
Portland State University
PDXScholar
Mechanical and Materials Engineering Faculty
Publications and Presentations Mechanical and Materials Engineering

9-1-2009

Optical Acquisition and Polar Decomposition of the Full-Field
Deformation Gradient Tensor Within a Fracture Callus
Wangdo Kim
Portland State University

Sean S. Kohles
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: http://pdxscholar.library.pdx.edu/mengin_fac

Part of the Systems Engineering Commons

This Post-Print is brought to you for free and open access. It has been accepted for inclusion in Mechanical and Materials Engineering Faculty
Publications and Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Citation Details
Kim, W., & Kohles, S. S. (2009). Optical acquisition and polar decomposition of the full-field deformation gradient tensor within a
fracture callus. Journal Of Biomechanics, 42(13), 2026-2032.

http://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fmengin_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/mengin_fac?utm_source=pdxscholar.library.pdx.edu%2Fmengin_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/mengin_fac?utm_source=pdxscholar.library.pdx.edu%2Fmengin_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pdxscholar.library.pdx.edu/mengin?utm_source=pdxscholar.library.pdx.edu%2Fmengin_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=http://pdxscholar.library.pdx.edu/mengin_fac/5
http://pdxscholar.library.pdx.edu/mengin_fac?utm_source=pdxscholar.library.pdx.edu%2Fmengin_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=pdxscholar.library.pdx.edu%2Fmengin_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu


Optical Acquisition and Polar Decomposition of the Full-Field
Deformation Gradient Tensor Within a Fracture Callus
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Abstract
Tracking tissue deformation is often hampered by material inhomogeneity, so local measurements
tend to be insufficient thus lending to the necessity of full-field optical measurements. This study
presents a novel approach to factoring heterogeneous deformation of soft and hard tissues in a fracture
callus by introducing an anisotropic metric derived from the deformation gradient tensor (F). The
deformation gradient tensor contains all the information available in a Green-Lagrange strain tensor,
plus the rigid-body rotational components. A recent study [Bottlang et al., J. Biomech. 41(3), 2008]
produced full-field strains within ovine fracture calluses acquired through the application of
electronic speckle pattern interferometery (ESPI). The technique is based on infinitesimal strain
approximation (Engineering Strain) whose scheme is not independent of rigid body rotation. In this
work, for rotation extraction, the stretch and rotation tensors were separately determined from F by
the polar decomposition theorem. Interfragmentary motions in a fracture gap were characterized by
the two distinct mechanical factors (stretch and rotation) at each material point through full-field
mapping. In the composite nature of bone and soft tissue, collagen arrangements are hypothesized
such that fibers locally aligned with principal directions will stretch and fibers not aligned with the
principal direction will rotate and stretch. This approach has revealed the deformation gradient tensor
as an appropriate quantification of strain within callus bony and fibrous tissue via optical
measurements.

Keywords
interfragmentary motion; deformation gradient tensor; stretch tensor; rotation tensor; polar
decomposition; Green-Lagrange strain

1. Introduction
Many studies have demonstrated the importance of interfragmentary strain as a mechanism for
controlling fracture healing during the reparative phase in which bone stiffness is restored
[Einhorn, 1995; Marsh and Li, 1999]. Interfragmentary strain hypotheses attempt to provide a
unifying theory relating controlled fracture loading and mobilization, to the tissue response
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[Epari et al., 2006]. The concept of defining a global interfragmentary strain associated with
fracture healing and callus formation often disregards local tissue heterogeneity. Actual
structural and mechanical heterogeneity results in a complex distribution of stress and strain.
These localized mechanical conditions guide the differentiation of the various tissue types in
fracture callus formation [Claes et al., 1998]. Several mechanoregulation algorithms, proposed
to control tissue differentiation during bone healing, have been shown to predict tissue
distribution [Isaksson et al., 2006].

