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Can significant trends be detected in surface air temperature
and precipitation over South America in recent decades?

Daniel de Barros Soares,a,b Huikyo Lee,c Paul C. Loikith,d* Armineh Barkhordariana and Carlos
R. Mechosoa

a Department of Atmospheric and Oceanic Sciences, University of California Los Angeles, CA, USA
b Ecole Polytechnique, Palaiseau, France

c Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
d Department of Geography, Portland State University, OR, USA

ABSTRACT: Trends in near-surface air temperature and precipitation over South America are examined for the periods
1975–2004 and 1955–2004, respectively, using multiple observational and climate model data sets. The results for observed
near-surface air temperature show an overall warming trend over much of the continent, with the largest magnitudes over
central Brazil. These observed trends are found to be statistically significant using pre-industrial control simulations from
the fifth phase of the Coupled Model Intercomparison Project (CMIP5) as the baseline to estimate natural climate variability.
The observed trends are compared with those obtained in natural-only CMIP5 simulations, in which only natural forcings
(i.e. volcanoes and solar variability) are included, and in historical CMIP5 simulations, in which anthropogenic forcings (i.e.
changes in the atmospheric composition) are further incorporated. The historical CMIP5 simulations are more successful in
capturing the observed temperature trends than the simulations with natural forcings only. It is suggested that anthropogenic
warming is already evident over much of South America. Unlike the warming trends, observed precipitation trends over South
America are less spatially coherent with both negative and positive values across the continent. Significant positive trends are
found over South America in only one of the data sets used, and over a region that roughly encompasses the southern part of
La Plata Basin (southern Brazil, Uruguay, and northeastern Argentina) in all data sets used. The historical CMIP5 simulations
do not capture this feature. No firm conclusions are reached, therefore, for anthropogenic influences on precipitation changes
in the period selected for study.
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1. Introduction

Anthropogenic influences on climate change at the
global scales have been detected with high confidence in
near-surface air temperature (SAT) and less certainty in
precipitation (IPCC, 2013). SAT has increased over most
of the globe over the last several decades, whereas the
magnitude and even sign of precipitation trends can vary
regionally (Zhang et al., 2006). The detection of trends at
regional scales is particularly challenging because of the
general reduction in signal-to-noise ratio with decreasing
area of aggregation (Zwiers and Zhang, 2003).

This study aims to provide a quantitative identification of
trends in temperature and precipitation over South Amer-
ica during the periods 1975–2004 and 1955–2004, respec-
tively. South America is a geographically complex region.
The continent extends meridionally from roughly 15∘N to
60∘S and encompasses a variety of ecosystems and cli-
mate zones. The climate in some regions can be highly

* Correspondence to: P. C. Loikith, Department of Geography, PO Box
751 - GEOG, Portland State University, Portland, OR 97207-0751, USA.
E-mail: ploikith@pdx.edu

influenced through teleconnections by sea surface temper-
ature (SST) variability at several time scales in the Pacific,
Atlantic, and even the Indian Oceans. Examples of relevant
modes of SST variability are the El Niño Southern Oscil-
lation (Ropelewski and Halpert, 1987; Mechoso and Irib-
arren, 1992; Robertson and Mechoso, 1998), the Pacific
Decadal Oscillation (Mantua and Hare, 2002; Kayano and
Andreoli, 2007), and the Atlantic Multidecadal Oscilla-
tion (Knight et al., 2006). Influential geographical features
on South America’s climate include the Andes Mountains
(a major coastal range with the highest proportion of the
world’s tropical glaciers), Amazon rainforest (the biggest
tropical forest of the planet), Pantanal wetlands (the largest
wetlands in the world), and the first and fifth largest river
basins in the world (Amazon and La Plata, respectively).

