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Modified Bell–Plesset effect with compressibility:
Application to double-shell ignition target designs

Peter Amendt, J. D. Colvin, J. D. Ramshaw, H. F. Robey, and O. L. Landen
Lawrence Livermore National Laboratory, Livermore, California 94551

~Received 29 August 2002; accepted 8 November 2002!

The effect of spherical convergence on the fluid stability of collapsing and expanding bubbles was
originally treated by Bell@Los Alamos Scientific Laboratory Report No. LA-1321~1951!# and
Plesset@J. Appl. Phys.25, 96 ~1954!#. The additional effect of fluid compressibility was also
considered by Bell but was limited to the case of nonzero density on only one side of a fluid
interface. A more general extension is developed which considers distinct time-dependent uniform
densities on both sides of an interface in a spherically converging geometry. A modified form of the
velocity potential is used that avoids an unphysical divergence at the origin@Goncharovet al., Phys.
Plasmas7, 5118 ~2000!; Lin et al., Phys. Fluids14, 2925 ~2002!#. Two consequences of this
approach are that an instability proposed by Plesset for an expanding bubble in the limit of large
interior density is now absent and application to inertial confinement fusion studies of stability
becomes feasible. The model is applied to a proposed ignition double-shell target design@Amendt
et al., Phys. Plasmas9, 2221~2002!# for the National Ignition Facility@Paisneret al., Laser Focus
World 30, 75 ~1994!# for studying the stability of the inner surface of an imploding high-Z inner
shell. Application of the Haan@Phys. Rev. A39, 5812 ~1989!# saturation criterion suggests that
ignition is possible. ©2003 American Institute of Physics.@DOI: 10.1063/1.1543926#

I. INTRODUCTION

The growth of incompressible fluid perturbations in a
spherically converging geometry is a well-known conse-
quence of mass conservation. Bell,1 Plesset,2 and Birkhoff3

independently described this effect in the early 1950s using a
velocity potential treatment. Bell considered further the ef-
fect of compressibility on either side of a fluid interface. In
an unpublished memorandum from Los Alamos Scientific
Laboratory in 1982, Fisher attempted to generalize Bell’s
treatment to include the effect of nonzero densities with dis-
tinct rates of uniform compression on both sides of a fluid
interface.4 Fisher’s apparent goal was to apply the model to
imploding shells in inertial confinement fusion~ICF! for
studying stability.

An unfortunate feature of these previous treatments on
the so-called ‘‘Bell–Plesset’’ effect is the choice of velocity
potential adopted. In these studies a term with divergent be-
havior at the origin was included in the velocity potential
which is tantamount to introducing a source or sink of mass
at r50 ~see Sec. II!. Unless the density of the material inte-
rior to the collapsing bubble or imploding shell is negligibly
small misleading results can ensue. For example, the peak
density of the imploded fuel in an ICF target can approach
the peak shell density at minimum volume and invalidate the
implicit assumption of a low density cavity. Collapse of a
vapor-generated bubble in medical applications is another
example where the interior density approaches the ambient
fluid density.5 For these reasons a modification to the cus-
tomary form of the velocity potential is preferred.

Aside from an interest in understanding the role of the
Bell–Plesset effect in general, the techniques developed for
studying collapsing and expanding bubbles have a poten-

tially important application to studies of unstable interfaces
in proposed ignition targets. A favored technique to date has
been a two-dimensional simulation of an imploding capsule
with an imposed single-mode small-amplitude perturbation.
A suite of calculations is then performed over a range of
modes to generate a linear growth-factor spectrum on a par-
ticular interface at a time of interest, e.g., instant of peak
neutron production. This spectrum is convolved with an ini-
tial surface spectrum and summed in quadrature to estimate
the annular extent of perturbation growth on an unstable in-
terface. The growth of a group of modes may enter the non-
linear regime at which point a standard saturation model can
be invoked to further describe the perturbation behavior.6

As clear-cut as this procedure may seem, implementa-
tion is often very challenging in practice, particularly for
higher mode numbers or short wavelength perturbations. In
two-dimensional radiation-hydrodyamic simulations control
of mesh instabilities that can overwhelm or compromise the
perturbation waveform of interest is paramount. To this end
various numerical filters are invoked in which particular care
is exercised to not appreciably affect the intrinsic growth of
the perturbation. This procedure has been successfully ap-
plied to the case where perturbations that grow on the abla-
tion surface and feedthrough to the inner surface are ampli-
fied upon deceleration onset.7 The ablation and feedthrough
processes both act to strongly filter high mode number per-
turbations, thereby usually avoiding the numerical challenge
of accurately describing the growth of a high-mode pertur-
bation. In contrast to this feed through scenario, the case of
intrinsic growth of perturbations initially residing on the in-
ner surface is more challenging to capture numerically. In the
absence of ablation stabilization—as well as an absence of
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density gradient stabilization if the interface is between two
distinct materials—high mode-number perturbations have
high linear growth-factors. Our experience in this regime has
been that numerical filtering is necessary to preserve the
form of the perturbation but at the expense of possibly com-
promising the integrity of the growth-factor result.

