3!

Simplifying the notation, we shall hereafter denote the nei
boring resonance integral as

tm8 [tm,m11 . ~4!

We shall further introducetm* as the effective atomic orbita
energy at the local orbitalm in the presence of electron
nuclear Coulomb interaction. It is given by19

tm* [tmm1(
n

~Vmn2V1n!. ~5!

As only the relative energies are of physical interest, we
choose the energy zero ast1150, which also results int1*
50.

We are now in a position to discuss the constraint fu
tionalF in Eq. ~2!. We propose that the form of the effectiv
Hamiltonian which characterizes the polymer configuratio
of interest should be retained as much as possible during
functional minimization process. We can thus presentF in
the following form:19

F5W1 (
m

~ tm* 2tm1s* !21W2 (
m

~ tm8 2tm1s8 !2. ~6!

Here,s is the length of the repeating unit in the polymer. F
examples, s54 for PAZ ~-CH5N-N5CH-!x and PAE
~-CH5CH-N5N-!x , ands52 for PMI ~-CH5N-!x . W1 and
W2 are two positive penalty constants. The first and sec

e
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terms in Eq.~6! penalize the mismatches of the effecti
orbital energies and resonance integrals, respectively, in
repeating units of the polymer.

In principle,S50 in Eq. ~2! can only be achieved whe
the effective Hamiltonian produces the exact ground den
matrix r̄ and at the same time the constraints are also s
fied. For a semi-empirical Hamiltonian as Eq.~1!, this ideal
case is practically impossible. We shall thus optimize
effective HamiltonianH @Eq. ~1!# or more precisely the set o
parameters$tmn ,Vmn% that characterizesH, so that the result-
ing reduced ground state density matrixr optimally overlaps
with the ab initio reduced density matrixr̄. In this case, the
CDMV functional S @Eq. ~2!# is minimal.

B. Monte Carlo implementation in the Hartree–Fock
scheme

We shall now present in detail a Hartree–Fock sche
of implementing the above CDMV approach. Theab initio

ground state density matrixr̄ at the Hartree–Fock level i
evaluated first and saved for the later reference in constr
ing the CDMV functionalS @Eq. ~2!#. The Hartree–Fock
equation for an effective HamiltonianH is

(
n

hmncni5e icmi . ~7!

Here,cmi is the coefficient of local atomic orbitalm in the
i-th molecular orbital with energye i . The Fock matrix ele-
menthmn in Eq. ~7! may be expressed as22

hmn5tmn2Vmnrmn12dmn(
l

Vmlr l l . ~8!

For a system ofM p electrons, the ground state reduc
single electron density matrixr may then be evaluated as

rmn5(
i

M /2

cni* cmi . ~9!

Equations~7!–~9! summarize the Hartree–Fock approach
calculate the ground state electron density matrixr for a
given effective Hamiltonian.

In order to find the optimal effective HamiltonianH that
minimizes the CDMV functionalS @Eq. ~2!#, we employ an
annealing Monte Carlo procedure as described follows.
ginning with an initial guessH (0) for the effective Hamil-
tonianH, we solve for its Hartree–Fock ground state dens
matrix r (0) via Eqs.~7!–~9!, and then evaluate the CDMV
functionalS(0) using Eq.~2! for the chosen values ofWmn ,
W1 and W2 . We shall now~i! vary randomly the curren
parameters inH (0) to generate a trialH (1); ~ii ! evaluater (1)

via Eqs.~7!–~8! andS(1) @Eq. ~2!# for the trialH (1); ~iii ! and
decide whether to retainH (0) or to acceptH (1) for the next
step of iteration according to their survival probabilitie
which are assumed to be proportional to their correspond
values of exp@2S(0)/T# and exp@2S(1)/T#, respectively. Here,
T.0 is the simulation temperature. The above procedur
~i!–~iii ! shall be repeated many times to generate~statisti-
cally! better and better approximations, and eventually le
to the true effective HamiltonianH. During the process ofS
Downloaded 13 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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minimization,T is varied from high to low values, and even
tually approaches zero. In all calculations to be describe
the next section, we setWmn51.0 andW15W250.1. Six
different values of the temperatureT are used: T
51.0,1021,1022,1023,1024 and 1025. At each temperature
the above process is repeated a number(N) of times. N
5200,300,1500,500,100 and 100 for these six temperatu
respectively.