According to the Working Group I contribution to
the Fifth Assessment Report (AR5) of the Intergovern-
mental Panel on Climate Change (Magrin et al., 2014),
SAT over South America has been increasing over the
last several decades, coincident with the retreat of trop-
ical glaciers (area loss between 20 and 50%; Bradley
et al., 2009). In contrast, precipitation changes during the
period have considerable geographical variations and are
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1484 D. DE BARROS SOARES et al.

highly influenced by SST variability. Espinoza Villar et al.
(2009) found that mean rainfall in the Amazon basin
has decreased in 1964–2003. This decrease had stronger
amplitude after 1982, especially in the Peruvian western
Amazon (Lavado Casimiro et al., 2012), where convection
and cloudiness have also decreased (Arias et al., 2011).
Precipitation increases have been detected in southeast-
ern South America and northwest Peru. Additional pre-
cipitation decreases have been documented in southwest
Argentina and southern Peru since 1960. Northeast Brazil
(NEB) has experienced a slight decrease in rainfall since
the 1970s (Marengo et al., 2013). It has been reported that
the dry-season length over South America has increased
significantly since 1979, and this feature has been asso-
ciated with a poleward shift of the southern subtropical
westerly jet (Fu et al., 2013). The global climate models
contributing to the fifth phase of the Coupled Model Inter-
comparison Project (CMIP5; Taylor et al., 2012) project a
robust increase in SAT across the entire continent by the
end of the 21st century. In contrast, the models project an
overall decrease in precipitation over subtropical dry belts
and an overall increase in precipitation over the Tropics
and mid to high latitudes by the end of the 21st century
(Knutti and Sedlacek, 2013).

In addition to natural climate variability, variations in
the composition of the atmosphere – and associated radia-
tive forcing – due to anthropogenic activities may con-
tribute to temperature and precipitation changes over
South America. Another major driver of climate change
over the continent is land-use changes due to expanding
agricultural activities and aerosols from biomass burn-
ing. In fact, land use and land cover changes are believed
to contribute approximately 20% of the current anthro-
pogenic CO2 emissions (Meyer and Turner, 1994). Doyle
and Barros (2011) indicate that increased streamflow of
major rivers in southeastern South America has been asso-
ciated with an increase in precipitation and a reduction in
evapotranspiration from land-use changes. Such changes
also have implications for climate change on a global scale.
Exbrayat and Williams (2015), for example, suggest that
biomass loss due to deforestation in the Amazon alone has
contributed approximately 1.5% of the recent increase in
atmospheric CO2.

This study goes beyond previous analyses of trends in
temperature and precipitation over the region. Firstly, we
use multiple observational data sets, taking uncertainties
across different records into consideration. Secondly, we
estimate uncertainty of the observed trends using ‘natu-
ral variability’ obtained from pre-industrial control sim-
ulations in CMIP5. The observed trends obtain statistical
robustness if they are stronger than the estimated level of
natural variability. Lastly, we compare the trends obtained
using observational data with those calculated from two
different experiments in CMIP5: (1) simulations with
natural-only forcings (i.e. volcanoes and solar variability)
and (2) simulations with both natural and anthropogenic
forcings (historical runs). Based on this quantitative com-
parison between observed and simulated trends consid-
ering natural variability, we will suggest that observed

trends, particularly in SAT, can be better reproduced by
models only when both natural and anthropogenic forcings
are included.

The remainder of this article is organized as follows. In
Section 2, we discuss the observational data sets used, the
data from CMIP5 models, and the methodology adopted.
Sections 3 and 4 present the results including the detection
of observed trends in SAT and precipitation, quantification
of uncertainty in the observed trends, and comparison
between observed and simulated trends. In Section 5, the
main conclusions and a discussion are presented.

2. Data sets and methods

The period chosen for study of SAT is 1975–2004.
Barkhordarian et al. (2012) analysed climate change over
the Mediterranean region for the same period. For precipi-
tation, a longer period of 1955–2004 was selected because
its temporal and spatial variability are stronger than for
SAT. The ending year of 2004 was chosen as to allow for
comparison of observed trends with CMIP5 historical runs
that end in 2005.