Given these constraints on reliably carrying through
such calculations a complementary approach is to combine a
perturbation analysis with detailed one-dimensional
radiation-hydrodynamics simulations of the unperturbed
shell behavior for extracting detailed information on the per-
turbation growth. This procedure is essential for understand-
ing linear perturbation growth on the inner surface of the
interior shell of a double-shell target where credible two-
dimensional single-mode growth-factor calculations have
proven elusive to date.

In Sec. II we use a recently introduced form for the
velocity potential8 and carry through the linear perturbation
analysis. In Sec. III we generate a linear growth-factor spec-
trum for a proposed ignition double-shell target for the Na-
tional Ignition Facility~NIF! and apply a standard saturation
analysis to assess the effects of small-scale mix on perfor-
mance. We find that the target still ignites according to this
saturation analysis. The related issue of wave number cutoff
for Rayleigh–Taylor and Richtmyer–Meshkov growth is
also discussed and we argue that atomic transport effects
provide an arguably realistic cutoff for the shortest wave-
lengths. We conclude in Sec. IV.

II. ANALYSIS

We consider a spherical geometry with an interface sepa-
rating two fluids atr5R~t!. The interior fluid is denoted by
the subscript ‘‘1’’ and the exterior fluid by ‘‘2.’’ We introduce
a velocity potentialC so that the local fluid velocity gener-
ally follows from v52“C. We restrict the analysis to the
case where the densityr on either side of the interface can
vary arbitrarily in time but is uniform in space. The continu-
ity equation then reduces to the form¹2C5 ṙ/r, where
overdots denote differentiation with respect to time. The gen-
eral solution of this form of the continuity equation consists
of the particular solution plus solutions to Laplace’s equa-
tion, giving

C15
r 2

6
F11b1r ,Y,m , ~1a!

C25
r 2

6
F21

R3

3r
~F22F1!1b2r 2,21Y,m , ~1b!

where Fi[ṙ i /r i , and bi are coefficients to the spherical
harmonicY,m(u,f) of order , with umu<,. In Eqs.~1a!–
~1b! we have imposed the requirement that the perturbation
contributions (}Ylm) to the radially symmetric potential de-
crease away from the interface and that the interior solution
be regular at the origin. The coefficientsbi are determined
from the requirement that the component of velocity normal
to the interface be continuous across the~perturbed! inter-
face. The position of the interface is denoted byr s[R(t)
1a(t)•Y,m , wherea!R is assumed at all times. To zeroth

order ina/R we find thatF1523Ṙ/R which enforces mass
conservation of the interior fluid.8 We emphasize that the
form of Eq. ~1a! is well-behaved at the origin by design, in
contrast to many previous treatments which included a term
with an unphysical 1/r dependence. Moreover, the resulting
interior fluid radial velocity profile in zeroth order ina/R is
strictly linear in r, in close agreement with the results of
detailed hydrodynamic simulations.

Applying continuity of the normal component of veloc-
ity at the interface (r 5r s) we obtain to first order ina/R for
the interior and exterior potentials,

C152
r 2Ṙ

2R
1

r ,

,R,21 S aṘ

R
2ȧDY,m , ~2a!

C25
R3

3r
S 3Ṙ

R
1F2D 1

r 2

6
F2

1
R,12r 2,21

,11
S ȧ1F2a1

2Ṙa

R
DY,m . ~2b!

However, we note from Eqs.~2a! and~2b! that the tangential
component of the fluid velocity is of ordera/R and is dis-
continuous across the interface in general. Thus, the vorticity
(“3v) of the potential flow is nonzero~and unbounded! at
the interface, vanishing everywhere else as required.

In addition we must also ensure pressure continuity at
the interface using Bernoulli’s integral, i.e.,

P11r1F Ċ12
1

2
u“C1u2G

r 5r s

5P21r2F Ċ22
1

2
u“C2u2G

r 5r s

, ~3!

where P1(t) and P2(t) are constants of integration. Using
Eqs. ~2a! and ~2b! in Eq. ~3! and evaluatingu“C i u2 to first
order ina/R we finally obtain to zeroth order and first order
in a/R, respectively,

P1~ t !2
r1

2
RR̈5P2~ t !1

r2

2
~2RR̈13Ṙ21R2Ḟ21RṘF2!,

~4a!

ä1
ȧṘ

R
~32a!b,2

a

R
@R̈~A,~,21!1ab,!1ȧṘb,#50.

~4b!

Here, a[2RF2 /Ṙ52(R/Ṙ)( ṙ2 /r2) is a dimensionless
shell ~i52! compressibility parameter,

b,5
,r2

,r21~,11!r1
~5a!

and

A,5
,r22~,11!r1

,r21~,11!r1
~5b!

is a modal Atwood number at the interface. Equation~4b! for
the perturbation evolution is the fundamental equation of our
model with the middle term responsible for Bell–Plesset
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growth. The strictly geometric origin of this growth is easily
seen by neglecting the term~in square brackets! responsible
for Rayleigh–Taylor and Richtmyer–Meshkov growth and
solving for ȧ, giving ȧ}R(a23)•b for a andb assumed con-
stant. In the incompressible limit~a50! and takingb51, we
haveȧ}1/R3 which givesa}1/R2 for Ṙ'const. This result
can also be heuristically obtained by considering a 3D inter-
facial perturbation of heighta, wavelength l52pR/,,
width l/2 and invoking mass conservation. The growth is
physically identified with the strong variation of the pertur-
bation wavelength with radius (l}R) and the requirement of
accommodating an ever decreasing wavelength perturbation
on the converging shell. For a compressible or constant
thickness shell~a52! with b51 andṘ'const, we find from
Eq. 4~b! that the perturbation grows only logarithmically
with radius, a5a01(ȧ0 /Ṙ)•R0 ln(R0 /R). By comparison,
the heuristic model applied to this compressible case predicts
no growth. The mild difference in calculated growth is likely
attributed to the neglect of transverse flow in the simple
model. However, in both cases the influence of compressibil-
ity is predicted to significantly lower the Bell–Plesset
growth.

