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Memristor-Based Volistor Gates Compute Logic 

With Low Power Consumption 
Muayad Aljafar, Paul Long, and Marek Perkowski, 

M. Aljafar, P. Long. and M. Perkowski are with the Department of Electrical and Computer Engineering, Portland 

State University, Portland, OR 97201, USA (email: muayad@pdx.edu; pwl@pdx.edu; mperkows@ee.pdx.edu). 

Abstract— We introduce a novel volistor logic gate which uses voltage as input and resistance as output. Volistors rely 

on the diode-like behavior of rectifying memristors. We show how to realize the first logic level, counted from the input, of 

any Boolean function with volistor gates in a memristive crossbar network. Unlike stateful logic, there is no need to store 

the inputs as resistances, and computation is performed directly. The fan-in and fan-out of volistor gates are large and 

different from traditional memristor circuits. Compared to solely memristive stateful logic, a combination of volistors and 

stateful inhibition gates can significantly reduce the number of operations required to calculate arbitrary multi-output 

Boolean functions. The power consumption of volistor logic is computed and compared with the power consumption of 

stateful logic using the simulation results obtained by LTSpice—when implemented in a 1×8 or an 8×1 crosspoint array, 

volistors consume significantly less power. 

Index Terms— Crosspoint array, logic computation, memristive crossbar, rectifying memristor, stateful inhibition, 

volistor logic.  

1. INTRODUCTION

Stateful logic computation with memristors is an area of active research. Borghetti et al. [1] proposed realizing stateful 

logic via material implication (IMP). In classical stateful memristive circuits, logic signals utilize resistances on inputs 

and outputs, meaning the previous resistance state of the memristor affects the operations. In contrast, volistors do not 

use the previous resistance state in calculations. Other stateful logic gates have been proposed as well, e.g. inhibition 

(INH) [2] or AND [3]. INH gate implements Boolean function 𝑎�̅� where 𝑎 and 𝑏 are positive and negative inputs, 

respectively. In stateful logic, the logic values are encoded by the resistance states of memristors. Stateful logic is 

usually performed in a generic structure called a crossbar array. Leakage pathways due to the half-select of memristors 

in a crossbar row or column can be suppressed by using rectifying memristors [4]. One key disadvantage of stateful 

logic is that a long sequence of operations is required to implement an arbitrary Boolean function.  
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Memristor ratioed logic (MRL) [5] is another approach to logic computation and is based on the resistive ratio of 

nonrectifying memristors.  In MRL, logic values are voltage-based pulses and circuit structures are dependent entirely 

on the Boolean function being implemented. The stable output voltage depends only on input voltages regardless of 

the resistance of the memristors; however, the resistances affect the propagation delay of the gate. MRL gates consume 

both dynamic and static power. Further, as it lacks the inversion function, MRL is not logically complete without 

CMOS inverters.  

In this paper we introduce a new concept in memristor logic. We call it the volistor gate (voltage-resistor gate) 

which has voltage-based inputs and resistance based-outputs. Therefore, volistor gates can only be used in the first 

level of logic implementation. This level can be composed of various types of gates and be complex. Logic synthesis 

methods with volistors are therefore different from classical logic synthesis. Volistors are implemented in generic 

crossbar arrays of rectifying memristors [6]. Unlike stateful logic, voltage pulses are the actual inputs to the volistor 

gates. It is always assumed that complemented input variables are available as voltage signals at no additional cost. 

Sometimes it is required that the logic input signals are available in both positive and negative forms, e.g. 𝑥 and �̅�. In 

addition, there is no propagation penalty as it exists in MRL. In a 1×8 crosspoint array, the propagation delay in 

volistors is shorter than in stateful INH. In a 1×8 crosspoint array, multi-input multi-output volistor gates consume 

less power than the corresponding stateful logic. The outputs of volistors are stored as the resistances of the target 

memristors. To provide the correct functionality, target memristors need to be initially closed, i.e. target memristors 

must be set to the low resistance state. With different coding schemes, either a volistor OR and NAND logic set or a 

volistor NOR and AND logic set can be realized in the same crossbar array. For instance, if the closed state of a 

memristor encodes logic ‘0’ and the open state of a memristor encodes logic ‘1’, the set of OR and NAND operations 

is implemented. The reverse encoding scheme implements the NOR and AND logic set. With volistor logic, crossbar 

drivers need to supply only three voltage levels: V+, V−, or 0V. In addition, the control circuitry must be capable of 

setting arbitrary nanowires in the crossbar to either high impedance (HZ) or grounding these nanowires through load 

resistors RG. Obviously, the volistor network layer cannot implement every Boolean function such as Sum of Products. 

However, a combination of a volistor NOR and AND with stateful INH, or their dual logic of volistor OR and NAND 

with stateful IMP, can both be used to realize arbitrary multi-output Boolean functions. As will be presented, this 

hybrid realization is faster than an equivalent circuit realized with only stateful gates. The speed comparison of hybrid 

and stateful logic circuits will be presented in Section 4.  
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In Section 2, the hysteresis behavior of rectifying memristors is reviewed. In Section 3, volistor gates are described. 

In Section 4, the synthesis of arbitrary Boolean functions is discussed. In Section 5, the power consumption of volistor 

gates is computed and compared with stateful logic. In section 6, volistors in memory application are discussed. 

Section 7 is a summary of the work. 

2. RECTIFYING MEMRISTORS 

We used a rectifying memristor [4], [6] as a linear bistable device [7]. The behavior of a rectifying memristor is 

defined in (1), following [7]. Equation (1) describes a simplified model of diode-like memristor 𝑀 demonstrated 

practically in [4]. 𝑅𝑀 denotes resistance of memristor 𝑀; 𝑠 is the state variable of 𝑀 normalized to a real number in 

the range 0 through 1, 𝑠 𝜖 [0, 1], and therefore 𝑅𝐶𝐿𝑂𝑆𝐸𝐷 ≤ 𝑅𝑀 ≤ 𝑅𝑂𝑃𝐸𝑁; 𝑣 is the voltage applied across 𝑀. 

𝑅𝑀 = {
𝑅𝑂𝑃𝐸𝑁 (

𝑅𝐶𝐿𝑂𝑆𝐸𝐷

𝑅𝑂𝑃𝐸𝑁
 )
𝑠

       𝑣 ≥ 0

𝑅𝑂𝑃𝐸𝑁                                𝑣 < 0
                                                                                                                           (1) 

𝑅𝑂𝑃𝐸𝑁 denotes high resistance state of memristor 𝑀;  𝑅𝐶𝐿𝑂𝑆𝐸𝐷  is low resistance state of memristor 𝑀. It is assumed 

that 𝑅𝑂𝑃𝐸𝑁= 500MΩ and 𝑅𝐶𝐿𝑂𝑆𝐸𝐷  = 500KΩ which are consistent with empirical results reported in [4]. The dynamic 

behavior of the state variable 𝑠 is such that 𝑠 changes in time as described in the linear differential Equation (2). In 

Equation (2), 𝑣𝐶𝐿𝑂𝑆𝐸  is a positive threshold voltage; 𝑣𝑂𝑃𝐸𝑁 is a negative threshold voltage. For simplicity, it is assumed 

that the switching threshold voltages 𝑉𝐶𝐿𝑂𝑆𝐸  and 𝑉𝑂𝑃𝐸𝑁are symmetric where 𝑉𝐶𝐿𝑂𝑆𝐸 = −𝑉𝑂𝑃𝐸𝑁 = 1V ; 𝛼  is a positive 

constant associated with the switching rate of the memristor. Here, α is assumed to be 125 × 107 (V. s)−1, following 

[7]. 