2.1. Observational data sets

The observational records for SAT and precipitation were
obtained from two data sets, Climate Research Unit (CRU)
TS v.3.22 (Harris et al., 2014) and University of Delaware
(UDEL) v.2.01 (Matsuura and Willmott, 2009). In addi-
tion, for precipitation we use the Global Precipitation Cli-
matology Centre (GPCC) full v.6 (Schneider et al., 2011;
Schneider et al., 2014). All data sets contain monthly
land station records (mean SAT or total precipitation) that
are quality controlled, and provided on a 0.5∘ × 0.5∘ lat-
itude/longitude grid. Emphasis is placed on GPCC for
precipitation as it has the largest number of contributing
gauge-based observations (>67 200 worldwide) (Schnei-
der et al., 2014). Juarez et al. (2009) compared GPCC pre-
cipitation with several other data sets over the tropical
South America and showed reasonable agreement in pre-
cipitation between the data sets.

2.2. Model data sets

To assess the unforced variability of the climate system
and its response to natural or anthropogenic forcing, we
use the output of a 14-member subset of global climate
models participating in the CMIP5 project. For each model
(Table 1), we select one pre-industrial run, in which the
atmospheric concentrations of all well-mixed greenhouse
gases are held at pre-industrial levels. The pre-industrial
simulations include an unperturbed land-use component
and non-evolving emission and concentration of natural
aerosols. Our hypothesis is that the distributions of tem-
perature and precipitation trends during 30 and 50-year
period of these natural-only simulations can provide an
estimate of the variability of the climate system in the
absence of external forcings. We also analyse historical
simulations where external forcings are based on observed
time-evolving data. The forcings in this case include a

© 2016 Royal Meteorological Society Int. J. Climatol. 37: 1483–1493 (2017)



CURRENT TEMPERATURE AND PRECIPITATION TRENDS OVER SOUTH AMERICA 1485

variable atmospheric composition (including greenhouse
gases) due to both anthropogenic and volcanic influences;
solar forcing; land use; emissions or concentrations of
short-lived species, and natural and anthropogenic aerosols
or their precursors. The historical simulations span the
period 1850–2005 (or longer) and allow us to discuss
model performance against observed climate change in
recent decades. Finally, for some models, we use the out-
put from a natural-only run, which only includes natural
forcing (i.e. volcanoes and solar variability). Table 1 gives
further details on models and runs.

As a preliminary step, the output of the CMIP5 mod-
els was interpolated to the same grid as the observational
data sets (0.5∘ × 0.5∘ latitude/longitude grid). Annual and
seasonal means were calculated for each grid point. In the
following, seasons will be named according to the South-
ern Hemisphere [December–February (DJF) – summer,
March–May (MAM) – fall, June–August (JJA) – winter,
and September–November (SON) – spring].

2.3. Methodology

The methodology employed in this study closely fol-
lows that used in detection and attribution analysis for
the Mediterranean region by Barkhordarian et al. (2012,
2013). We start by performing a least squares fit to cal-
culate the linear trends over the selected 30- and 50-year
period for SAT and precipitation, respectively. Trends are
weighted by the areal average of each grid cell, as a func-
tion of latitude, as are trends averaged over sub-regions
(e.g. over Brazil, La Plata Basin, or the entire continent).

The significance of trends is tested against the null
hypothesis that they arise from unforced variability alone,
as estimated on the basis of the CMIP5 pre-industrial con-
trol runs. To estimate the distribution of trends in tem-
perature (precipitation) in an unforced climate, we use
the results from these pre-industrial runs for 166 (81)
non-overlapping 30-year for SAT (50-year for precipita-
tion) windows for a total of 4980 (4050) years (Table 1).
We say that a trend, in either an observational or model data
set, is significant when its p value is <0.05, i.e. when the
trend is bigger (or smaller) than 95% of the trends derived
from the pre-industrial control runs.

After testing significance in the observed trends, we
compare them with those obtained from the CMIP5 mod-
els’ historical runs. Each model may contain more than one
ensemble per historical simulation, the difference among
them being the initial conditions and physics imposed. In
this article, we only use one ensemble per model. Trends
are computed for individual models and the multi-model
ensemble mean, together with the standard deviation of the
sampling distribution of this mean,

𝜎mean = 𝜎√
n

(1)

where 𝜎 is the intra-model standard deviation and n is the
number of models.