We first compare Eq.~4b! with former work. In the limit
of an incompressible shell Eq.~4b! reduces to

ä1
3ȧṘ

R
b,2

aR̈

R
•~,21!•A,50. ~6a!

By contrast, Plesset’s governing differential equation~in the
limit of vanishing surface tension! reads2

ä1
3ȧṘ

R
2

aR̈

R
•F ~,21!•A,2

3r1~,11!

,r21~,11!r1
G50.

~6b!

Significant differences between the two treatments are appar-
ent. First, the Plesset analysis involves an extraneous term on
the left-hand side of Eq.~6b! which may mitigate or aggra-
vate instability according to the value of the density ratio
b, . A more important difference involves the term respon-
sible for the Bell–Plesset effect, i.e., the middle term on the
left-hand side of Eqs.~6a! and ~6b!. In the limit of larger2

both equations are identical. However, the opposite limit
shows contrasting behavior between the two analyses. For
example, Plesset has claimed that an instability exists even in
the ~Rayleigh–Taylor stable! case whenR̈.0, provided
(2,11)RR̈,(3/2)Ṙ2.2 By contrast Eq.~6a! shows that the
middle term responsible for growth in the limit of larger1

vanishes altogether. Thus, an expanding (Ṙ.0) and acceler-
ating (R̈.0) high-density (r1@r2) bubble is not unstable
within the limits of this linear perturbation analysis. The ba-
sic difference between the two treatments is that Eq.~6a! is
associated with conservation of interior mass, whereas Eq.
~6b! requires a source or sink at the origin according asṘ is
positive or negative.9

We now return to Eq.~4b! to discuss the effect of shell
compressibility. Because the Bell–Plesset effect is directly
attributed to the incompressibility of a converging shell, fi-
nite compressibility will act to reduce the size of the effect.

For example, in the thin shell approximation,10 where the
thicknessD of the imploding shell is small compared to the
radius of the shell,a521(R/Ṙ)•(Ḋ/D). In the incompress-
ible limit ( ṙ[0), Ḋ/D522Ṙ/R anda50. In the compress-
ible case (Ḋ/D50) under constant drive conditions,a52.
For most cases of interest in ICF the imploding shell satisfies
a52 to a good approximation up to the time of deceleration
onset. Thereafter, the stagnation pressure of the fuel rises
rapidly and further compression of the shell beyond the ef-
fect of spherical convergence may result. This additional
contribution to shell compressibility can be estimated from
momentum balance, assuming a polytropic equation of state
P2r2

2g5const for the shell, giving

D5
1

r2
UP2

R̈
U}P2

21/g , ~7!

where mass ablation is neglected and the deceleration (R̈
,0) during shell stagnation is taken to be proportional to the
pressureP2 . To evaluateḊ/D from Eq. ~7! we require the
time scale for pressure stagnationts.0 which we take as the
difference between deceleration onset (R̈50) and stagnation
(Ṙ50). Applying energy conservation we obtain11

ts52
Rd

Ṙd
F12S Rd

Rs
D 2G , ~8!

whereRd is the inner radius of the shell at deceleration onset
andRs is the minimum~or stagnation! radius of the shell. We
can now write fora after deceleration onset

a521
R

Ṙ

Ḋ

D
'22

Rd

Ṙd

•

1

gts
521

1

g•F12S Rs

Rd
D 2G . ~9!

For most implosions of interest, (Rs /Rd)2<0.1 so thata
'211/g to a good approximation. Thus, we expecta to
generally lie in the range of 2–3 after deceleration onset
which is corroborated by simulation studies. Referring back
to Eq. ~4b! we indeed find that the effect of compressibility
to a large degree cancels the effect of spherical convergence
and provides a significant reduction in the Bell–Plesset ef-
fect. In the following we verify this result by directly apply-
ing our analysis to a proposed double-shell ignition target for
the NIF.