 

𝑑𝑠

𝑑𝑡
= {
𝛼(𝑣 − 𝑣𝐶𝐿𝑂𝑆𝐸)       𝑣 > 𝑣𝐶𝐿𝑂𝑆𝐸
𝛼(𝑣 − 𝑣𝑂𝑃𝐸𝑁)        𝑣 < 𝑣𝑂𝑃𝐸𝑁
 0                              𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

                                                                                                                                                   (2) 

Fig. 1a shows the 𝑖 − 𝑣 characteristic of rectifying memristor 𝑀 described in (1) and (2). In this work, the positive 

programming voltage is defined 𝑣 = 1.2𝑉 and denoted by VSET; the application of VSET will close switch 𝑀 when it 

is open. Also, the negative programming voltage is defined 𝑣 = −1.2𝑉 and denoted by VCLEAR; the application of 

VCLEAR will open switch 𝑀 when it is closed. Substituting all related values in Equation (2) results in:  

 

https://www.researchgate.net/publication/51853226_A_Functional_Hybrid_Memristor_Crossbar-ArrayCMOS_System_for_Data_Storage_and_Neuromorphic_Applications?el=1_x_8&enrichId=rgreq-dec6df1118cf36f22f81e2c3cd7f2ac2-XXX&enrichSource=Y292ZXJQYWdlOzMwNjEwNDM2MztBUzo0MDk1Mjk0OTA2NTcyODBAMTQ3NDY1MDg0NzMzMA==
https://www.researchgate.net/publication/51853226_A_Functional_Hybrid_Memristor_Crossbar-ArrayCMOS_System_for_Data_Storage_and_Neuromorphic_Applications?el=1_x_8&enrichId=rgreq-dec6df1118cf36f22f81e2c3cd7f2ac2-XXX&enrichSource=Y292ZXJQYWdlOzMwNjEwNDM2MztBUzo0MDk1Mjk0OTA2NTcyODBAMTQ3NDY1MDg0NzMzMA==
https://www.researchgate.net/publication/51853226_A_Functional_Hybrid_Memristor_Crossbar-ArrayCMOS_System_for_Data_Storage_and_Neuromorphic_Applications?el=1_x_8&enrichId=rgreq-dec6df1118cf36f22f81e2c3cd7f2ac2-XXX&enrichSource=Y292ZXJQYWdlOzMwNjEwNDM2MztBUzo0MDk1Mjk0OTA2NTcyODBAMTQ3NDY1MDg0NzMzMA==
https://www.researchgate.net/publication/276931570_A_cellular_computing_architecture_for_parallel_memristive_stateful_logic?el=1_x_8&enrichId=rgreq-dec6df1118cf36f22f81e2c3cd7f2ac2-XXX&enrichSource=Y292ZXJQYWdlOzMwNjEwNDM2MztBUzo0MDk1Mjk0OTA2NTcyODBAMTQ3NDY1MDg0NzMzMA==
https://www.researchgate.net/publication/276931570_A_cellular_computing_architecture_for_parallel_memristive_stateful_logic?el=1_x_8&enrichId=rgreq-dec6df1118cf36f22f81e2c3cd7f2ac2-XXX&enrichSource=Y292ZXJQYWdlOzMwNjEwNDM2MztBUzo0MDk1Mjk0OTA2NTcyODBAMTQ3NDY1MDg0NzMzMA==
https://www.researchgate.net/publication/276931570_A_cellular_computing_architecture_for_parallel_memristive_stateful_logic?el=1_x_8&enrichId=rgreq-dec6df1118cf36f22f81e2c3cd7f2ac2-XXX&enrichSource=Y292ZXJQYWdlOzMwNjEwNDM2MztBUzo0MDk1Mjk0OTA2NTcyODBAMTQ3NDY1MDg0NzMzMA==
https://www.researchgate.net/publication/43074057_Memristive_switches_enable_stateful_logic_operations_via_material_implication?el=1_x_8&enrichId=rgreq-dec6df1118cf36f22f81e2c3cd7f2ac2-XXX&enrichSource=Y292ZXJQYWdlOzMwNjEwNDM2MztBUzo0MDk1Mjk0OTA2NTcyODBAMTQ3NDY1MDg0NzMzMA==
https://www.researchgate.net/publication/234856024_Nanoscale_resistive_memory_with_intrinsic_diode_characteristics_and_long_endurance?el=1_x_8&enrichId=rgreq-dec6df1118cf36f22f81e2c3cd7f2ac2-XXX&enrichSource=Y292ZXJQYWdlOzMwNjEwNDM2MztBUzo0MDk1Mjk0OTA2NTcyODBAMTQ3NDY1MDg0NzMzMA==
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𝑑𝑠

𝑑𝑡
= {

0.2𝛼      𝑣 = 1.2
−0.2𝛼     𝑣 = −1.2
0     𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

The straightforward analytical solution of this differential equation is  

𝑠(𝑡 + 1) = {
0.2𝛼𝑇+      𝑣 = 1.2
−0.2𝛼𝑇−     𝑣 = −1.2
   𝑠(𝑡)              𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

Since 𝑠 is normalized to interval [0, 1], for the given values of 𝛼 and 𝑣, the assumption of 𝑠(𝑡 + 1) = 1 results in the 

switching delay of 𝑇+ = 4𝑛𝑠. The desired solution for (2) is  

𝑠(𝑡 + 1) = {
1            𝑣 = 1.2
  0            𝑣 = −1.2
  𝑠(𝑡)     − 1 ≤ 𝑣 ≤ 1

 

Note that 𝑠(𝑡) and 𝑠(𝑡 + 1) denote the current state and the next state of memristor 𝑀, respectively; for −1 ≤ 𝑣 ≤

1, the resistance state of memristor remains unchanged, i.e. 𝑠(𝑡 + 1) = 𝑠(𝑡). Obviously, a larger VSET results in a 

smaller switching delay 𝑇+, as suggested by Equation (2). Note that 𝑠(𝑡) and 𝑠(𝑡 + 1) denote the current state and the 

next state of memristor 𝑀, respectively; for −1 ≤ 𝑣 ≤ 1, the resistance state of memristor remains unchanged, 

i.e. 𝑠(𝑡 + 1) = 𝑠(𝑡). Obviously, a larger VSET results in a smaller switching delay 𝑇+, as suggested by Equation (2).  

 

This simplified model does not accurately describe the behavior of rectifying memristor 𝑀, for instance, the 

threshold voltages, 𝑣𝐶𝐿𝑂𝑆𝐸  and 𝑣𝑂𝑃𝐸𝑁, are assumed to be constant, and/or the programming rate 
𝑑𝑠

𝑑𝑡
 and the applied 

voltage 𝑣 are assumed piecewise linearly related. The experimental results of a 16×16 crossbar array fabricated in 

HRL Laboratories and reported in [4] are shown in Fig 1b and Fig 1c. The 𝑖 − 𝑣 characteristics of ten rectifying 

memristors of the crossbar array is shown in Fig. 1b. Every memristor has a different switching threshold 𝑣𝐶𝐿𝑂𝑆𝐸 ; 

these thresholds result in different switching rates for every memristor. Since these differences among voltage 

thresholds are not significant, the switching rates of memristors vary only slightly. A slight increase in the pulse width 

driving the crossbar array ensures a complete switching of every target memristor in the crossbar array during logic 

operations. Fig. 1c shows the threshold voltage distribution of all memristors in the 16×16 crossbar array. This 

threshold voltage varies in the range of 2.1V−2.5V. Also, Fig. 1b shows a nearly piecewise linear relations between 

𝑖 and 𝑣 in interval [0, 𝑣𝐶𝐿𝑂𝑆𝐸]. 