We say that a trend obtained from the observational data
sets for a given variable, region, season, and period agrees

with that in the multi-model ensemble of simulations if
the difference between trends can be explained by the
unforced variability of the climate system and the ensem-
ble mean variance. That is, we consider agreement if,

(
𝜇obs + p5%, 𝜇obs + p95%

)

∩
(
𝜇model − 𝜎model, 𝜇model + 𝜎model

)
≠ ∅ (2)

where 𝜇obs is the observed trend, and p5% (p95%) is
the 5th (95th) percentile in the distribution of the
trends derived from the pre-industrial control runs.
So (𝜇obs + p5 %,𝜇obs + p95 %) approximately represents
the 90% confidence interval of the forced trend (taking
into account the unforced variability as an estimate from
the pre-industrial control run). 𝜇model and 𝜎model are the
mean and standard deviation of trends from multiple
models. Illustration of Equation (2) is shown later in
Figure 4. In the same way, we assess the agreement in
trends between observation and a multi-model ensemble
of the natural-only runs, where only natural forcings (e.g.
volcanoes and solar variability) are taken into account.

Furthermore, we compare the spatial patterns of
observed and simulated trends in SAT and precipita-
tion. For this comparison, we use two parameters as
evaluation metrics, the pattern correlation coefficient and
model’s biases normalized by spatially averaged trends in
observation. The pattern correlation coefficient is given
by

∑
𝜔(i,j) ·

(
proj(i,j) − pŕoj

)
·
(
obs(i,j) − os

)
√

𝜔(i,j)·
(
proj(i,j) − pŕoj

)2 ·
√

𝜔(i,j)·
(
obs(i,j) − b′

)2
(3)

where proj(i,j) and obs(i,j) are the simulated and observed

trends at a grid point (i and j) respectively, proj and obs
are their mean and 𝜔(i,j) is a weight function that accounts
for the difference in grid-box size as a function of latitude.
With the same notation, the normalized difference is given
by

proj − obs

obs
(4)

In what follows, SAT trends are presented for the entire
South American continent and for Brazil. Precipitation
trends are also presented for the entire continent, and for
the southern part of the Plata Basin, which is defined as
the land region north of 37∘S, south of 23.5∘S and east of
60∘W. Our reasons for this choice of regions are given in
the following section.

3. Results

3.1. Surface air temperature

Trends in annual mean SAT for the period 1975–2004
from CRU and UDEL over South America are shown in
Figure 1. Stippling indicates grid points where the trend
is significant according to the criteria defined in Section 2.
The results obtained with the two data sets broadly agree in
sign, magnitude, and significance. A significant warming

© 2016 Royal Meteorological Society Int. J. Climatol. 37: 1483–1493 (2017)



1486 D. DE BARROS SOARES et al.

Table 1. The 14 CMIP5 models used in this study along with the number of years of control runs used to estimate the unforced
variability of temperature (precipitation) trends.

Model References Pre-industrial run (years) Historical run Natural-only run

ACCESS1-0 Bi et al. (2013) 480 (400)
√

–
BCC-CSM1-1 Wu et al. (2014) 480 (350)

√ √
BNU-ESM Ji et al. (2014) 540 (550)

√ √
CANESM2 Flato et al. (2000) 630 (450)

√ √
CCSM4 Gent et al. (2011) –

√
–

MRI-CGM3 Yukimoto et al. (2011) –
√

–
CNRM-CM5 Voldoire et al. (2013) 150 (−)

√ √
CSIRO-Mk3-6-0 Rotstayn et al. (2010) –

√
–

GISS-E2-R Miller et al. (2014) –
√

–
INMCM4 Volodin et al. (2010) 480 (450)

√
–

IPSL-CM5A Dufresne et al. (2013) 900 (950)
√ √

MIROC5 Watanabe et al. (2010) 540 (300)
√

–
MPI-ESM Marsland et al. (2003) 780 (600)

√
–

NORESM1 Bentsen et al. (2013) –
√

–

The types of runs, historical or natural-only, performed by each model are also displayed.