III. APPLICATION TO DOUBLE-SHELL IGNITION
TARGET DESIGNS

A. Linear growth factor analysis

An important application of the analysis described above
is towards a proposed class of ignition double-shell target for
the NIF ~see Fig. 1!.11 A key concern for this type of target is
the buildup of short wavelength perturbations on the inner
surface of the high-Z inner shell that can lead to deleterious
mixing of cool high-Z shell material and hot burning fuel.
Analysis suggests that most of the instability growth is due
to the Rayleigh–Taylor instability following deceleration on-
set. Richtmyer–Meshkov instability is important before de-
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celeration onset and acts as a seed for the far more dominant
Rayleigh–Taylor growth. The usual expression for the
Rayleigh–Taylor growth rate under ICF conditions, neglect-
ing convergence and compressibility effects, is given by the
following:7

g5A AkR̈

11AkL
2bkva , ~10!

whereA[(r22r1)/(r21r1) is the Atwood number of the
unstable interface,k is the perturbation wavenumber,L is a
density–gradient scale length across the interface,b is a phe-
nomenological constant between 1 and 3, andva is the abla-
tion velocity. On the pusher–fuel interface of the proposed
double-shell target, the materials are distinct andL is identi-
cally zero in the absence of mix or diffusion, i.e., finite
density-gradient stabilization in the linear growth regime
does not occur. The effect of mass ablation of the high-Z
inner shell is also negligible so that ablation stabilization is
minimal. Finally, A'1, i.e., r2@r1 , so that classical
Rayleigh–Taylor growth is expected to occur, i.e.,g

>AkR̈. Thus, we conclude that virtually no stabilization of
high mode-number perturbations can be expected on the
pusher–fuel interface of a double-shell according to Eq.~10!.

A more appropriate estimate for Rayleigh–Taylor
growth in double-shell targets may be found in the treatment
of Duff, Harlow, and Hirt where the effects of mass and
velocity diffusion are included,12

g5AAkR̈

h
1n2k42~n1D12!k

2. ~11!

Here,h(k,t) is a growth-rate reduction factor due to a time-
varying binary mass diffusion layer of thicknessdD

52AD12t at the interface,n is the kinematic viscosity, and
D12 is the binary mass diffusivity. The combined effects of
viscosity and binary mass diffusion will now introduce a
cutoff in Rayleigh–Taylor growth at sufficiently high wave-
number in marked contrast to Eq.~10! in the absence of
ablative stabilization. In Sec. III C we return to Eq.~11! to
discuss in more detail the stabilizing effect of mass diffusion
and viscosity for the proposed double-shell ignition target.

Our goal in this section is to extract a linear growth-
factor spectrum for the double-shell ignition design including
the combined effects of spherical convergence, shell com-
pressibility, Rayleigh–Taylor instability, and Richtmyer–
Meshkov instability. In Sec. III B we will implement this
growth-factor spectrum in a mode saturation analysis to es-
timate the amount of yield degradation arising from the ef-
fects of pusher–fuel mix. Ordinarily, the growth-factor spec-
trum for mainline ICF targets is straightforwardly obtained
from a suite of 2D single-mode simulations. However, we
find that carrying through a single-mode growth-factor simu-
lation of double-shells at high mode numbers of interest is a
particularly daunting exercise. To date we have not suc-
ceeded in performing a credible simulation at even relatively
low mode numbers because of the vexing task of ensuring
numerical stability while not compromising the integrity of
the simulation with excessive numerical filtering. A semi-
analytic option is to implement the analytical treatment de-
scribed in Sec. II using detailed 1D simulations for the
radiation-hydrodynamical history of the imploding shell,
e.g., position, speed, acceleration, Atwood number, and com-
pressibility. In particular, a radiation-hydrodynamics simula-
tion for the zeroth-order shell dynamics supersedes Eq.~4a!,
and the same unperturbed shell quantities are used in Eq.
~4b! to drive the perturbation growth. An important advan-
tage of this procedure is that a very detailed radiation-
hydrodynamical description of the imploding shell is pos-
sible in 1D—far more than is currently practical with a 2D
growth-factor simulation.

We have applied this semi-analytic methodology to the
double-shell design depicted in Fig. 1. This design is in-
tended to have minimal feed through of outer-surface pertur-
bations to the inner surface of the high-Z shell as well as
reduced Rayleigh–Taylor growth of intrinsic surface pertur-
bations on the inner surface. We first show 1D simulated
histories of various zeroth-order shell quantities which will
then be used in Eq.~4b!. Figure 2~a! shows the Atwood
number history on the pusher–fuel interface up to the instant
of peak energy production. We find that the Atwood number
is considerably reduced from its initial value, reaching close
to 0.5 near peak compression. Compared to a 2D growth
factor simulation with standard zoning, this value is some-
what lower~'10%! and underscores an important advantage
in using 1D simulations for a convenient and accurate assess-
ment of hydrodynamic phenomena. Away from the interface

FIG. 1. ~Color! Schematic of NIF double-shell ignition target that absorbs
750 kJ of x-ray energy with an incident laser energy of 2.5 MJ driving a
hohlraum at a drive temperature of 250 eV over 10 ns. Inner and outer laser
cones shown with 60% laser-entrance-holes.
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the Atwood number approaches unity very quickly due to the
rapid increase in shell density with radius. Low mode num-
ber perturbations have an appreciable radial extent and can
sample such higher values of Atwood number. Our focus
here is on high mode number perturbations due to their in-
trinsically large growth rates. Such modes have radial extent
'R/, which is on the order of 0.2 microns or less for mode
numbers greater than 100 near ignition. From simulation
studies the change in Atwood number over this distance is
less than 6% which results in an underestimate of the
growth-rate by less than 3%. In the following we will evalu-
ate growth-factors based on the interface Atwood number,
thereby ignoring this small yet calculable correction for sim-
plicity. Figure 2~b! shows the velocity history of the pusher–
fuel interface and the presence of two principal shocks that
drive the implosion. Figure 2~c! furnishes information on the