In this work, the exact behavior of rectifying memristor for 𝑣 𝜖(0, 𝑣𝐶𝐿𝑂𝑆𝐸) is not required. What affects the results 

of our work are the 
ROPEN

RCLOSED
 ratio, the 

I−

I+
 ratio where I− is reverse biased current and  I+ is forward biased current, and  

https://www.researchgate.net/publication/51853226_A_Functional_Hybrid_Memristor_Crossbar-ArrayCMOS_System_for_Data_Storage_and_Neuromorphic_Applications?el=1_x_8&enrichId=rgreq-dec6df1118cf36f22f81e2c3cd7f2ac2-XXX&enrichSource=Y292ZXJQYWdlOzMwNjEwNDM2MztBUzo0MDk1Mjk0OTA2NTcyODBAMTQ3NDY1MDg0NzMzMA==
https://www.researchgate.net/publication/43074057_Memristive_switches_enable_stateful_logic_operations_via_material_implication?el=1_x_8&enrichId=rgreq-dec6df1118cf36f22f81e2c3cd7f2ac2-XXX&enrichSource=Y292ZXJQYWdlOzMwNjEwNDM2MztBUzo0MDk1Mjk0OTA2NTcyODBAMTQ3NDY1MDg0NzMzMA==
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the switching rate of memristor. In our used model the resistance ratio is 103 which is consistent with the empirical 

results reported in [4, 6], i.e. the resistance ratio is from three to six orders of magnitude (103 − 106).  

 

The current ratio in the model that we used [7] is 10−3 which is much larger that the empirical results reported in 

[6], i.e.  I− < 10−13A and  
I−

I+
< 10−6. Thus, a more precise memristor model would show even less power 

consumption in volistors. The switching rate of memristor is in accordance with empirical results reported in [8-9]. 

As will be elaborately discussed in Section 3, due to the circuit architecture, the large resistance ratio, and the small 

current ratio, memristors are only operated in range 𝑣 ≤ 0. Thus the simplified model for rectifying memristors can 

 

 

Fig. 1  (a) The i − v characteristic of rectifying memristor M described in (1) and (2). A sinusoidal input voltage with frequency 25 MHz 

and amplitude 1.2 V is applied to memristor M. The inset shows the symbolic diagram of a rectifying memristor. (b) The i − v 
characteristics of 10 different rectifying memristors in the crossbar array. The inset shows the i − v characteristics plotted in log scale 
demonstrating current suppression at negative bias in the on-state [4]. (c) Threshold voltage distribution of 256 cells in the fabricated 
crossbar array. The threshold voltage is defined as the voltage at which the measured current is above 10−6A [4]. 
 

  

 

 

https://www.researchgate.net/publication/51853226_A_Functional_Hybrid_Memristor_Crossbar-ArrayCMOS_System_for_Data_Storage_and_Neuromorphic_Applications?el=1_x_8&enrichId=rgreq-dec6df1118cf36f22f81e2c3cd7f2ac2-XXX&enrichSource=Y292ZXJQYWdlOzMwNjEwNDM2MztBUzo0MDk1Mjk0OTA2NTcyODBAMTQ3NDY1MDg0NzMzMA==
https://www.researchgate.net/publication/51853226_A_Functional_Hybrid_Memristor_Crossbar-ArrayCMOS_System_for_Data_Storage_and_Neuromorphic_Applications?el=1_x_8&enrichId=rgreq-dec6df1118cf36f22f81e2c3cd7f2ac2-XXX&enrichSource=Y292ZXJQYWdlOzMwNjEwNDM2MztBUzo0MDk1Mjk0OTA2NTcyODBAMTQ3NDY1MDg0NzMzMA==
https://www.researchgate.net/publication/51853226_A_Functional_Hybrid_Memristor_Crossbar-ArrayCMOS_System_for_Data_Storage_and_Neuromorphic_Applications?el=1_x_8&enrichId=rgreq-dec6df1118cf36f22f81e2c3cd7f2ac2-XXX&enrichSource=Y292ZXJQYWdlOzMwNjEwNDM2MztBUzo0MDk1Mjk0OTA2NTcyODBAMTQ3NDY1MDg0NzMzMA==
https://www.researchgate.net/publication/51480987_A_Fast_High-Endurance_and_Scalable_Non-Volatile_Memory_Device_Made_from_Asymmetric_Ta2O5-XTaO2-X_Bilayer_Structures?el=1_x_8&enrichId=rgreq-dec6df1118cf36f22f81e2c3cd7f2ac2-XXX&enrichSource=Y292ZXJQYWdlOzMwNjEwNDM2MztBUzo0MDk1Mjk0OTA2NTcyODBAMTQ3NDY1MDg0NzMzMA==
https://www.researchgate.net/publication/51788209_Sub-nanosecond_switching_of_a_tantalum_oxide_memristor?el=1_x_8&enrichId=rgreq-dec6df1118cf36f22f81e2c3cd7f2ac2-XXX&enrichSource=Y292ZXJQYWdlOzMwNjEwNDM2MztBUzo0MDk1Mjk0OTA2NTcyODBAMTQ3NDY1MDg0NzMzMA==
https://www.researchgate.net/publication/276931570_A_cellular_computing_architecture_for_parallel_memristive_stateful_logic?el=1_x_8&enrichId=rgreq-dec6df1118cf36f22f81e2c3cd7f2ac2-XXX&enrichSource=Y292ZXJQYWdlOzMwNjEwNDM2MztBUzo0MDk1Mjk0OTA2NTcyODBAMTQ3NDY1MDg0NzMzMA==
https://www.researchgate.net/publication/234856024_Nanoscale_resistive_memory_with_intrinsic_diode_characteristics_and_long_endurance?el=1_x_8&enrichId=rgreq-dec6df1118cf36f22f81e2c3cd7f2ac2-XXX&enrichSource=Y292ZXJQYWdlOzMwNjEwNDM2MztBUzo0MDk1Mjk0OTA2NTcyODBAMTQ3NDY1MDg0NzMzMA==
https://www.researchgate.net/publication/234856024_Nanoscale_resistive_memory_with_intrinsic_diode_characteristics_and_long_endurance?el=1_x_8&enrichId=rgreq-dec6df1118cf36f22f81e2c3cd7f2ac2-XXX&enrichSource=Y292ZXJQYWdlOzMwNjEwNDM2MztBUzo0MDk1Mjk0OTA2NTcyODBAMTQ3NDY1MDg0NzMzMA==
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be sufficient to compute both delay and power consumed in volistors.  

 

3. VOLISTOR LOGIC 

In this section volistor logic is introduced. The key idea behind volistor logic is that inputs are voltages and 

outputs are resistances. This is a significant change from the way the voltage drivers are used in stateful logic; 

however, the target memristor is still used as a memory element where the output is stored. The basic volistor logic 

gates are: inverter, k-input NOR and k-input AND, and their duals: k-input OR and k-input NAND. In the following 

subsections we define the basic architecture required for logic computations and describe the basic logic gates.  

3.1 Crosspoint architecture 

The basic circuit structures for volistor logic computations are the 1×2 crosspoint array and 2×1 crosspoint array 

depicted in Fig. 2. The crosspoint array is a horizontal or a vertical vector of memristors, i.e. a one-dimensional array.  