Interfragmentary motion of bone fragments have been typically studied by measuring the rigid
body movements between bone structures bordering a fracture gap. Examples include: gap
displacements monitored with reflective markers [Duda et al., 2002]; interfragmentary
displacement in a tibial fracture measured in axial, angular and shear components by using an
instrumented spatial linkage [Kenwright, 1998]; interfragmentary sliding (shear) and axial
motion associated with healing of a mid-tibial fracture as studied with an electronic motion
sensor [Park et al., 1998; Duda et al., 2003]; and relative three-dimensional motion between
fracture fragments monitored by an instrumented linkage [Gardner, 1996]. Recently, new tools
have been developed for full-field strain measurement taking into account localized
heterogeneity of hard and soft tissues. Electronic speckle pattern interferometery (ESPI) is
available to measure full-field strain distributions [Erne et al., 2005] and has enabled
reproducible quantification of strain distributions within callus cross-sections [Bottlang et al.,
2008]. Often strain acquisition approaches are performed via an infinitesimal strain
approximation (Engineering Strain) based on the assumption that the examined material
experienced only a small change in shape from the reference condition. Most commercially
available optical measurement systems are limited to computing strains through displacement
gradients only, as this facilitates an expedited analysis by avoiding the generation of the full
deformation gradient tensor.

It is hypothesized that the local mechanical environment in a fracture non-union may have
distinct components of localized rigid body rotation and deformable stretch in collagen fibers
within the interfragmentary region. Fibers aligned with principal directions will only stretch
whereas fibers not aligned with the principal direction will both stretch and rotate [Lanir,
1979; Lanir, 1983; Sacks, 2000]. In the present study, a novel method of mapping
interfragmentary callus anisotropy is presented by exploiting the deformation gradient tensor
and computing localized rigid body rotations as well as stretch deformation in response to
uniaxial loading. A detailed map characterizing anisotropy and heterogeneity based on
interfragmentary motion within a fracture is presented at resolved material points within a
cross-section of a load-bearing callus.

2. Methods
2.1 Estimation of the Deformation Gradient Tensor from Direct Experiments

A theory is presented in which the deformation gradient F may be computed from the
displacements of a discrete set of points, such as an experimentally measured displacement
field. The first step in defining large deformation measures is to define the relationship between
the reference (initial or undeformed) configuration of a solid surface and the deformed
configuration of the analyzed deformable body. The deformation gradient F is a tensor that
quantifies both the two- and three-dimensional (2D and 3D) shape change as well as the overall
material rotation [Rodriguez et al., 1994; Cowin, 2004], making it superior to unidirectional
strain as an all-encompassing measure of the deformation and kinematics of material elements
(Figure 1). Consider an arbitrary fiber or constituent element within an elastic body such as
collagen within bone or soft tissue. The physical significance of the deformation gradient is
that it relates the deformation vector (magnitude and displacement direction) of an initially
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undeformed material fiber dX in the reference configuration to the magnitude and direction
dx in the deformed configuration by a one-to-one mapping function such that:

(1)

which results in the deformation tensor at an arbitrary point P:

(2)

The deformed state of the material fiber vector dx is neither generally orthogonal nor of unit
length.

Consider two neighboring locations, which occupy the points P and Q within the planar
continuum at a reference configuration (Figure 1). The coordinates of a group of surface
markers including points P and Q are used to determine estimates for the components of F at
each material point, defined by the centroid of those markers. A computational method based
on a Taylor series expansion of a displacement field [Peters, 1987], can directly compute F
from the experimentally acquired grid pattern displacement field on the surface of a loaded
body (here biological). For rotation extraction, the stretch and rotation tensor components are
then separated from the F tensor by the polar decomposition theorem. The methodology utilizes
displacement information produced at discrete points identified on the surface of a loaded body
and suitable for biomechanical applications. Methodology beyond that described in the next
section is reproduced in the Appendix for completeness.

2.2 Localized Rotation, Principal Stretch Magnitude and Direction
The theory and methodology for decomposing the estimate of F (F̂) is based on the assumption
that any deformation consists of a combination of a rigid rotation and a deformation or stretch.
A rotation is a special kind of deformation in which fiber or elemental constituents permissibly
change orientation due to structural anisotropy, of the tissue this case, distinct from any
deformation. A stretch is a deformation with vector orientation established in the initial
configuration with a magnitude change in length, separate from orientation-only changes.