compressibility of the imploding shell. The solid curve de-
picts the simulated density of the inner shell very close to the
pusher–fuel interface. Transient effects from shock and rar-
efaction passage are quite evident and tend to complicate
quantitative identification of the trend in shell compressibil-
ity. Moreover, the compressible model described above~see
Sec. II! is based on the assumption of uniform density pro-
files on both sides of the interface and, as such, has no li-
cense to describe transient or localized density effects. To
extract the gross behavior of the shell compressibility we
have overlaid the simulation curve with a parameterization
of the shell density in terms of the shell convergence only,

r~ t !5~r~0!/2!•@R~0!/R~ t !#2, ~12!

whereR(t) is the simulated trajectory of the interface. We
see that the simulated density follows aR(t)22 behavior
fairly well over the course of the implosion, suggesting that
the shell behaves compressibly to a high degree. This implies
that a>2 with ȧ>0 on average, leading to a significant
reduction of the Bell–Plesset effect, cf. Eq.~4b!. The stabi-
lizing effect of slow compression on the linear stability of an
accelerated shear layer has been shown earlier in the case of
slab geometry.13

We now turn to the task of calculating the perturbation
growth on the pusher–fuel interface for the above-described
implosion using Eq.~4b!. Figure 3~a! shows the growth-
factor history for a perturbation with mode number,5100.
Until the onset of deceleration the growth-factor history is
dominated by Richtmyer–Meshkov growth. The various
phase reversals evident in Fig. 3~a! can be understood from
the analytic expression for ideal Richtmyer–Meshkov
growth,

GF511A•Dv•Dt•,/R, ~13!

where GF is the growth-factor,Dv is the change in interface
speed induced by passage of a shock,Dt is the duration of
constant interface speed, andA is understood to represent the
postshock Atwood number. For simplicity, we have elected
not to distinguish between the preshock and postshock am-
plitudes in Eq.~13!. BecauseDv is generally less than zero
for an imploding shell, the growth factor undergoes a sign
change wheneverA•uDvu•Dt•,/R.1. With a series of
shocks and reflected shocks affecting the interface motion in
a double-shell, the cumulative effect of the Richtmyer–
Meshkov instability is not large due to cancellation from
successive phase reversals. Still, the modest amplitude re-
maining at deceleration onset can provide a significant seed
for the subsequent and far stronger Rayleigh–Taylor instabil-
ity growth.

Figure 3~b! depicts the peak-growth-factor spectrum pre-
dicted from Eq.~4b!. The peak in growth-factor is defined as
the normalized growth at the instant of peak energy produc-
tion. The top curve represents the spectrum of growth for a
spherically converging incompressible shell. This case corre-
sponds to pure Bell–Plesset growth without the mitigating
effects of shell compressibility. The intermediate curve in-
cludes both the effects of shell compressibility and spherical
convergence. The lower curve shows the growth-factor spec-
trum in the absence of shell compressibility and spherical

FIG. 2. Interface Atwood number~a!, speed~b!, and shell density near
interface~c! vs time relative to peak energy production for NIF double-shell
ignition target~Fig. 1!.
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convergence. Overall, we find that shell compressibility re-
duces the growth-factor by nearly an order-of-magnitude in
the presence of spherical convergence, i.e., the Bell–Plesset
effect. Compared with the simplest case of an incompressible
shell and no spherical convergence, i.e., the lower curve in
Fig. 3~b!, the combined effect of Bell–Plesset effect with
shell compressibility gives about onee-folding more growth.
All three curves show the presence of spectral lobes which
are attributable to phase reversal from Richtmyer–Meshkov
growth. When the condition,'R(t)/(A•uDvu•Dt) is satis-
fied for any Richtmyer–Meshkov episode@see Fig. 3~a!# then
the seed amplitude for Rayleigh–Taylor growth after decel-
eration onset is expected to be small. Over the range of mode
numbers shown in Fig. 3~b! the maximum growth-factor for
each lobe in the compressible Bell–Plesset case is found to
scale closely as GF;exp(,0.53) which is somewhat larger
than the classical Rayleigh–Taylor scaling GF;exp(A,) at
high mode number.

Figure 3~b! also indicates a shift in the location of the
spectral lobes as a function of shell compressibility. We can
gain a quantitative understanding of this effect from studying
Eq. ~4b! and treating the middle term as a perturbation. Ac-
cordingly, Eq.~13! is modified by compressibility as follows:

GF511A•Dv•Dt•~,/R!•F12
Dv•Dt•~32a!

2R G . ~14!

On physical grounds, greater Richtmyer–Meshkov growth
can be expected for an incompressible shell because shell
thickening promotes a delay in arrival of the next shock at
the interface, effectively leading to a larger growth duration
Dt}D(t)/vs}@D0 /R2(t)#, where vs}1/Ar2 is the shock
speed. By comparison, the delay for a compressible shell
~a52! has a weaker scaling with shell radius,Dt}D0 /vs

}D0Ar2}1/R(t). Evaluating the last term on the right-hand
side of Eq. ~14! for the effect of compressibility gives a
correction on the order of 5%–10% to the growth-factor for
the earliest shock depicted in Fig. 2~b!. To find the location
of a spectral lobe we set the right-hand side of Eq.~14! to
zero and solve for the mode number,

,52
R

A•Dv•Dt
•

1

F12
Dv•Dt

2R
~32a!G . ~15!