It is obviously that the efficiency of above mentione
CDMV approach depends greatly on the number of
Hamiltonian parameters involving in the minimization pr
cedure. We have used the Hu¨ckel’s ansatz@Eq. ~3!# which
greatly reduces the number of one-electron parame
$tmn%. In the following section, we shall focus o
PAZ ~-CH5N–N5CH-!x , PMI ~-CH5N-!x and PAE
~-CH5CH–N5N-!x systems, in which the Coulomb interac
tionsVmn will be determined in a semi-empirical manner@cf.
Eq. ~10!#. As a result, the parameters$Vmn% will no longer be
considered as the minimization variables. The final survi
variables are the diagonal one-electron integrals and
nearest-neighboring resonances@cf. Eq. ~4!#, $tmm,tm218 ;m
52, . . . ,M %. Here M is the number of thep orbitals in
consideration.

III. APPLICATIONS TO PMI, PAZ AND PAE
OLIGOMERS

A. Semi-empirical approach to electron–electron
interaction

Let us start with a semi-empirical method to determi
the effective Coulomb interactionVmn in PMI ~-CH5N-!x ,
PAZ ~-CH5N–N5CH-!x and PAE~-CH5CH–N5N-!x sys-
tems. The effective Coulomb interaction is usually unknow
However, its functional form may be derived from man
body theory or determined empirically. In this work, w
adopt the Ohno formula to describe the effective Coulo
interaction:23

Vmn5
UAB

A11~r mn /a0!2
. ~10!

Here,r mn is the distance between thep orbitalsm andn. A
and B denote the atoms that in this work may be carbon C
nitrogen N where the orbitalsm and n reside, respectively
UAB determines the overall amplitude of interaction betwe
two electrons located at atoms A and B separately. Its va
may be considered as the effective on-site repulsion if
two electrons are on the same atom@cf. Eq.~10!#. It has been
demonstrated that the Ohno formula describes well the ef
tive interaction among p electrons in conjugated
polymers.7,19 In Ref. 19, the Ohno formula was applied to th
p electrons in polyacetylene, and the value ofUCC was de-
termined by fitting to the experimental optical gap
~-CH5CH-!7 oligomer. It has also been illustrated that th
effective Hamiltonian is not sensitive to the value ofa0 as
long as it is of the same magnitude as the bond length.19 We
seta051.0 Å for all three types of polymers in study.r mn in
Eq. ~10! will be determined via theab initio calculation for
each individual oligomer. The Coulomb repulsion amplitu
UCN or UNC will be approximated as
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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UCN5UNC'AUCCUNN. ~11!

In Ref. 19, the repulsion amplitudeUCC for two p electrons
in carbon atoms was determined to be 6.62 eV. We s
evaluateUNN using the CDMV approach developed in th
last section.

B. Determination of UNN

Let us consider a theoretical oligomer~-N5N-!7 . The
first step of the CDMV approach is to construct itsab initio

ground density matrixr̄. We use Gaussian 94 with the min
mal basis set STO-3G in our calculation. From the result
Hartree–Fock ground state wave function, we derive the c
responding reduced density matrixr̄ of the oligomer in the
Natural Atomic Orbitals~NAOs! basis set.24 The NAOs are
the orthonormal atomic orbitals of maximal occupancy fo
given wave function.25 They diagonalize the atomic reduce
single-electron density matrix, and thus provide a comp
representation of electronic properties. During the proces
obtaining theab initio ground density matrix, the geometr
of ~-N5N-!7 is optimized and thus the value ofr mn in Eq.
~10! is obtained for each pair ofp orbitals. The ground state
is found to be atransstructure. The resulting bond lengths
the double and single bonds are 1.27 Å and 1.49 Å, resp
tively. The angles between two adjacent bonds is 105.3°

We are now in the position to apply the CDMV ap
proach described in Sec. II B to determine the effect
Hamiltonian of the theoretical molecule~-N5N-!7 which
contains 14p electrons, each from a nitrogen atom. T
effective Hamiltonian in this case refers to the two-electr
parameterUNN together with the complete set of on
electron parameters$tmm,tm218 ;m52, . . . ,14% in the Hück-
el’s ansatz@Eq. ~3!#. By employing the Ohno formula@Eq.
~10!#, we can determine the effective Hamiltonians
~-N5N-!7 up to an overall undetermined scaling factor.
order to determine the value of this scaling factor, one ph
cal quantity such as the optical gapDN ~i.e., absorption peak!
is required.19 As ~-N5N-!7 is not available experimentally
we estimatedDN via the following relation:

DN5
dEN

dEC
DC. ~12!