F̂ may be written as a product of three factors via singular value decomposition (SVD) [Press
et al., 1992]:

(3)

In continuum mechanics, this begins to separate the rotation from the stretching components
where U and V are orthogonal stretch matrices (their inverse equals their transpose), and Σ is
a diagonal matrix, which are all composed of nonnegative real numbers. For an invertible
matrix F̂, there exists a unique orthogonal rotational tensor R and a unique symmetric positive
definite ‘left stretch’ tensor S such that:

(4)

where S = U · Σ · UT is a symmetric positive semi-definite stretch tensor and R = U · VT is an
orthogonal rotation tensor. Since F̂ = U · Σ · VT and U · UT = I (identity matrix), equation (4)
can be confirmed:
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(5)

The SVD solution, however, sometimes fails to give a correct rotation tensor and gives a
reflection instead when the data are severely corrupted. As a check, a least-squares estimation
can account for corrupt data and produce the accurate transformation parameters [Umeyama,
1991]:

The rotation tensor R is further characterized by its rotation angle φ about a unique axis of
rotation. Eigenvalues of a rotation tensor describe such an angle φ [McCarthy, 2000].

As noted previously, constituent fibers not aligned to principal direction of stretch will rotate
φ such that:

(6)

where Ri,i represent the diagonal terms of R defined during polar decomposition.

Physically, the principal stretch S describes a deformation in which there is an orthogonal triad
of material vectors that change length but not orientation. The principal stretches are
determined by taking the eigenvalues of S, which represent the ratios of the deformed length
to undeformed length, λi = ||xi||/||Xi||. The corresponding eigenvectors indicate the principal
directions of stretch caused by the re-orientation of fibers due to loading (and stretching) along
those principal directions. In the absence of material rotation, any material fibers orientated
along one of the ith principal stretch directions will not change orientation, but will change
length by a factor equal to the designated eigenvalue λi. In the following experimental
application, the rotational angles and the principal stretch ratios for stretch at each material
point on a loaded callus surface were mapped.

2.3 Green-Lagrange Strain Tensor versus Infinitesimal Strain Tensor
The Green-Lagrange strain tensor E is related to the previous tensorial descriptions through
the following development:

(7)

in which the final relationship does not depend on the rotational tensor R and E is only a
function of the stretch tensor S. Since x = X + u, where u is the displacement, E can be rewritten
as:
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(8)

Alternatively, an infinitesimal strain approximation is carried out when the gradient of the
displacement can be considered ‘small.’ In that case, E reduces to the infinitesimal strain tensor
e by neglecting the higher-order terms of equation (8):

(9)

This results in a relationship that clearly includes the rotational tensor R. Therefore E is an
appropriate strain tensor when isolating the stretch components of strain within a loaded
fracture callus.

2.4 Experimental Application
The detailed protocol evaluating the feasibility of assessing continuous strain distribution on
fracture callus cross-sections with an ESPI system was well documented in a recent study
[Bottlang et al., 2008]. With a similar experimental approach, newly acquired data are further
analyzed here to separate rotation from the deformation gradient tensor as a novel metric for
localized anisotropy.

Two adjacent mid-sagittal callus cross-sections of 3 mm thickness were obtained from a single
sheep following tibial osteotomy treated by 8 weeks of external fixation (Figure 2). The
histologic specimen was stained (toluidine blue) to indicate new callus bone and soft tissue
formation. The mechanical hypertrophic non-union specimen was submersed in physiologic
saline and kept frozen at −18 °C until testing. On the day of testing, the fracture callus was
thawed and mounted horizontally in a custom-built uniaxial compression stage (Figure 3). The
specimen ends were rigidly clamped to ensure pure axial compression. Load was applied
manually using a micrometer screw and a translation stage (M-461/DS-4F, Newport, Irvine,
CA). Load (ELFS-T4M, Entran, Fairfield, NJ) and displacement (M-DVRT-3-SK4,
Microstrain, Burlington, VT) sensors acquired global mechanical data at 0.2 N and 1.5 μm
resolution, respectively. The entire setup was assembled on a base plate and mounted on an
optical table to ensure stable conditions for the Electronic Speckle Pattern Interferometer
(ESPI, Q100, Ettemeyer AG, Nersingen, Germany) suspended over the loaded callus
arrangement. The ESPI sensor acquired 2D displacements in three-directions at 256 × 256
individual pixel locations spaced 0.2 mm apart over a 50 mm × 50 mm region of interest. The
callus specimen was loaded in quasi-static manner with incremental load steps applied up to a
cumulative load of a 5 N. ESPI measurements of the bony cortex, callus, and fracture gap
produced a 2D grid pattern map of the displacement field. The rotational angles and principal
stretch ratios at each material point throughout the tissue surface were calculated and mapped
using a contour function (MATLAB, Mathworks, Inc., Natick, MA).