CRU

(a) (b)

UDEL

1.0

0.5

0.0

–0.5

–1.0

(K
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 d
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e)

Figure 1. Annual mean SAT trends (K per decade) over South America
for the period 1975–2004 as obtained from the CRU (a) and UDEL data

sets (b). The dots indicate regions where the trend is significant.

trend is apparent over most of Brazil as well as over parts
of Venezuela and Peru, with a maximum warming over
north-central Brazil. Significant trends over the Guianas
are present only in the CRU data set, while trends over
Bolivia and Paraguay are present only in UDEL. These
warming trends are in agreement with the IPCC AR5
(Magrin et al., 2014) that indicates warming has been
detected throughout South America since the mid-1970s.
Cooling trends can be observed over western Bolivia and
some regions in northern Patagonia. The patterns in the
seasonal mean trends of SAT are very similar to those in
the annual mean (Figure 2). We note that the maximum
warming over north-central Brazil is more pronounced
in the winter season (from June through August). This
season is also characterized by a significant cooling trend
over western Bolivia and the Pacific coast of Peru. In
view of these results, we also consider the SAT trends
over Brazil separately. Figure 3 shows the evolution of
30-year trends in the region for the period of 1902–2013.
In the annual mean, temperature has been increasing for
almost the entire period, but the warming trend becomes
significant after 1968 (block 1968–1997), indicating a
possible external forcing exerted. This same pattern is
present in both the summer and winter seasons. As shown

DJF MAM

JJA SON

1.0

0.5

0.0

–0.5

–1.0

(K
 p

er
 d

ec
ad

e)

Figure 2. Seasonal mean SAT trends (K per decade) over South America
for the period 1975–2004 from the CRU data set. The dots indicate

regions where the trend is significant at the 95% confidence level.

in Figure 2, the overall warming trend in Brazil is greatest
in winter (JJA).

We next assess the agreement of the observed trends
in SAT with those in the CMIP5 simulations. Figure 4
shows the seasonal and annual mean trends in observation
(together with the estimation of the unforced variabil-
ity), the CMIP5 historical simulations, and the CMIP5
natural-only simulations. For the entire South American
continent, the multi-model ensemble of historical runs
reproduces the observed trends very well with reasonable
agreement in all seasons taking in account the unforced
variability (red whiskers in Figure 4). In the case of the
natural-only runs, the models exhibit a much weaker
warming trend. For Brazil, the multi-model ensemble
historical runs show warming in all seasons. However,
the models consistently underestimate the observed
warming with differences larger than the uncertainty in
observed trends. There is no clear agreement among the

© 2016 Royal Meteorological Society Int. J. Climatol. 37: 1483–1493 (2017)
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Figure 3. Moving 30-year temperature trends in the CRU dataset over Brazil for annual, DJF, and JJA. The year indicates the end of a 30-year block.
The dashed lines indicate the 5th and 95th percentiles of trends estimated from the pre-industrial control runs.

natural-only runs and observations in any season, indi-
cating that anthropogenic forcing is essential for CMIP5
models to reproduce the observed SAT trends over South
America.

Figure 5 shows the point-wise agreement between obser-
vations and CMIP5 ensemble members over South Amer-
ica. Shading indicates the number of CMIP5 models (out
of 14) whose SAT trends agree with observations to within
the uncertainty range of unforced variability. Most mod-
els capture the trends in most regions, as indicated by the
predominance of green shading. The biggest exception is
for a region over north-central Brazil where the observed
strong warming trend is not captured by the models. Addi-
tionally, some small regions in western Bolivia and over
the Pacific coast of Peru, Chile, Ecuador, and Colom-
bia show poor agreement. This brings us to an important
point that the future SAT projection of CMIP5 models in
these regions may underestimate trends under a changing
climate.