Fig. 2a shows a generic structure for logic operations. The circuit is comprised of two rectifying memristors, labeled 

S and T, electrically connected through the common horizontal nanowire HL. Just as in stateful IMP, S denotes the 

source memristor and T the target memristor. The vertical nanowire VL1 connected to source memristor S conveys 

input signal V𝑖𝑛. Let V+ = 0.6V and V− = −0.6V.The logical coding scheme for V𝑖𝑛 is defined as follows: V+ encodes 

logic ‘1’, denoted 𝑣𝑖𝑛 = 1; 0 Volts encodes logic ‘0’, denoted 𝑣𝑖𝑛 = 0. The vertical nanowire VL2 connected to target 

memristor T carries a bias voltage,  V𝑏𝑖𝑎𝑠 = V
−. Memristor T acts as a switch whose resistivity state 𝑡 represents the 

output of the crosspoint array. When T is open, its high-resistivity state encodes logic ‘0’, i.e. 𝑡 = 0. When T is closed, 

its low- resistivity state encodes logic ‘1’, 𝑡 = 1. This interpretation of the resistivity state of T is used for performing 

NOR/AND logic set; another interpretation will be discussed in Section 3.5. Prior to logic computation, both 

memristors S and T must be closed. To unconditionally close a memristor, it must be forward biased by VSET.  Unlike 

the target memristor, the source memristor S acts as a diode. The 1×2 crosspoint array must satisfy (3).  

 
Fig. 2 (a) A 1×2 crosspoint array; (b) a 2×1 crosspoint array 

  

 



7 
 

{
𝑉𝑂𝑃𝐸𝑁 < 𝑉𝑏𝑖𝑎𝑠 < 0𝑉
𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑖𝑛 = 𝑉𝐶𝐿𝐸𝐴𝑅

                                                                                                                                                        (3) 

Each nanowire must be either driven by one of the voltages V𝑖𝑛, V𝑏𝑖𝑎𝑠, and 0V or terminated with high impedance HZ 

or grounded by load resistor RG as shown in Fig. 3. All these connections are realized with CMOS switches shown 

symbolically in Fig. 3. RG is defined as geometric mean of ROPEN and RCLOSED, √ROPEN ∙ RCLOSED =15MΩ. The 

crosspoint array operates by the simultaneous application of V𝑖𝑛 and V𝑏𝑖𝑎𝑠 to S and T, respectively. Since V𝑖𝑛 > V𝑏𝑖𝑎𝑠, 

Ohm’s Law requires a flow of current through the array. However, given the structure of the array, the application of 

these voltages forward biases S and reverse biases T thus suppressing the flow of current. This means that VHL 

≈ V𝑖𝑛 where VHL is the voltage on HL. If (3) is satisfied, the voltage across T will toggle that memristor, i.e. the new 

state of target memristor becomes 𝑡 = 0. 

 

{
0𝑉 < 𝑉𝑏𝑖𝑎𝑠  < 𝑉𝐶𝐿𝑂𝑆𝐸𝐷
𝑉𝑖𝑛 − 𝑉𝑏𝑖𝑎𝑠 = 𝑉𝐶𝐿𝐸𝐴𝑅

                                                                                                                                               (4) 

The crosspoint arrays shown in Fig. 2 can be scaled to 1×n and n×1 arrays, allowing for multi-input multi-output 

volistor logic functions. The 1×n and n×1 crosspoint arrays must satisfy (3) and (4), respectively. In these arrays, 

logic computation is achieved by implementing the wired OR function, i.e. VHL or VVL denotes the logical OR of 

inputs 𝑣𝑖𝑛1, … , 𝑣𝑖𝑛𝑘 where VVL is the voltage on vertical nanowire VL and 1 ≤ 𝑘 < 𝑛.  

3.2 Volistor NOT gate in a crosspoint array 

An inverter is the simplest gate to realize in volistor logic; the symbolic diagram is shown in Fig. 4a. Take, for 

example, the case where (𝑣𝑖𝑛, 𝑡) = (1, 1) i.e. 𝑣𝑖𝑛=1 and 𝑡=1. Both source and target memristors are initially closed. 

Single-output volistor NOT can be realized in either a 1×2 or a 2×1 crosspoint array. When realized in a 1×2 array, 

V𝑏𝑖𝑎𝑠 must be a negative voltage, V𝑖𝑛 must be greater than or equal to 0V, per (3), and horizontal nanowire HL must 

 
Fig. 3 The symbolic illustration of driver circuitry connected to each nanowire 
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be connected to a high impedance, HZ. Connecting HL to HZ allows V𝑖𝑛 to manifest on HL. Based on Ohm’s Law, 

current should flow through the array, since V𝑖𝑛 − V𝑏𝑖𝑎𝑠 > 0V. However, memristor T is reverse biased and thus 

suppresses the flow of current. In this case, the voltage drop across memristor S is 1.198mV, i.e. the voltage on HL 

equals 598.801mV. The voltage drop across T is 1.198V which is sufficient to open memristor T. This is the desired 

behavior of the inverter function, that it results in (𝑣𝑖𝑛, t) = (1, 0). Given the parameters introduced in Section 2, the 

propagation delay of single-output volistor NOT is 4.044ns as shown in Fig. 5b. 

Single-output volistor NOT can be extended to an arbitrary fan-out which corresponds to a multi-output gate realized 

in arrays of types 1×n or n×1. The multi-output NOT gate stores 𝑣𝑖𝑛̅̅̅̅̅ in up to n-1 target memristors in any arbitrary 

location in the array. The role of each memristor is determined by its driver, i.e. source memristors are driven by V𝑖𝑛 

and target memristors by V𝑏𝑖𝑎𝑠 . Interestingly, this means that a memristor’s function is independent of its position in 

the crosspoint array. Fig. 5a shows a four-output volistor NOT gate implemented in a 1×8 array. Source memristor S 

is driven by V𝑖𝑛 and target memristors T1⋯T4 are driven by V𝑏𝑖𝑎𝑠. Memristors X1, X2 and X3 are terminated to HZ and 

do not take part in the circuit’s operation. The proper operation of a 63-output NOT gate with 𝑣𝑖𝑛 = 1 implemented 

in a 1×64 array and simulated in LTSpice is depicted in Fig. 5c. VHL is 528.881mV and all 63 target memristors are 

switched off successfully in 6.223ns. Fig. 5d shows the desired behavior of volistor NOT implemented in a 1×2 array 

when 𝑣𝑖𝑛 =0. VHL is -599.4𝜇V and the target switch remains closed. Fig. 5e shows the behavior of a 63-output volistor 

NOT implemented in a 1×64 array where 𝑣𝑖𝑛 =0. This results in VHL= -35.559mV and all target switches remaining 

closed.  

 

Fig. 4 Symbolic notation for volistor single-input and two-input logic gates. (a) Volistor inverter; (b) two-input volistor NOR gate; (c) 

two-input volistor AND gate; (d) mixed-input NOR gate. Inside the gates, symbols V and R denote whether a signal is a voltage-

based or resistance-based respectively 
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Table 1 summarizes these configurations and their effects on VHL. A NOT with an arbitrary fan-out can be realized 

in one pulse. We discuss this gate for completeness; in practice, it is not required since the logical negation can be 

created by appropriately selecting the 𝑣𝑖𝑛 values. In this paper all volistor gates can appear only at the input layer.    

3.3 Volistor NOR gate in a crosspoint array 

The second basic gate in volistor logic is NOR. Fig. 4b shows the symbolic diagram of a two-input volistor NOR 

gate. Since 1×n arrays have been previously discussed, in this subsection n×1 arrays are considered. Take, for example, 

a two-input NOR gate where (𝑣𝑖𝑛1, 𝑣𝑖𝑛2, 𝑡) = (1, 0, 1). This requires the application of input data to S1and S2 and 

V𝑏𝑖𝑎𝑠 to T, as shown in Fig. 6. Since the function is realized in a 3×1 crosspoint array, equation (4) requires  V𝑏𝑖𝑎𝑠 >0V 

and V𝑖𝑛 ≤0V. Based on Ohm’s Law, since V𝑏𝑖𝑎𝑠 − V𝑖𝑛 > 0, a current should flow through the crosspoint array.  