3. Results
The initial tissue differentiation during fracture healing indicated that new bone was formed
directly on both the periosteal (dominant) and endosteal surfaces while fibrocartilage was
formed in the interfragmentary gap (Figure 2). Newly formed tissue was identified with
toluidine blue staining where collagen orientation had no specific patterns [Chao and Aro,
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1997]. Localized rigid body motion of the loaded tissue was quantified by the rotation factor
φ associated with the rotation tensor R (equation 6), despite any limitations in the boundary
conditions. A continuous rotation map was observed on both halves of the callus cross-section
in the range of 0.1° to 0.8° (Figure 4) with positive counter-clockwise motion indicated from
a horizontal datum. The highest rigid body motion was detected within the interfragmentary
gap soft tissue with isolated peak values of 0.8°. All other areas outside of the interfragmentary
gap indicated little to no rotation. Simultaneously, deformation was observed to have a
minimum stretch or maximum contraction ratio λi of 0.98 (2% contraction) within the
interfragmentary gap (Figure 5). Beyond the gap region, both rotational and stretch parameters
were minimal under uniaxial compressive loading. The fibrocartilage within the
interfragmentary gap indicated principal directions of stretch as not aligned with the
longitudinal tissue and possibly collagen fiber orientation. This identified region of tissue was
associated with a continuous principal direction of 30° to 40° in the medial side (left half) of
the callus cross-section (Figures 2 and 6). In other regions of the bony callus and cortex no
typical strain patterns or distributions were found (Figure 6).

4. Discussion
In the present study, ESPI acquired strain measurements were made on a highly nonuniform
sample with biomaterials ranging from soft tissues to cortical bone. The initial data provided
a higher resolution (0.2 mm) and sensitivity (0.01% strain) over the region of interest than
typical differential image correlation techniques [Bay, 2001]. Bony tissue located outside of
the fracture gap indicated minimal sign of stretch, including little rigid body rotation. The
localized rigid body rotation of the interfragmentary gap tissue is presented here as being
attributed to the anisotropic nature of constituent collagen fibers, which appear responsive to
the applied loading in specific orientations. The length changes as well as localized rotational
regions were clearly demarcated and correlated closely to soft tissues visible within the
specimen’s cross-section (Figure 2). Locations were identified within the gap having rotations
with or without coincident stretching. Anisotropy or a directional dependent response was
presumed highest when the tissue rotation occurred without stretch. This effect could also be
influenced by the regional heterogeneity and the interaction between soft and hard tissues. The
location where maximum rotation was observed in the interfragmentary gap also did not match
the maximum stretch location. We found that external load-induced rotation and stretch as
highly heterogeneous as well as anisotropic relative to that compared with previous studies
reporting global (homogeneous) strains for the description of interfragmentary gaps [Bottlang
et al., 2008]. Due to a limitation of the scanning capability of ESPI along the specimen edge
in this particular implementation, estimated values were not reliable at those boundaries. To
resolve this issue, a smoothing algorithm applied to typical edge data will need to be developed
in the future. Nevertheless, the maps of the interior area (especially that of the gap region of
interest) were shown to be continuous.