The individual performance of each model can be sum-
marized by its ability to represent the spatially averaged
warming trends and the warming patterns over the con-
tinent. Figure 6 shows the spatial correlation coefficients
and the differences in the mean trend between the obser-
vational data, historical simulations, and natural-only sim-
ulations. The differences are normalized by the spatially
averaged trends in the observation. In 10 of the 14 CMIP5
historical runs examined, the magnitude of the differences
from observed trends are within the uncertainty range
of the unforced variability, which we interpret as having
good agreement with observations. On the other hand,
all five natural-only runs underestimate observations and
the differences lie outside the range of unforced variabil-
ity. Five models (ACCESS1-0, MRI-CGM3, GISS-E2-R,
MIROC5, and MPI-ESM) stand out in capturing the warm-
ing pattern, with a higher correlation coefficient, as can
be seen by their correct prediction of a maximum warm-
ing over Brazil (Figure 7). Two models (BNU-ESM and
CNRM-CM5), on the other hand, are negatively correlated
with observations, with a maximum warming in the south-
ern part of the continent.

3.2. Precipitation

Figure 8 compares precipitation trends over the period
1955–2004 for the three observational data sets (CRU,
UDEL, and GPCC). In all cases, a significant positive trend
is apparent over a region that roughly encompasses the
southern part of La Plata Basin (southern Brazil, Uruguay,
and northeastern Argentina). While the trends over Patago-
nia are small, they are significant primarily because the cli-
matological intra-seasonal variability in precipitation over
this region is relatively small. Positive significant trends
are also found in parts of Colombia, Ecuador, a region
between Brazil, Guiana, and Venezuela, and a region
between Brazil, Peru, and Bolivia. Negative significant
trends are observed in all data sets over southern Chile and
French Guiana. Similar to Rao et al. (2015), which studied
precipitation trends over Brazil for the period 1979–2011,
we find significant negative trends over regions in cen-
tral and northern Brazil (GPCC and UDEL) and along
the border between Brazil and Venezuela (all three data
sets), as well as significant positive trends in western NEB
(CRU) and in the border between Brazil and Peru (CRU
and UDEL).

Unlike SAT in Figure 2, the magnitude and signs of the
trends vary depending on season (Figure 9). The positive
trends over the southern Plata Basin are stronger in the
austral fall (MAM) and spring (SON), while negative
trends appear in winter (JJA). Even though these winter
trends are weaker than in any other season, they are sig-
nificant over almost the entire continent due to the weak
variance in precipitation during this season. In the fall,
we find positive significant trends north of the equator
in Colombia, Venezuela, and Guiana, but no significant
trends in the other seasons. Another interesting feature
is that the negative trends over the Amazon Basin are
stronger during spring, in accordance with Espinoza
Villar et al. (2009). Finally, in summer (DJF), there
are significant positive trends in many regions of Peru,
Bolivia, Argentina, Uruguay, and Brazil with large spatial
variability.

Narrowing down on the southern Plata Basin where
the trends are strongest and regionally homogeneous,

© 2016 Royal Meteorological Society Int. J. Climatol. 37: 1483–1493 (2017)
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Figure 4. Temperature trends (K per decade) over (a) South America and (b) Brazil for the period 1975–2004. The light grey bar represents the
observed trends (average between the two data sets, CRU and UDEL). The dark grey bar represents the predictions from 14 models that take into
account the historical forcings (anthropogenic and natural). The green bar represents the predictions (from five models) using only natural forcings.
The red whiskers represent the 90% confidence interval of the unforced variability as estimated from the pre-industrial control runs. The blue whiskers

represent the standard deviation of the trends across multiple models for each experiment.
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Figure 5. Agreement between the trends in the observation and in the
predictions by different models with historical forcing for the period of
1975–2004. The plot represents the number of models that agrees with

observations, within the uncertainty range of the unforced variability.

Figure 10 reveals that the 50-year trends in annual pre-
cipitation have been significant during the second half of
the last century. There are, however, considerable seasonal
variations. Trends in summer are consistently positive over
the period (Figure 10); however, values are significant only
during 1960–1975 and 1995–2005. Positive trends in pre-
cipitation over La Plata Basin, especially in its southern
part, have been related to the increase in streamflow of
the main rivers of the region (Genta et al., 1998; Barros
et al., 2005; Doyle and Barros, 2011). Trends in winter are
also positive over almost all of the last century, but they
are significant mostly in the period 1980–2000 after which
they reverse sign (Figure 10). The recent decrease in win-
tertime precipitation of >1 mm month−1 per decade is sig-
nificant compared to those from the pre-industrial control
simulations.