Table 1 Implementation of multi-output volistor not gate 

Crosspoint 
Array 

𝑣𝑖𝑛 
Number of 

Outputs 
VHL 

( mV) 
td 

(ns) 
Fig. 

1×2 1 1 598.801 4.065 Fig. 5b 

1×64 1 63 528.881 6.223 Fig. 5c 

1×2 0 1 -0.599 
Not 

applicable 
Fig. 5d 

1×64 0 63 -35.559 
Not 

applicable 
Fig. 5e 
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However, 𝑆2 and T are both reverse biased and thus they suppress the flow of current. The voltage drop across S1  

is 1.796mV, i.e. VVL= -598.203mV. The voltage drop across T is -1.198V which is sufficient to open T. Recall that 

all memristors are initially closed. The gate is realized by implementing wired-OR, i.e. the voltage on VL is the logical 

OR of 𝑣𝑖𝑛1 and 𝑣𝑖𝑛2. As before, V𝑖𝑛 causes memristors S1and S2 to behave as diodes and V𝑏𝑖𝑎𝑠causes memristor T to 

behave as a switch. The output of the gate is the new state of the target switch T, either open or closed. Table 2 shows 

VVLand td for various combinations of input values of a two-input, single-output volistor NOR gate implemented in a 

3×1, and a sixty three-input, single-output volistor NOR gate implemented in a 64×1 crosspoint array. Note that with 

 

 

 

Fig. 5 Volistor NOT behavior. (a) A 1×8 crossbar array implementing a four-output NOT and showing arbitrary nature of the locations of S and T. 

The contribution of each memristor is determined by the voltage driver to which it is connected. The horizontal nanowire is connected to HZ.  (b) 

The operation of a one output NOT in a 1×2 array. V(hl) stabilizes at ≈ 600 mV indicating vin= ‘1’ manifesting on HL. In addition V (t), which is the 

SPICE model’s representation of t, toggles to 0V (t= ‘0’).  (c) The operation of a 63 output NOT in a 1×64 array. V(hl) stabilizes and V(t) toggles as 

in (b). (d) The operation of a one output NOT in a 1×2 array. V(hl) stabilizes at ≈ -600 μV indicating vin=’0’ manifesting on HL. As a result, V(t) 

remains 1V (t=‘1’). (e) V(hl) stabilizes as in (d) 
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more logic ‘1’ inputs the value of VVL approaches V𝑖𝑛 and the propagation delay td gets shorter. Volistor logic allows 

a multi-input NOR gate to be realized in only one pulse.  

 

3.4 Volistor AND gate in a crosspoint array 

 

The third basic gate in volistor logic is AND. This gate is realized as NOR with negated literals of the desired product 

applied to the crosspoint array. For example, the desired product �̅�𝑏𝑐̅ is realized by applying (𝑣𝑖𝑛1,𝑣𝑖𝑛2, 𝑣𝑖𝑛3)= (1, 

0, 1) to the memristors. As a result, the voltage across T is sufficient to toggle 𝑡 to ‘0’ where 𝑡 =  𝑎 + �̅� + 𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 

according to the De Morgan’s Law 𝑎 + �̅� + 𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  �̅�𝑏𝑐̅ which is the desired result. The AND gate can be scaled to 

perform multi-input multi-output operations. The details are the same as described for volistor NOR. In this work, it 

is assumed that negated inputs are always available at the same cost as the non-negated inputs. Volistor logic allows 

a multi-input AND to be realized in only one pulse. 

3.5 Volistor OR and NAND gates in a crosspoint array 

In all volistor logic gates discussed above, the logical coding scheme of memristive switch T is defined as follows: 

an open switch encodes logic ‘0’ and a closed switch encodes logic ‘1’. This scheme allows direct implementation of 

volistor NOR/AND; however, it does not allow for direct implementation of volistor OR/NAND. Therefore, executing 

a circuit with a volistor OR/NAND gate would require two consecutive pulses. 

However, if the logical coding scheme of the memristor switch T is reversed i.e. the open switch encodes logic ‘1’ 

and the closed switch encodes logic ‘0’, then the OR/NAND gate can be realized in one pulse. This scheme allows a 

direct realization of volistor OR in the same manner as volistor NOR described in Section 3.3. Likewise, volistor 

NAND is realized by applying negated input logic values to the crosspoint array in the same manner as the volistor 

AND described in Section 3.4. The designer could use one of the two encoding schemes for the entire system or use 

Table 2 Implementation of multi-in single-out volistor nor gate 

Crosspoint 

Array 

Number of Inputs VVL 

 (mV) 

td 

(ns) 𝑣𝑖𝑛= 0 𝑣𝑖𝑛=1 

2×1 0 2 -599.400 4.048 

1 1 -598.203 4.068 

2 0 0.300 Not applicable 

64×1 63 0 0.010 Not applicable 

0 63 -599.981 4.035 

50 13 -597.609 4.082 
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both encoding schemes in a partitioned system. In each separate partition, one encoding scheme is utilized and 

partitions with different schemes communicate through inverters.  

 

3.6 Mixed-input logic gates in a crosspoint array 

Inputs on standard volistor gates are voltages; however as shown in Fig. 4e, implementing gates with mixed-inputs 

is possible using a hybrid of stateful and volistor logic where some inputs are represented by resistances and some by 

voltages.  Fig. 7 depicts a three-input NOR gate implemented in a 1×4 crosspoint array where (𝑠, 𝑣𝑖𝑛1,𝑣𝑖𝑛2, 𝑡) = (0, 

0, 1, 1).  In (𝑠, 𝑣𝑖𝑛1,𝑣𝑖𝑛2, 𝑡), 𝑠 and 𝑡 are resistive logic values of S1 and T, and 𝑣𝑖𝑛1 and 𝑣𝑖𝑛2 are logic input voltages 

applied to S2 and S3, see Fig. 7. Specifically, 𝑠 is the resistive logic value stored in S1 and it is to be interpreted as 

logic ‘0’. Assume s has been set in a previous operation and that all memristors with voltage inputs have already been 

set to RCLOSED. As in stateful logic, HL is grounded through RG and V+ is applied to S1. As in volistor logic input data 

are applied to memristors S2 and S3, and bias voltage V− is applied to memristor T. Equation (3), discussed in Section 

3.1, requires V𝑏𝑖𝑎𝑠 = V
− and V𝑖𝑛 ≥ 0V. With this configuration, the resistive value of logic s manifests as a voltage 

on HL and the circuit operates in the same manner as a volistor NOR. Translation between logical encoding schemes 

is accomplished in the same manner as described in Section 3.5. Mixed volistor AND gate is realized with one extra 

step; since all input resistances need to be negated, one additional pulse is required. 

4. HYBRID APPROACH TO SYNTHESIZE BOOLEAN FUNCTIONS IN CROSSBAR NETWORKS 

In theory [10-11] every single-output Boolean function of n variables can be realized in a crosspoint array with n 

source memristors and two additional working memristors. These working memristors can act as both source and 

target memristors. However, this realization leads to long sequences of pulses. These long sequences can be avoided 

by the use of crossbar arrays to realize arbitrary multi-output Boolean functions. Crosspoint arrays are the building 

blocks of crossbar arrays. 