With Dv,0 andDvDt/R on the order of 0.1, we find a shift
in mode number due to shell compressibility~a52 vs a50!
of nearly 210%, in agreement with the trend seen in Fig.
3~b!.

For completeness we compare with former work using
different techniques. Hattori, Takabe, and Mima have applied
self-similar methods for studying Rayleigh–Taylor instabil-
ity in a spherically stagnating system, obtaining the follow-
ing approximate expression for adiabatic perturbation
growth:14

a,~ t !}R~ t !•expF E t

dt8AA~ t8!uR̈u,/R~ t8!G . ~16!

In Fig. 3~c! we compare Eq.~16! with our semianalytic
model @based on Eq. 4~b!# for the NIF double-shell ignition

FIG. 3. ~Color! ~a! NIF double-shell growth-factor vs time for mode number
,5100 based on the semianalytic model@Eq. 4~b!#; ~b! calculated growth-
factor spectrum at peak thermonuclear burn from semianalytic model for
three cases: Bell–Plesset effect without shell compressibility~red!, Bell–
Plesset effect with shell compressibility~black!, without Bell–Plesset effect
and without shell compressibility~blue!; ~c! comparison of growth-factor
spectrum at peak burn from the semianalytic model@Eq. 4~b!# and approxi-
mate model of Hattori, Takabe, and Mima~Ref. 14! calculated from decel-
eration onset to instant of peak energy production.
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design during the deceleration phase only. At mode numbers
below,5400 the two treatments are seen to agree to within
a factor-of-2. At larger mode numbers the effect of
Richtmyer–Meshkov instability from a reflecting shock be-
comes evident, leading to a significant difference at mode
numbers,,1500. In the near absence of ablative stabiliza-
tion these short wavelengths are important for double-shell
stability as we explore in more detail in Sec. III C.

B. Mode saturation analysis

At high mode number a growing perturbation quickly
reaches an amplitude on the order of its wavelength at which
time saturation effects begin to dominate. The Haan satura-
tion criterion describes the threshold amplitudeS for the on-
set of nonlinear effects in the presence of a full spectrum of
modes,6

S~R,, !5
2R

,2
. ~17!

The Haan model does not explicitly treat nonlinear effects—
only to the extent that modes are assumed to grow linearly in
time once the~nonlinear! saturation threshold is met. A
model which includes both pre- and postsaturation mode
coupling has been developed by Oferet al.15 The methodol-
ogy for applying the Haan saturation analysis is as follows.
An initial surface roughness spectrum is convolved with a
time-dependent linear growth-factor spectrum to determine
the onset of saturation for each mode. A quadrature sum of
each growing mode, whether still in the exponential or linear
stage of growth, is then formed to find an overall mix width
vs time. This mix width is represented in terms of bubble and
spike components where the spike amplitude is related to the
bubble amplitude by the approximate factor 11A. The dy-
namic mix layer is then used in a 1D simulation to assess its
effect on yield degradation assuming full atomic mixing of
fuel and pusher material throughout the mixing layer. This
procedure has been successfully applied to a wide variety of
ICF targets that have been fielded on the Nova and Omega
lasers over recent years.16,17The appropriateness of the Haan
prescription is optimally met under weakly nonlinear condi-
tions such as when ablative stabilization severely limits the
growth of large wavenumber modes. In contrast, the double-
shell target undergoes highly nonlinear perturbation growth
on the inner surface of the pusher where ablation stabiliza-
tion is minimal. Still, this property does not invalidate appli-
cation of the Haan prescription as a tool to estimate the effect
of pusher–fuel mix on target performance. In the presence of
a dense spectrum of modes the saturation criterion remains
intact but the assumption of subsequent linear growth will
not hold under conditions of strong mode coupling.

Figure 4 shows the initial mode spectrum of a typical
ICF plastic capsule fielded on the Omega laser. We adopt this
surface spectrum as a crude surrogate for the expected Au
surface finish of the proposed double-shell ignition target
~Fig. 1!. We now apply the Haan prescription. By the time of
deceleration onset Fig. 4 shows the degree of modal growth
with the smallest wavelength modes undergoing the greatest
growth as expected. At peak burn the amplitudes of the high-

est modes have hardly changed due to saturation effects but
the low and moderate modes continue to show the largest
growth. The quadrature sum of the modes (s2) shown at
peak burn corresponds to a spike amplitude@A2(11A)•s#
of only 5 microns compared to a converged fuel radius of 25
microns. The thermonuclear yield from this target still gives
1 MJ compared to a clean~undegraded! yield of 2.8 MJ.
Thus, the ignition double-shell target design still ignites de-
spite the level of mix predicted by the Haan analysis.