Here,dEN511.16 eV is the energy difference between t
LUMO and HOMO of~-N5N-!7 molecule evaluated via th
ab initio calculation, whiledEC510.26 eV is that for~-CH
5CH-! obtained previously.19 The experimental value of th
optical gap DC is 3.18 eV.26 We have thereforeDN

53.46 eV, and can thus determine unambiguously the
fective Hamiltonian of~-N5N-!7 such that it reproduces th
optical gas ofDN53.46 eV. The average values of the r
sulting resonance integrals through the double and sin
bonds aretd522.42 eV andts521.30 eV, respectively.
The corresponding value ofUNN is 4.72 eV. The coupled
electronic oscillator~CEO! method22,27 is employed in the
evaluation of the optical gap.
Downloaded 13 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
ll

g
r-

ct
of

c-

e

n

f

i-

f-

le

C. Effective Hamiltonians for various oligomers

Having obtained the values ofUNN54.72 eV, UCC

56.62 eV andUCN'AUCCUNN55.59 eV, we are now
ready to evaluate the effective Hamiltonians of PMI, PA
and PAE oligomers via the procedure described in Sec. I
We first determine the structures of PMI, PAZ and PA
oligomers via theab initio Hartree–Fock geometry optimi
zation calculation. The 6-31G basis set is employed. For P
oligomers, we choose H2C5N–~HC5N!6–N5CH2 for op-
timization. The lengths for all the double~C5N! bonds are
set equal, and those for all the single~C–N! bonds are as
well. The bond angles for all CNC,~NCN! or HCN are kept
the same. The resulting structure is similar to that used
Champagne and co-workers.28 Similarly, we obtain the opti-
mized structures of
H2C5N–N5CH-~HC5N-N5CH!2–CH5N–N5CH2 and
H2C5CH–N5N–~HC5CH–N5N!2–CH5CH–N5NH2.
The resulting structure parameters for the above three p
mer molecules are listed in Table I. These parameters wil
employed, respectively, for all PMI, PAZ and PAE oligo
mers in later calculations. Theab initio Hartree–Fock
ground state density matrixr̄ for each oligomer of thetrans-
PMI, PAZ and PAE with 2 to 20 double bonds is calculat
by using the same procedure described in the last subse
for ~-N5N-!7 . Note that we use the STO-3G basis set
evaluating theab initio density matrices, instead of the 6
31G that was used in the geometry optimization. The eff
tive Hamiltonians for all these oligomers are then determin
accordingly via the CDMV approach described in Sec. II
Listed in Table II are the three sets of initial values oft i j

used for all PMI, PAZ and PAE oligomers. For the sam
type oligomers, e.g.~-CH5N-!x , only one set of initialt i j is
employed for all with different repeating units.

TABLE I. Structure parameters of PMI, PAZ and PAE.a

PMI PAZ PAE

RC5N 1.264 1.288 –
RC2N 1.390 – 1.464
RC5C – – 1.322
RC–C – 1.473 –
RN5N – – 1.281
RN–N – 1.473 –
a 120.2 113.7 119.5

aBond lengthsRC5N , RC-N , RC5C , RC-C , RN5N andRN-N are in units of Å;
bond anglea between adjacent double and single bonds in degrees.

TABLE II. Initial guess oft i j for PMI, PAZ and PAE oligomers~in eV!.a

t* ~N! t~C5N! t~C–N! t~C5C! t~C–C! t~N5N! t~N–N!

PMI 21.0 23.1 22.1 – – – –
PAZ 21.6 23.3 – – 21.9 – 21.9
PAE 21.3 – 22.2 23.1 – 23.5 –

at* ~N! is the effective atomic energy of the local orbital on N,t~C5N!,
t~C–N!, t~C5C!, t~C–C!, t~N5N!, andt~N–N! are the resonance integral
for C5N, C–N, C5C, C–C, N5N and N–N, respectively, and the effec
tive atomic energyt* ~C! was set to zero.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



rs
-
t

m

a

st

eV

Z
it
o

le
ga
e

or
e
th
a

ly

-
th
are
As
ob-
the
-

-
me
al
ns
er-
ied

-
z-
it-
mic
y.