Figure 11 shows the seasonal and annual mean trends
in the observations and CMIP5 simulations over South
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Figure 6. Individual performance of models in the historical and
natural-only runs for the annual mean SAT over the South American
continent. The performance is measured by the pattern correlation coef-
ficients between observed and simulated trends, and the normalized
biases of the models. The two red lines indicate the 5th and 95th per-
centiles of trends as estimated from the pre-industrial control runs. The
CNRM-CM5 natural-only run, not shown in the figure, has a ratio of

−0.99 and correlation of −0.32.

America and southern Plata Basin together with an esti-
mation of the unforced variability. Over the South Ameri-
can continent, the annual mean precipitation in the CRU
and GPCC data sets exhibits an increasing trend that
is significant only in the CRU (0.93 mm month−1 per
decade). For this data set, we also find a significant
increasing trend in precipitation for summer, fall, and
spring (1.3, 1.3, and 1.1 mm month−1 per decade, respec-
tively). No significant trends are obtained in winter. The
multi-model ensemble of the historical runs underesti-
mates the magnitude of the observed trends. Over the
southern Plata Basin, all three observational data sets
obtain a significant increase in annual mean precipita-
tion (2.7 mm month−1 per decade in average) as well as
in the seasonal mean for summer, fall, and spring (4.2,
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Figure 7. Annual mean SAT trends over South America for the period 1975–2004 as obtained from 14 CMIP5 models’ historical runs and the CRU
data set.
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Figure 8. Monthly total precipitation trends (mm month–1 per decade) over South America for the period 1955–2004 as obtained from the CRU,
UDEL, and GPCC data sets ((a)–(c), respectively). The dots indicate regions where the trend is significant at the 95% confidence level.

4.7, and 3.4 mm month−1 per decade, respectively). The
CRU and UDEL data sets exhibit a significant decreas-
ing trend during winter (−1.6 and −2.9 mm month−1 per
decade, respectively). The multi-model ensemble of sim-
ulated trends from CMIP5 historical runs, however, does
not show significant trends either in the annual mean or in
any season.

Unlike SAT, it is hard to define precipitation trends rep-
resenting the entire South American continent. This is pri-
marily because precipitation trends at and near the Tropics
are weaker than the unforced variability. Figure 12 shows
the annual and season mean precipitation and trends from
the GPCC data set for the period 1955–2004 over three
latitude bands of South America representing the Trop-
ics, subtropics, and extratropics (0∘–15∘S, 15∘–30∘S, and
30∘–45∘S, respectively). These three regions shown in

Figure 12, exclude grid points that lie west of the Andes,
where higher spatial resolutions than CMIP5 models is
required to simulate realistic precipitation and its trends.
The annual mean precipitation generally decreases from
north to south. The tropical and subtropical bands show
minimum precipitation during winter and maximum dur-
ing summer, while the extratropical band does not have
clear wet and dry seasons. The annual mean precipitation
over the period 1955–2004 shows a decreasing trend over
the tropical band and an increasing trend over the subtropi-
cal band, none of which is significant. The only significant
trends in precipitation can be found in the extratropical
band; these trends are positive except during winter. There-
fore, there is considerable uncertainty in the observed pre-
cipitation trends over the Tropics and subtropics in South
America. The trend over the extratropics is significant in
the observations for all seasons.
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Figure 9. Seasonal mean GPCC precipitation trends (mm month–1 per
decade) over South America for the period 1955–2004. The dots indicate

regions where the trends are significant.

4. Conclusions

Using two observational data sets, our study finds that
SAT has been increasing over much of South America dur-
ing the period 1975–2004, which is in line with IPCC
AR5. Unlike previous studies, we quantified uncertainty of
the observed trends by comparison with those obtained in
pre-industrial CMIP5 simulations. From the CMIP5 simu-
lations with natural-only forcing, we find that this overall
warming over the continent cannot be explained by natural
climate variability alone. Moreover, the historical CMIP5
simulations with both natural and anthropogenic forcing
reproduce the observed warming trends with reasonable
fidelity. These results suggest that anthropogenic warming
is already evident over much of South America.