 

Fig. 7 Mixed-input NOR. The implementation of three-input one-output NOR gate. The resistive input is stored in S1 and the voltage 

inputs are applied to S2 and S3. The output is stored in memristor T 

 

 

 

https://www.researchgate.net/publication/49288024_Two_Memristors_Suffice_to_Compute_All_Boolean_Functions?el=1_x_8&enrichId=rgreq-dec6df1118cf36f22f81e2c3cd7f2ac2-XXX&enrichSource=Y292ZXJQYWdlOzMwNjEwNDM2MztBUzo0MDk1Mjk0OTA2NTcyODBAMTQ3NDY1MDg0NzMzMA==
https://www.researchgate.net/publication/282320550_Logic_synthesis_and_a_generalized_notation_for_memristor-realized_material_implication_gates?el=1_x_8&enrichId=rgreq-dec6df1118cf36f22f81e2c3cd7f2ac2-XXX&enrichSource=Y292ZXJQYWdlOzMwNjEwNDM2MztBUzo0MDk1Mjk0OTA2NTcyODBAMTQ3NDY1MDg0NzMzMA==
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In this section, we first discuss hybrid computation in a crosspoint array and then we show how to implement arbitrary 

Boolean functions in a network of crossbar arrays. This network uses a combination of stateful, volistor and mixed-

input gates. These generic network structures can be used to implement logic functions in several forms such as SOP 

(Sum of Product), POS (Product of Sum) and TANT (Tree level AND NOT Network) [12]. TANT architecture 

requires non-inverted inputs, but we consider a generalized TANT with no restriction on input polarity. In this paper, 

stateful operations are realized solely with NOR and NOT. Note that the NOT gate can be obtained from INH by 

setting the non-inverted input to constant 1. Also, the NOR gate can be created by cascading stateful INH gates and 

setting the non-inverted input of the first gate of the cascade to constant 1, e.g. 𝑎 + 𝑏̅̅ ̅̅ ̅̅ ̅ = (1 ∙ �̅�) ∙ �̅�.  

4.1 Hybrid computation in a crosspoint array 

The simplest structure to perform memristive logic computation is a crosspoint array. In this structure, computations 

can be performed by two approaches: 1) solely stateful logic [1], 2) a combination of mixed-input, stateful and volistor 

logic. We call the second approach the hybrid approach. The first approach is potentially slow since a long sequence 

of operations needs to be implemented. However, the second approach has the potential to reduce the number of 

required operations.  We assume a SOP with M single literal degenerate products and N products with more than one 

literal, thus the SOP is the OR of M+N inputs. Realization of this SOP function requires a four-step process to be 

computed with the second approach: 

(1) CLEAR: Set all memristors to the closed state. In a 1×n array, this requires driving all vertical nanowires to V+ 

and the horizontal nanowire to V−; for an n×1 array, the driving voltages should be swapped. This step is realized in 

one pulse.  

(2) AND: Sequentially perform N volistor AND gates, each in one pulse. This step requires a total of N pulses.  

(3) NOR: Perform a NOR operation on N+M arguments. This includes the M single literal variables, which are 

supplied as voltages, and the N products from the previous step, which are stored as resistances. This step requires one 

pulse.  

(4) NOT: Negate the result of the previous step. This step requires one pulse.  

 

https://www.researchgate.net/publication/43074057_Memristive_switches_enable_stateful_logic_operations_via_material_implication?el=1_x_8&enrichId=rgreq-dec6df1118cf36f22f81e2c3cd7f2ac2-XXX&enrichSource=Y292ZXJQYWdlOzMwNjEwNDM2MztBUzo0MDk1Mjk0OTA2NTcyODBAMTQ3NDY1MDg0NzMzMA==
https://www.researchgate.net/publication/266271210_The_minimization_of_TANT_networks?el=1_x_8&enrichId=rgreq-dec6df1118cf36f22f81e2c3cd7f2ac2-XXX&enrichSource=Y292ZXJQYWdlOzMwNjEwNDM2MztBUzo0MDk1Mjk0OTA2NTcyODBAMTQ3NDY1MDg0NzMzMA==
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Example 1. The following example describes the hybrid approach in a crosspoint array for the Boolean function 𝑓 =

𝑎𝑏 + �̅��̅� + 𝑐. This function can be realized in a 1×4 crosspoint array in five consecutive operations, one for CLEAR, 

two for AND, one for NOR and one for NOT, as shown in Fig. 8. 

Fig. 8a shows a 1×4 crosspoint array driven by V𝑖 and Fig. 8b shows the circuit configuration in each step. The first 

step is implemented by setting all V𝑖 to V+ and HL to V−. This step will set the memristors M𝑖 closed, i.e. encoding 

logic ‘1’. The second step is to compute the product 𝑎𝑏. This step is implemented by setting V1 and V2 to Va̅ and Vb̅ 

where Va̅ and Vb̅ are voltage signals encoding literals �̅� and �̅�, respectively. The result of this computation is stored 

in M4. Similarly, the second product, �̅��̅�, is computed by setting V1 and V2 to Va and Vb where Va and Vb are voltage 

signals encoding literals 𝑎 and 𝑏, respectively. The computed result is stored in M3. The third step is realized with a 

mixed-input NOR gate, i.e. NOR (𝑎𝑏,  �̅��̅�, 𝑐). Note that variable 𝑐 in SOP function 𝑓 is a voltage signal, whereas 𝑎𝑏 

and �̅��̅� are resistive signals. This step is implemented by connecting HL to the ground through RG, and 

driving V1, V2,  V3, and V4 to Vc,  V
−, V+, and V+, respectively. The result of the NOR gate is stored in M2. Currently, 

the logic value of M2 is 𝑓,̅ thus the last step is to invert this logic value to obtain 𝑓. This step is implemented by 

connecting HL to ground through RG, and driving V1 and V2 to  V− and V+, respectively. Since M3 and M4do not take 

part in the last computation,  V3 and V4are terminated to HZ.  

 

 

(a) 

 

 

 

 

Operation Step Memristors’ Drivers 

V𝑖 
Logic state of 
Memristors. 

M𝑖 
HL V1 V2 V3 V4 M1 M2 M3 M4 

1 CLEAR V− V+ V+ V+ V+ 1 1 1 1 

2  

AND 
 

HZ Va̅ Vb̅ HZ V− 1 1 1 𝑎𝑏 

3 HZ Va Vb V− HZ 1 1 �̅��̅� 𝑎𝑏 

4 NOR RG Vc V− V+ V+ 1 𝑓̅ �̅��̅� 𝑎𝑏 

5 NOT RG V− V+ HZ HZ 𝑓 𝑓̅ �̅��̅� 𝑎𝑏 

(b) 

Fig. 8 Example of hybrid computation in a crosspoint array. (a) A 1×4 crosspoint array used to implement SOP function 𝑓. (b) 

The circuit configuration to implement each step. The total number of consecutive operations (pulses) to realize 𝑓 is 5 
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As illustrated in Example 1, every SOP can be realized in N+3 operations, requiring at least N+1+M memristors in 

the crosspoint array. In Example 1, M=1, so we used four memristors. As a matter of proper operation, all target 

memristors T𝑖 must be initially closed. Further, if any of the inputs are logic ‘1’ then at least one of those logic ‘1’ 

inputs must be driving a closed source memristor S𝑖 . If all such memristors S𝑖 were open, the electrical characteristics 

of the memristors might prevent proper manifestation of the input voltage on the common nanowire. Therefore all 

memristors should be initially closed. The closed state of a memristor will only change to open when driven by V𝑏𝑖𝑎𝑠 

and the voltage drop across the memristor is VOPEN. Therefore a target memristor T can be used as a source memristor, 

i.e. driven by V𝑖𝑛 in subsequent operations with no risk of changing its state. This reuse allows for compact logic 

implementations. However, this approach potentially results in all source memristors being open, so any subsequent 

logic ‘1’ inputs have no closed memristor to drive. Therefore the number of memristors in the array should be more 

than the number of products, i.e. extra memristors should be provided as dedicated targets. So, realizing volistor gates 

with many inputs is possible neglecting the resistance of the common nanowire. This allows implementing structures 

such as SOP with many products. However, in a crosspoint array, each nanowire is driven by an individual CMOS 

driver with control circuitry, as shown in Fig. 2. This requirement imposes a large area penalty potentially restricting 

the number of inputs to the gates. Extending a crosspoint array to a crossbar array overcomes this potential limitation 

and increases the overall memristive density. 