With this measurement technique, stretch/rotation calculations, collagen fiber assumptions,
and boundary conditions, the estimated gradient tensor F̂ can only partially explain
interfragmentary properties. More detailed information on fiber ultrastructure and orientation
are needed through histology. Moreover, for a quantitative description of the mechanical
behavior associated with mechanotransduction during fracture healing, the relationships
between experiments and numerical simulation need to be examined through multiple time
steps of healing for any accurate predictions. The resulting maps will provide unique materials
characterization for validation with other anisotropic indices [Kohles, 2000] and input for
ongoing numerical analysis.

The deformation gradient provides a novel measure of the mechanical response to loading,
especially when modeling the interface of soft and hard tissues with highly nonuniform material
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properties. Direct measurements with displacement extensometers typically determine strains
instead of defining the deformation gradient, despite the fact that strain tensors do not include
information about rotation. The approach here has revealed maps characterizing structural
anisotropy and heterogeneity of soft tissues within a nonunion fracture. The accuracy of the
estimated F̂ as described here was evaluated previously [Peter, 1987] and indicated that F̂ is a
statistically unbiased estimate. In load-bearing tissue, the principal direction of stretch will
often be aligned with tissue constituent orientation [Carter and Beaupre, 2001]. Since collagen
fibers were formed without orthogonal patterns in the callus region, the corresponding principal
directions of stretch indicated no expected patterns of orientation. However, in the
fibrocartilaginous region of the callus, the formed collagen fibers appear to be associated with
the directions of maximum principal stretch, offering some insight toward an indicator of
anisotropy. Future work will continue to address accuracy and sensitivity. Specifically, random
responses can be added to the gathered surface strain data-sets for each load sequence and the
signal-to-noise ratio (SNR) subsequently calculated [Teu and Kim, 2006]. Errors in the stretch
and rotation factors due to a range of SNR input will then be separately estimated. In addition,
more detailed histological results will facilitate an investigation associating principal stretch
directions with both bone and cartilage collagen fiber orientation.

The deformation gradient tensor provided a measure of the subtle deformation within a fracture
callus experiencing very low loads. It is especially attractive as it contains information about
stretch and rotation. Nonetheless, researchers often report values of strain instead of the full
deformation gradient. Here the analytical approach to computing strain from a deformation
gradient tensor was demonstrated. In a final twist, one can construct a strain tensor from the
deformation gradient, but one cannot do the reverse.

Notations and Conventions

a Scalar

a = aj Vector

A = Aij Second-order tensor
3A = Aijk Third-order tensor

a·a Scalar product of two vectors

a⊗a = Pij = ai aj Dyadic product of two vectors

A·a = Aij aj Inner product of a second-order tensor and a vector

A·B = Aij Bjk Inner product of two second-order tensors

A:B = Aij Bji Double inner product of two second-order tensors

AT Transposed matrix

â,â, Â Estimates of scalars, vectors, or tensors

ā, ā Mean scalar or vector

A−1 Inversion matrix

A*, a* Projection tensor or vector

|A| Determinant of matrix A

||a|| Absolute value of vector a
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Appendix

7. Appendix: Estimation of Deformation Quantities from Displacement Fields
The algorithm developed by Peters [1987] was used to estimate the F at each material point,
as defined at the centroid of surrounding markers. The final deformed position vector x of a
point P can be considered as a function of the initial position vector X. The position vector of
a neighboring point x + Δx such as point Q can be approximated to second-order accuracy by
a vectorial Taylor-series expansion:

(10)

where v represents the ‘model error’ (theoretical discretization or truncation error) due to the
fact that ΔX and Δx are finite vectors. Equation (10) involves the deformation tensor F = ∂x/
∂X from equation (2) and the gradient deformation tensor ∂2x/∂X2 of rank three. As ΔX and
Δx become infinitely small, equation (10) reduces to equation (1). The behavior of the material
is characterized by the displacements of a discrete set of points at the surface of the material.
To compute the approximated F from a discrete displacement field, the set of point contributing
to F as the ‘F group’ has to be defined. An F group is the set of material markers that surround
the central marker in which an F is to be computed, and is used in the theoretical model to
carry out the F estimation. More markers in an F group will produce more refined results. Yet,
if the distances between the central marker and the surrounding markers become large, the
remaining discretization error rises significantly and will adversely influence the
computational results. This statement is a generalization of earlier work showing that the spatial
composition of a strain group influences the quantitative results [Geers, 1996].