The warming detected is particularly strong over
most of Brazil where values up to 1 K decade−1 are
obtained. However, simulated warming trends show some
discrepancies at the regional level. Trends in CMIP5
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Figure 10. Moving 50-year precipitation trends over the southern part of the Plata Basin for the annual and seasonal means, obtained from the GPCC
data set. The years in the x-axis indicate the end of a 50-year block. The dashed lines indicate the 5th and 95th percentiles of trends estimated from

the pre-industrial control runs.

historical simulations are systematically weaker than in the
observations over central Brazil, and substantially differ-
ent from the observations over the western part of the con-
tinent. Over much of southern and northern South America
trends are relatively weak. In regions where some models
simulate observed warming trends well, confidence can be
boosted in future projections of temperature by the mod-
els. Similarly, in regions where models show considerable
disagreement with observations regarding warming trends,
caution might be exercised in interpreting future projec-
tions. The entire South American continent is an example
of the former regions and central Brazil is an example of
the latter. However, natural variability contributes substan-
tial uncertainty to projected temperature trends on local,
regional, and continental scale (Deser et al., 2012).

Trends in precipitation over the period 1955–2004 are
found to be much less spatially coherent, with many
sign changes over relatively short distances. None of the
observation data sets show significant trends in precipita-
tion averaged over the entire South American continent.
Over an extratropical region that roughly encompasses the
southern part of La Plata Basin (southern Brazil, Uruguay,
and northeastern Argentina), all observational data sets
show significant trends compared to unforced natural vari-
ability. The historical CMIP5 simulations do not capture
this feature. It is well known that CMIP5 models project
an overall decrease in precipitation over the subtropics and
an overall increase in precipitation over the Tropics and
mid to high latitudes by the end of the 21st century. Our
observational data sets for a recent period reproduce this
feature with significance only over mid to high latitudes.
This emphasizes the importance of taking regional pre-
cipitation characteristics into account for predictions of a
changing future climate.

Thus, while anthropogenic global warming is being
detected in the temperature record, the effects on
precipitation have yet to emerge from the noise in most
locations in South America. The spatial inhomogeneity
of the precipitation trends, which is largely influenced by
orography and large-scale circulation, provides a difficult
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target for assessing model fidelity. The skill in reproducing
the mean precipitation climatology can offer some back-
ground on whether the CMIP5 models have the capability
to simulate future changes in precipitation with success.
Model success varies considerably across the CMIP5
ensemble (see Supporting Information). Although most
models capture a precipitation maximum over Amazonia
and a minimum over the southern portion of the continent
in austral summer, one cannot claim overall success in the
simulation of the American monsoon system.

This study raises several questions. Will the regions
that have experienced the greatest warming continue to
warm more rapidly than other regions? Will the regions
that have not experienced significant warming begin to
warm (or cool) in the coming decades? What is the role of
low-frequency large-scale climate variability (e.g. remote
SST forcing) in the magnitude of observed trends? For
precipitation, further investigation into regional changes,

changes in the seasonal cycle, and connecting observed
changes with mechanisms would shed more light on the
meaning of the results presented here. Such work would
be a logical next step in understanding what effect if
any, anthropogenic climate forcing has had on precip-
itation over South America versus what component of
the observed trends is a result of low-frequency climate
variability.

We end by emphasizing that our analysis relies on a sig-
nificant and somewhat controversial assumption, namely
that the magnitude of the natural climate variability as
described by CMIP5 pre-industrial simulations is realis-
tic. The robustness of the detection results, henceforth,
is subject to models correctly simulating natural climate
variability. It is now recognized that models may underes-
timate modes of climate variability such as the El Niño
Southern Oscillation, which has strong climate impacts
over South America (Kumar et al., 2013; Chadwick et al.,
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2015). This underestimation may lead to spurious detec-
tion results, if as a consequence the simulated natural vari-
ability is of smaller amplitude than the real variability. In
addition, we find significant results, particularly in precip-
itation, for a relative small region such as La Plata Basin
where global climate models have few grid points. We
assign confidence to these results due to the several studies
with observational data for the regions that agree with our
findings.
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