4.2 Hybrid computation in a crossbar array 

The crosspoint array can be scaled into a two-dimensional crossbar array of size m×n. Each of the m rows in the 

crossbar array can be thought of as a 1×n crosspoint array and each of the n columns can be thought of as an m×1 

crosspoint array. With this crossbar structure, in a single volistor operation a product of literals can be created and 

copied to an arbitrary column memristor or row memristor in the crossbar simultaneously. The multi-output capability 

of crosspoint arrays discussed earlier allows an arbitrary number of copy operations to be performed in any of the two 

dimensions of the crossbar array. Fig. 9a depicts target memristors as multi-input volistor gates whose outputs are the 

states of the corresponding memristors. Using the multi-output property, any combination of NOR/AND gates can be 

copied to any number of arbitrary locations in a single column. One operation is required for each gate type.  In the 

worst case, the entire crossbar array can be populated with an arbitrary combination of gates in 2n operations. 

Populating the crossbar array in this manner is the first step (after initialization) to map a Boolean function to a generic 
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crossbar fabric. This fabric may, in general, combine the use of volistor logic, mixed input logic and stateful logic in 

the same crossbar array to produce logic computations.  

Example 2. As a means of discussing this hybrid approach, take for example, the implementation of function 𝑓 =

𝑎�̅� + 𝑐̅�̅�̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + �̅�
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= �̅� + �̅�̅̅ ̅̅ ̅̅ ̅̅ = 𝐴𝐵. This implementation requires the same four-step process described in Section 4.1 and 

is illustrated in Fig. 10. The entries of the symbolic matrices represent the logic values stored in each memristor of the 

crossbar. Voltages applied to the horizontal and vertical nanowires are indicated by the values shown to the left of and 

on top of the matrices. The labels on top of the arrows between matrices indicate the number of operations required 

to move to the next matrix. Fig. 10a shows the crossbar after initialization; the voltages to achieve this state are not 

shown. Fig. 10b shows the result of computing the first product with volistor AND. Fig. 10c shows the computation 

of the other product which is also realized with volistor AND. Fig. 10d shows stateful logic being used to compute �̅� =

 𝑎�̅� + 𝑐̅�̅�̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . In this step, V+ and V− are equal to VCOND and VSET , and RG is the load resistor in stateful INH [2]. Fig. 10e 

shows the implementation of a mixed NOR gate with resistance-based signal �̅� and voltage-based signal �̅� producing 

the desired function f.  

With the hybrid approach, the use of stateful IMP can be avoided. This simplifies the driver circuitry, removes the 

need for a keeper circuit [13], and simplifies crossbar initialization since all memristors are initialized as closed. The 

 

Fig. 9 The crossbar array.  (a)  A crossbar array divided into three blocks; the populated gates in the block labeled 1 are realized by volistors, 

but the blocks labeled 2 and 3 are realized with stateful NOR. (b) The symbolic two-level circuit is realized with the stateful approach. (c) The 

symbolic three-level circuit is realized with the hybrid approach. The first level of the circuit, L1 is realized with volistor logic, whereas the next 

levels L2 and L3 are realized with the stateful approach 
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stateful approach also requires a step to store the inputs in the crossbar. However, since the hybrid approach uses 

voltages as inputs no storage step is required. The main advantage of the hybrid approach over the stateful approach 

is that, for the same number of operations and memristors, one additional logic level can be realized. The hybrid 

approach uses the efficiency of volistors to implement the first level of logic which is usually most complex. Fig. 9a 

depicts a crossbar array divided into three blocks. In stateful logic the memristors in block 1 store inputs; the 

memristors in block 2 store the first-level logic outputs, and the memristor in block 3 stores the output of the second-

level logic.  In the hybrid approach, since inputs are voltages, the memristors in block 1 store the outputs of the first-

level logic; the memristors in block 2 store the outputs of the second-level logic, and the memristor in block 3 stores 

the output of the third-level logic. With the same number of operations and the same number of memristors the stateful 

approach produces only two-level logic (Fig. 9b) whereas the hybrid approach produces three-level logic as shown in 

Fig. 9c. However, since in volistor logic the inputs are voltages, there can be only one set of inputs applied to the 

crossbar at any given moment and therefore only one output can be computed at a time.  In stateful logic, inputs are 

stored as resistances. Therefore each row or column can be thought of as a distinct set of inputs capable of 

simultaneously producing distinct outputs, with the restriction that all outputs implement the same type of stateful gate 

[2], e.g. all the four NOR gates as shown in block 2 of Fig. 9a.  In Section 4.3, we use the hybrid approach in a crossbar 

network to achieve different outputs in parallel. 
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                                                                                           (d)                                                            (e) 

 Fig. 10 The symbolic matrices illustrate the steps of logic computations based on the hybrid approach for computing 𝑓 = 𝑎�̅� + 𝑐̅�̅�̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + �̅�
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

. 

(a) Initialization step. (b) Computing 𝑎�̅� with a volistor AND. (c) Computing 𝑐̅�̅� with a volistor AND. (d) Computing 𝑎�̅� + 𝑐̅�̅�̅̅ ̅̅ ̅̅ ̅̅ ̅̅  with a stateful 

NOR. (e) Computing 𝑓 with a mixed-gate NOR 
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4.3 Hybrid computation in a crossbar network 

In a data path of a larger memristor architecture there are usually several combinational blocks as well as memories 

each of which is realized in one or more crossbars. A question arises as to how one can implement information transfer 

between these crossbars. Let us consider transfer of data from source memory to target combinational logic. The 

memories can store information as either voltage (e.g. CMOS memory) or as resistance. If data are stored as voltage, 

the first level of the target logic can be implemented with volistors. However, when data in memories are stored as 

resistances, the first logic level in combinational logic is realized with stateful NOR/NOT. Another problem is how to 

partition large combinational blocks to improve processing time by increasing parallelism. In a single crossbar array 

using volistor logic, identical gates with identical inputs can be produced in a single step. This is a limited form of 

parallelism that replaces fan-out. This limitation can be resolved using a network of many individual crossbars. Each 

individual crossbar can have as many copies as necessary of a single gate with identical inputs. This structure allows 

two or more separate crossbars to simultaneously calculate the first logic level of an arbitrary Boolean function. 

Additional logic levels can be achieved with stateful operations, mixed-input gates, or both. Table 3 shows different 

structures to realize Boolean functions that are well suited to this hybrid approach. Next, we present detailed examples 

for cases 2 and 5 from Table 3.  