e
e

as

fo

2569J. Chem. Phys., Vol. 109, No. 6, 8 August 1998 Chen et al.
In Tables III, IV and V, we list the resulting paramete
in the effective Hamiltonians of PMI, PAZ and PAE oligo
mers, respectively. These data are reported in terms of
average resonance integralstd and ts for the double and
single bonds, respectively, and the average effective ato
orbital energy differencet* ~C!2t* ~N! between thep orbit-
als on C and N atoms. In Table IV,ts~C–C! andts~N–N! are
both listed for the two types of single bonds in PAZ; where
in Table V, td~C5C! and td~N5N! are for the two types of
double bonds in PAE. The mean differenceutd2tsu between
the double and single bonds are 0.92 eV in~-CH5N-!20,
1.28 eV in ~-CH5N–N5CH-!10 and 1.21 eV in
~-CH5CH–N5N-!10, respectively, as indicated in the la
rows of Tables III, IV and V. Note the values oft* ~C!
2t* ~N! of the PMI oligomers~cf. Table III! range from 1.03
to 1.20 eV, which are consistent with the result of 1.06
obtained recently by Jacquemin and co-workers.29 Compar-
ing the data in Tables III, IV and V, we observe that PA
oligomers have the largest average effective atomic orb
energy difference~1.6 eV!. Included in these tables are als
the optical gapD calculated via the CEO method22,27 for
every individual oligomer. At any given number of doub
bonds, the PAZ oligomer possesses the largest optical
This may be explainable by the fact that the PAZ oligom
have larger resonance integral differenceutd2tsu compared
with those of PAZ and PAE counterparts. F
~-CH5N–N5CH-!20, its optical gap is 3.89 eV, and th
corresponding wavelength is 3190 Å which is outside
visible wavelength range. Thus, PAZ is apparently transp
ent.

TABLE IV. Effective Hamiltonians of PAZ Oligomers
~-CH5N–N5CH-!x .a

x td/eV ts~N–N!/eV ts~C–C!/eV t* ~C!2t* ~N!/eV D/eV

1 23.35 21.89 1.58 6.35
2 23.45 21.94 22.17 1.62 5.04
4 23.21 21.82 22.03 1.61 4.12
6 23.21 21.82 22.03 1.62 3.96
8 23.20 21.82 22.03 1.62 3.91

10 23.21 21.83 22.04 1.62 3.89

atd , ts~N–N! and ts~C–C! are the average resonance integrals for C5N,
N–N and C–C, respectively.t* ~C! and t* ~N! are the average effective
atomic orbital energies for thep orbitals of C and N atoms, respectively.D
is the optical gap.

TABLE III. Effective Hamiltonians of PMI oligomers~-CH5N-!x .a

x td/eV ts/eV t* ~C! 2t* ~N!/eV D/eV

2 23.13 22.20 1.03 5.57
4 23.11 22.19 1.13 4.23
8 23.11 22.19 1.17 3.49

12 23.11 22.19 1.19 3.27
16 23.11 22.19 1.19 3.19
20 23.11 22.19 1.20 3.15

atd and ts are the average resonance integrals for C5N and N–C, respec-
tively. t* ~C! andt* ~N! are the average effective atomic orbital energies
p orbitals of C and N atoms, respectively.D is the optical gap.
Downloaded 13 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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IV. DISCUSSION AND CONCLUSION

The optical gaps of PMI, PAZ and PAE were previous
obtained via theab initio crystal orbital calculation.30 For
PMI, it was also evaluated in the MNDO31 and valence ef-
fective Hamiltonian~VEH!32 schemes. In Table VI, we com
pare our resulting optical gaps of PMI, PAZ and PAE wi
those obtained earlier via other approaches. Our results
chosen from the oligomers that contain 20 double bonds.
can be seen, the optical gap of each polymer molecule
tained from the present work is much smaller than that of
ab initio or VEH calculation, but closer to the MNDO’s re
sult. Noted that the sameab initio crystal orbital
calculation30 resulted in the optical gap of 6.47 eV in poly
acetylene~PA!. In contrast, a calculation based on the sa
CEO method27,22as this work led to the experimental optic
gap of about 2 eV in PA. Using the effective Hamiltonia
obtained in this work to study the nonlinear optical prop
ties of the PMI, PAZ and PAE oligomers has been carr
out and the results will be published elsewhere.33

Jacquemin and co-workers29 employed a PPP-like effec
tive Hamiltonian in their calculation of static hyperpolari
abilities of PMI oligomers. The energies of the atomic orb
als of C and N were used to approximate the effective ato
orbital energies ofp orbitals at C and N sites, respectivel
This approximation led tot* ~C!– t* ~N!51.06 eV, regard-
less the size of~-CH5N-!x oligomer. In the present work, th
values oft* ~C!– t* ~N! increase from 1.03 to 1.20 eV as th
oligomer size increases~cf. Table III!. For the resonance
integrals, two approximations were used in Ref. 29. One w
proposed by Pariser and Parr,5

t i j 526442 e25.6864r i j eV, ~13!