Although the assumption of linear mode growth follow-
ing saturation may not be strictly valid for double-shells, the
prescription has an important advantage over other methods
for evaluating nonlinear mix, e.g., Ramshaw’s nonlinear mix
model18 and the K–L turbulence mix model.19 Generally
these methods rely on a set of phenomenologically con-
strained parameters for implementation. However, the Haan
analysis is largely independent of such parametric constraints
with one possible exception: an enhanced heat diffusivity
term which is meant to mimic in 1D the extra heat dilution
arising from a highly modulated interface.16 We find that the
amount of thermonuclear yield in the double-shell ignition
design is only weakly sensitive to the size of this diffusivity
term, thereby largely preserving the parametric independence
of the analysis.

We have made no distinction in our analysis between
saturation of the Bell–Plesset or geometric component of
perturbation growth and saturation of the usual dynamical
components, e.g., Richtmyer–Meshkov and Rayleigh–
Taylor. This assumption is not likely to be valid, but its at-
tendant error is probably negligible owing to the compara-
tively small effect of geometric growth for the problem at
hand. Work is in progress to understand this aspect of Bell–
Plesset behavior by extending the analysis of Sec. II to sec-
ond order ina/R and exploring the possibility of geometric
mode-coupling.

FIG. 4. ~Color! Initial mode spectrum~red!, mode spectrum at deceleration
onset~green!, and mode spectrum at peak burn~black! according to Haan
saturation analysis~Ref. 6! of NIF double-shell ignition target~Fig. 1!.
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C. Rayleigh–Taylor mode cutoff

In applying the Haan analysis we have considered modes
up to,51500. From a formal standpoint, the calculated mix
width is mathematically bounded,6 converging weakly with
cutoff mode number,c ass},c

21/2. Although the results are
seen to be insensitive to the maximum mode number used
over this range, we still need to place reasonable physical
bounds on the mode numbers that matter to the problem in
anticipation of detailed multimode simulations. To this end
we return to Eq.~11! for further analysis. The kinematic
viscosityn is calculated according to the method of Clerouin
et al.20 which was based on molecular dynamics simulations
in the dense plasma regime and extrapolation to the dilute
plasma regime. This model is applicable over a wider range
of temperature and density than the familiar Braginskii
model.21 The plasma binary mass diffusivityD12 is based on
the method of Paquetteet al.,22 where a rigorous derivation
in the dilute plasma regime is carried out and then extrapo-
lated to the dense plasma regime. Molecular dynamics simu-
lations are used to verify the analysis in the regime of inter-
mediate plasma coupling characteristic of double-shells. The
diffusivity is used to evaluate the growth-rate reduction fac-
tor h@(,/R),t# arising from a relaxation of the density gra-
dient across the atomically mixed interface. This factor is
found by solving for the eigenvalue of a second order equa-
tion for the velocity perturbation normal to the mean inter-
face using a prescribed form for the interfacial density pro-
file, r5erf@R(t)/A4D12t#; details of this procedure are
described elsewhere.21

We have evaluated Eq.~11! vs time on both sides of the
Rayleigh–Taylor unstable interface for the double-shell igni-
tion design~see Fig. 1!. We expect that the largest value in
wavenumber cutoff occurs at deceleration onset whenD12 is
relatively small and the effects of density-gradient stabiliza-
tion, i.e.,h~k,t!, and static diffusion stabilization,2D12 k2,
are still minimal. Furthermore, we also anticipate that the
pusher-side of the interface will be more susceptible to high
mode number instability due to the much lower kinematic
viscosity of Au compared with the fuel-side of the interface.
Figure 5~a! shows the Rayleigh–Taylor growth rate at decel-
eration onset vs mode number@Eq. ~11!# on the Au side of
the interface including various atomic transport effects as
indicated. The top curve represents classical Rayleigh–
Taylor growth in the absence of ion viscosity, atomic diffu-
sion, and density-gradient stabilization. The next lower curve
isolates the addition of ion viscosity and attains a maximum
near,5104 ~not shown!. The further inclusion of static dif-
fusion stabilization is an important contribution as illustrated
in Fig. 5~a!, giving a cutoff in mode number at,'8000.
Finally, the additional effect of density gradient stabilization
is represented by the lowest curve, indicating a cutoff in
mode number of'3700. We also note that the maximum
growth occurs near,'1200 and is already reduced by a
factor-of-2 from the classical Rayleigh–Taylor growth-rate.
The mode number cutoff for Rayleigh–Taylor growth as well
as the mode number for which classical Rayleigh–Taylor
growth is reduced by a factor-of-2 are shown as a function of
time in Fig. 5~b!, starting with deceleration onset and con-

tinuing to peak burn. As expected, the pusher side of the
interface shows a significantly higher mode cutoff compared
with the fuel. Increasing viscosity and binary mass diffusion
combined with a decreasing length scale lead to a nearly
linear decrease in mode cutoff for both sides of the interface
as the inner shell converges. From this analysis the maxi-
mum cutoff mode number (,'3700) occurs at deceleration
onset and within the high-Z pusher. Of greater interest is the
mode number at which the Rayleigh–Taylor growth-rate is
reduced by a factor-of-2. This latter mode number attains a
maximum near 1200 at deceleration onset and is reasonably
close to the cutoff adopted for the above saturation analysis
~see Sec. III B!.