If, from a group of markers, the coordinates are measured for multiple deformed configurations
of a body (i = 1, 2, .., n), one can calculate the vectors ΔXi and Δxi which connect one marker
P of the group to the other markers (Figure 1a). The marker Pis called the central marker and
is written:

(11)

Equation (11) is the starting point for the estimate of F from measured marker coordinates.
The vectors ΔXi and Δxi are considered to be stochastic due to measurement variability. Based
on the maximum likelihood method, this maximum is reached when the differential of the
scalar function J:

(12)

is minimized (≈ 0) with respect to v and F. This minimization yields the estimates:
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(13)

where:

(14)

are called the marker distribution tensors and describe the geometric distribution of the surface
markers, providing a metric of the local strain resolution. In addition:

(15)

are the mean vectors of the markers in the reference and deformed configurations, respectively.

In most practical situations, markers are placed on the outer surface of an object. When the
outer surface is curved and/or rotates during loading, the marker coordinates have to be
measured in 3D, although the distribution of F on the surface is strictly 2D. Thus a 2D F is
estimated for 3D marker coordinates. For that purpose, two flat planes are defined through a
central marker in each of the reference and the deformed configurations, respectively. Consider
the reference configuration where a unit vector N is defined normal to the surface plane at point
P. The desired N can be found from:

(16)

where X00 is the marker distribution tensor in equation (14) and is a symmetrical and semi-
positive definite tensor. The desired unit vector N represents one of the eigenvectors of X00
where the multiplier λ0 is the corresponding eigenvalue. Further, N is the eigenvector which
corresponds to the smallest eigenvalue λ0 which is obtained at the maxima or minima as
described for equation (12), such that:

(17)

Here, nis the unit vector normal to the plane at P and λ1 is the smallest eigenvalue of X11. This
procedure then continues throughout the array of surface material points defining the 2D
deformation.

It was assumed that all markers lie in the plane just established. Of course this is not always
the case, thus the next step is to determine the projection of both of the marker position vectors
and the marker distribution tensor on the plane by using the projection tensor (or Projector)
such as (I − N ⊗ N) and (I − n ⊗ n).

One can show that
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(18)

The F̂ can be estimated by:

(19)

As  is singular, a so-called pseudo-inverse is introduced for the determination of F̂. It
follows that we may write  as:

(20)

(21)

In summary, this describes the deformation within a plane described by an array of markers.
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Figure 1.
A generalized 2D surface deformation shown with an intersecting gridwork defining material
markers (P and adjacent point Q) for reference and deformed states.
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Figure 2.
Representative histologically stained (toluidine blue) and native mid-sagittal cross-sections of
the ovine tibia indicating heterotrophic non-union in both the medial and lateral halves (left
and right, respectively). The cortical bone of the tibial cortex, the bony fracture callus, and the
soft tissue interfragmentary gap (circled fibrocartilage region) are distinct in each image.
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Figure 3.
The custom experimental test setup for planar strain measurement applying the electronic
speckle pattern interferometer (ESPI).
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Figure 4.
A map of localized soft tissue rotation φ within the interfragmentary gap of a fracture callus
during a 5 N compressive load. Bony rotation during the applied load is effectively zero
throughout the cross-section. Rotations are presumed to indicate anisotropic structural
properties such as off-axis collagen fiber orientation.
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Figure 5.
A map of the localized principal stretch of tissue within and around the interfragmentrary gap.
The location at the minimum stretch (maximum contraction) value is indicated by the arrow.
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Figure 6.
A map of the localized principal direction of tissue stretch throughout the fracture region
including the interfragmentrary gap. The circled region indicates tissue ultrastructure not
contiguously aligned with the longitudinal principal direction of loading (anisotropy causing
both rotation and minimal stretch). Here, the regions closer to darker blue display a more
horizontal direction of the principal stretch (0°). Regions closer to reddish-brown in color
indicate stretches more vertically oriented (90°).
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