TABLE V. Effective Hamiltonian of the PAE oligomer
~-CH5CH–N5N-!x .a

x td~C5C!/eV td~N5N!/eV ts/eV t* ~C!2t* ~N!/eV D/eV

1 23.18 23.47 22.14 1.38 5.95
2 23.05 23.69 22.13 1.38 4.61
4 23.01 23.69 22.11 1.39 3.85
6 23.00 23.65 22.11 1.38 3.74
8 22.99 23.64 22.11 1.38 3.69

10 23.00 23.63 22.11 1.39 3.67

atd~C5C!,td~N5N! and ts are the average resonance integrals for C5C,
N5N and C–N~or N–C!, respectively;t* ~C! and t* ~N! are the average
effective atomic orbital energies for thep orbitals of C and N atoms,
respectively.D is the optical gap.

r

TABLE VI. A comparison of the optical gaps of PMI, PAZ and PAE~in
units of eV!.

Our result Ab initioa MNDOb VEHc

PMI 3.15 8.48 3.46 5.4
PAZ 3.89 9.56 – –
PAE 3.67 9.62 – –

aFrom Ref. 30.
bFrom Ref. 31.
cFrom Ref. 32.
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which led to td524.87 eV andts522.38 eV for PMI.
Another approximation was proposed by Schulten a
co-workers,8

t i j 522.613.21~r i j 21.397! eV, ~14!

which led to td523.03 eV andts522.62 eV for PMI.
Using the above two approximations, Jacquemin a
co-workers29 obtained the values for the static first hyperp
larizability b that differ in magnitude and in sign. Th
CDMV method developed in this paper provides a syste
atic approach to determine the effective Hamiltonian. It
lows us to incorporate the effective electron–electron in
action in a self-consistent manner. Whether the CDM
method implies a certain kind of semi-empirical relation b
tweent i j and r mn is yet to be answered. However, we ha
found there may be a linear relation between the differe
of the single and double bond resonance integrals and
bond length alternation~BLA !. To investigate the structur
effects on the effective Hamiltonian, we vary the geome
of PMI ~-CH5N-!10 oligomer by changing the double an
single bond lengths. The bond angles are kept the sa
Table VII lists five of the PMI structural variations, denote
as a, b, c, d and e, which have the same BLAdR[RC-N

2RC5N as those studied in Ref. 28. The effective Hamil
nians and the optical gapsD are determined for these stru
tures, and the results are tabulated in Table VIII. Figur
plots dt[ts2td versusdR in dots together with the bes
linear fit. We obtain for a PMI~-CH5N-!10 oligomer,

dt/eV50.3014.903~dR/Å!. ~15!

As can be seen from Tables VII and VIII, the optical gapD
also increases as the BLAdR increases. The possibility o
using the present CDMV effective Hamiltonian approach
incorporate the vibrational dynamics of conjugated polym
via its structural variations will be investigated in the futur

To summarize, we have proposed and implemente
new variation method~CDMV! to determine the effective
Hamiltonians forp electrons in conjugated polymers. Th

TABLE VII. Five structural variations of the PMI oligomer~-CH5N-!10 .a

a b c d e

RC5N 1.277 1.264 1.252 1.232 1.217
RC2N 1.377 1.390 1.402 1.422 1.437
DR 0.100 0.126 0.150 0.190 0.220

aAll data are given in Å; the bond angles are kept at 120.2°.

TABLE VIII. Effective Hamiltonians for five structural variations of th
PMI oligomer ~-CH5N-!10 . td and ts are the average hopping matrix ele
ments for C5N and C–N, respectively.t* ~C! and t* ~N! are the average
effective atomic orbital energies forp orbitals of C and N atoms, respec
tively. dt[td2ts . D is the optical gap.

td/eV ts/eV dt/eV t* ~C!2t* ~N!/eV D/eV

a 23.04 22.25 20.79 1.19 3.07
b 23.11 22.19 20.92 1.18 3.35
c 23.16 22.12 21.04 1.17 3.61
d 23.25 22.01 21.23 1.16 4.01
e 23.33 21.95 21.38 1.15 4.33
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CDMV approach has been applied successfully to sev
PMI, PAE and PAZ oligomers. Compared to the approa
employed in Ref. 19, the CDMV approach is more gene
and applicable to a wider spectrum of molecules.
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