D. Richtmyer–Meshkov mode cutoff

We have argued for a practical mode number cutoff (,
'1200) for Rayleigh–Taylor growth occurring at decelera-

FIG. 5. ~Color! ~a! Calculated linear normalized growth-rates of NIF
double-shell ignition target design~Fig. 1! at deceleration onset according to
the model of Duff, Harlow, and Hirt~Ref. 12! for classical Rayleigh–Taylor
growth~black curve!, including ion viscosity~red curve!, including viscosity
and static diffusion~green curve!, and combined viscosity, static diffusion,
and density gradient stabilization~blue curve!. ~b! Calculated mode numbers
for vanishing growth-rate~g50! vs time on the Au pusher~solid blue curve!
and DT fuel~solid red curve! side of interface; calculated mode numbers for
the growth-rate reduced to one-half of the classical Rayleigh–Taylor
growth-rate (g51/2AAkg) vs time on the Au pusher~dotted blue curve!
and DT fuel~dotted red curve! side of the interface.
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tion onset. Although the overall growth of instability in igni-
tion double-shells appears to be greatly dominated by
Rayleigh–Taylor, it is of interest to ask how well the above
cutoff applies to the prior occurrence of Richtmyer–
Meshkov growth. To this end we invoke some recent work
on the effect of atomic mass and momentum diffusion on the
Richtmyer–Meshkov instability.

Brouillette and Sturtevant23 have argued for combining
the model of Duffet al.12 with the impulsive acceleration
formulation of Richtmyer24 to obtain the following extension
of Eq. ~13!, including atomic mass diffusion,

ȧ,5a,8
A•Dv•~,/R!

h@~,/R!,t#
. ~18!

Here, h is the growth-factor reduction factor from binary
mass mixing across the interface as before~Sec. III C!, and
the post-shock amplitude is now distinguished by a primed
notation. The effect of binary mass diffusion on our double-
shell ignition design is depicted in Fig. 6 for the case of the
first shock episode@see Fig. 3~a!#. Compared to the growth-
factor for Richtmyer–Meshkov growth in the fluid limit, we
find a near factor-of-2 reduction from the effects of binary
mass diffusion alone near,52000.

Carlès and Popinet have recently reexamined the effect
of viscosity on the Richtmyer–Meshkov instability based on
an asymptotic study of the Navier–Stokes equations using
singular perturbation techniques.25 The following form for
the linear growth-factor spectrum is obtained:

GF5~11A•Dv•Dt•,/R!2
16

3p

3
Ar1m1Ar2m2

~r11r2!@Ar1m11Ar2m2#
A•Dv•~,/R!2

•Dt3/2,

~19!

where m5rn is the dynamic viscosity. In Fig. 6 we have
plotted the combined effects of mass and momentum diffu-
sion by adapting Eq.~19! through use of a multiplier (1/h)
on the first term on the right-hand side as suggested by the
form of Eq. ~18!. A further reduction in the growth-factor
from viscosity is seen with a maximum in the spectrum oc-
curring near,54000~not shown!. For comparison we have
also plotted the viscous damping model of Mikaelian26 but
similarly adapted to include the effect of mass diffusion. A
similar strong reduction in growth-factor is predicted accord-
ing to this model as well. Additional reduction can be ex-
pected from the effect of static diffusion stabilization as was
the case for Rayleigh–Taylor instability~Sec. III C!, al-
though this contribution has not been studied in the context
of Richtmyer–Meshkov growth to our knowledge. Although
a true cutoff in Richtmyer–Meshkov growth from atomic
diffusion is not evident over the indicated range of mode
numbers shown in Fig. 6, the relatively meager growth sug-
gests that our adopted Rayleigh–Taylor cutoff near,
'1200 is expected to be little affected.

IV. SUMMARY

We have used a modified form of the velocity potential
to revisit the analyses of Bell,1 Plesset,2 and Fisher4 with
imposed conservation of mass in the volume interior to the
interface of interest. In this manner we have managed to
avoid an unphysical divergence in the fluid velocity at the
origin. In the limit of small interior density compared to the
ambient density, agreement is found between our analysis
and previous work. However, important differences arise in
the ICF-relevant regime where the interior~fuel! density be-
comes comparable to the ambient~pusher! density at peak
compression. We have applied our model for perturbation
growth to a calculation of the growth-factor spectrum for a
proposed double-shell ignition target on the NIF. The effect
of Richtmyer–Meshkov instability is shown to be important
both as a seed for subsequent Rayleigh–Taylor growth and
for modulating the growth-factor spectrum. The growth-
factor spectrum is used as input to a Haan saturation analysis
for estimating the effect of mix on the double-shell target; we
find that the target still ignites. The related question of mode
cutoff for Rayleigh–Taylor growth is addressed based on a
former analysis of the stabilizing effects of ion viscosity and
binary mass diffusion. A practical cutoff in high mode num-
ber,'1200 is argued for the proposed double-shell ignition
target. Such a manageably low cutoff in mode number is
encouraging from the standpoint of ultimately performing a
detailed numerical simulation. We envision over the near
term the possibility of carrying through a 2D multimode
simulation of the double-shell ignition target to more defini-
tively assess its robustness to nonlinear mix.
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