Example 3: POS implementation. The three variable EXOR expression 𝑓 = 𝑎⨁𝑏⨁𝑐  can be implemented as the 

POS expression(𝑎 + 𝑏 + 𝑐)(𝑎 + �̅� + 𝑐̅)(�̅� + �̅� + 𝑐)(�̅� + 𝑏 + 𝑐̅). The De Morgan equivalent expression is 𝑓 =

(𝑎 + 𝑏 + 𝑐)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + (𝑎 + �̅� + 𝑐̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + (�̅� + �̅� + 𝑐)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + (�̅� + 𝑏 + 𝑐̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
= 𝑤 + 𝑥 + 𝑦 + 𝑧̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . The function is synthesized in four 

crossbar arrays each of which is 4×4. In this crossbar column, adjacent crossbars communicate through vertical 

switches capable of connecting and disconnecting the crossbars as illustrated in Fig. 12a.  Fig. 12b shows the crossbar 

Table 3 Different forms of logic functions and their De Morgan’s equivalent 

# Logical Form  
De Morgan’s 

Equivalent 
Example  

# of 

Pulses 

1 AND-OR (SOP) AND-NOR-NOT Fig. 11a 3 

2 OR-AND (POS) NOR-NOR Fig. 11b 2 

3 
NAND-NAND-

NAND 
AND-NOR-NOR-NOT Fig. 11c 4 

4 
AND-EXOR 

(ESOP) 
AND-NOT-NOR-NOR Fig. 11d 4 

5 
NAND-AND-

EXOR 

AND-NOR-NOT-NOR-

NOR 
Fig. 11e 5 

6 AND-EXOR-OR 
AND-NOT-NOR-NOR-
NOR-NOT 

Fig. 11f 7 
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column with closed vertical switches between all adjacent crossbars creating a 16×4 crossbar array. These switches 

are not further discussed in this work. Executing f is a three-step procedure.  

(1) Initialize all crossbar arrays by driving all vertical nanowires with V+ and all horizontal nanowires with V−.  

(2) Simultaneously compute volistor NOR of each maxterm in a separate crossbar column as described in Section 

3.3 3.3. In Fig. 12a, individual crossbar arrays A, B, C and D compute 𝑤 = 𝑎 + 𝑏 + 𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  , 𝑥 = 𝑎 + �̅� + 𝑐̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑦 = �̅� + �̅� + 𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

and 𝑧 = �̅� + 𝑏 + 𝑐̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   in parallel. 

(3) Connect the vertical switches between adjacent crossbars to form a 16×4 crossbar array. Perform a stateful NOR 

on the logic values computed in step 2 as illustrated in Fig. 12b.  

Executing f with a solely stateful approach would require two steps plus the overhead of setting up each input [2]. 

This input overhead is directly proportional to the number of inputs in the largest sum. Volistor logic has no such input 

 

Fig.11 Implementation of different forms of Boolean functions with the hybrid approach. (a) An example of a SOP function.  (b) An example of 

a POS function. (c) An example of a three level sum of products of sums. (d) An example of an EXOR of two products. (e) An example of a 

NAND-AND-EXOR logic function. (f) An example of an AND-EXOR-OR logic function. P stands for pulse (operation), e.g. 1P indicates that a 

related logic level requires one pulse to be implemented. VL and SL stand for volistor and stateful operations. In all circuits, only the first logic 

level is implemented with volistor logic 
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overhead; a multi-input gate and a single-input gate are both produced in the same number of steps. However, the 

solely stateful approach can be executed in two steps in a single crossbar whereas the hybrid approach would require 

more steps if performed in a single crossbar. 

Example 4: NAND-AND-EXOR implementation. Consider the expression 𝑓 = 𝑒 ∙ �̅�𝑏̅̅̅̅ ∙ 𝑐̅𝑑̅̅ ̅ ⨁ 𝑐̅𝑑̅̅ ̅ ∙ 𝑎𝑒̅̅ ̅ ∙ 𝑏. The De 

Morgan equivalent expression is 𝑓 = �̅� + �̅�𝑏 + 𝑐̅𝑑 + 𝑎𝑒 + �̅�̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + �̅� + �̅�𝑒 + 𝑐̅𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑐̅𝑑 + 𝑎𝑒 + �̅�̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
=

�̅� + 𝑥 + 𝑦 + 𝑧 + �̅�̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + �̅� + 𝑥 + 𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑦 + 𝑧 + �̅�̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= 𝑤1̅̅ ̅̅ + 𝑤2̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑤1 + 𝑤2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= 𝑜1 + 𝑜2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Executing f is the six-step 

procedure depicted in Fig. 13 and described as follows. In each step, all outputs are computed simultaneously.  

(1) Perform initialization as in Example 3.  

(2) Compute the products x, y and z in parallel. Value y is computed twice to enable simultaneous computation in 

step 3 as in Fig. 13a. This realizes the four AND gates using volistors.  

 

Fig. 12 Implementation of POS function f in a crossbar network comprised of four crossbar arrays of size 4×4. The function is realized in 

a two-step procedure. (a) Realization of the first logic level of POS fucntion 𝑓 in separate crossbars. The network configuration shows 

the voltage drivers applied to each nanowire. This step produces four NOR gates. (b) The switches between the 4×4 arrays are closed 

to create a 16×4 crossbar array. The results w, x, y, and z of the first step are NORed to create the output of the POS function 𝑓 
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(3) Using mixed-input gates, as described in Section 3.6, compute w1 and w2 where V�̅�   and V�̅�  are input voltages 

and x, y, and z are input resistances, as in Fig. 13b. This realizes the NOR logic level.  

(4) Produce 𝑤1̅̅ ̅̅  and 𝑤2̅̅ ̅̅  in parallel, as in Fig. 13c. This performs two stateful NOT operations in the third logic level.  

(5) Produce o2 and o1 in the fourth logic level, NOR, using the outputs calculated in steps 3 and 4, as in Fig. 13d. 

(6) Produce f from o2 and o1, as in Fig. 13e. This produces the fifth level of logic, NOR. Executing f with a solely 

stateful approach would require six steps plus the input setup overhead. Note that NAND-AND-EXOR circuits are a 

new concept in logic synthesis. These circuits are a generalization of the PSE circuits introduced in [14] in which only 

one argument of the AND layer is a NAND and others are literals. 

 

5. COMPARISON OF POWER CONSUMPTION AND SPEED BETWEEN STATEFUL AND VOLISTOR CIRCUIT MODELS 

In this work, power measurements are made using the same model mentioned in Section 2 in the LTSpice IV 

simulation environment. The average power Pavg consumed in a crosspoint array is computed using the equation 

Pavg = ∑VRMS ∙ IRMS where VRMS and IRMS are the root mean squares of the voltage across and the current through 

each memristor. The average power consumption of each individual element of a 1×n crosspoint array where 𝑛 ≤64 

is computed over a 10ns interval beginning with the application of the driver voltages V+ = 0.6V, V− = −0.6V and 

0Vwhich are applied for 8ns. Let the power consumed in a source memristor set to logic ‘1’ be denoted PS1, the power 

consumed in a source memristor set to logic ‘0’ be denoted PS0, the power consumed in a target memristor be denoted 

PT and the power consumed in load resistor RG be denoted PRG. Let PS denote the total power consumption in all source 

memristors. The superscripts SL and VL are used to indicate power consumptions during stateful logic and volistor 

logic, respectively. For example, PS0
SL

 is the power consumed by a source memristor set to logic ‘0’ when SL is 

performed and  PS
VL is the power consumed in all source memristors when volistor logic is performed. Table 4 

describes the power consumption in each crosspoint element where VHLand V̂HL are the voltages on the horizontal 

nanowire during VL and SL operations, respectively. Table 4 is derived based on the average power equation Pavg and 

Ohm’s Law; the circuit elements considered in power computation are the resistance values of the memristors, either 

RCLOSED or ROPEN, load resistance RG, and the driver voltages. The power required to connect the nanowires to V+, 

V−, 0V, RG and HZ is the same in both VL and SL operations and is not considered in this work. The resistance of the 

horizontal nanowire HL is negligible when compared with load resistance RG. Jo et al. [15] reported that the resistive 
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value of a relatively large width nanowire of diameter 120 nm used in a 1Kb crossbar array is at most 30 KΩ when 

implemented with relatively high resistance p-doped Si.  This upper bound is much smaller than RG =15MΩ chosen 

in this work. Recall, RG = √ROPEN × RCLOSED  and 
 ROPEN

RCLOSED
= 103as mentioned in Section 2 and Section 3. The power 

consumed by volistor logic in a crosspoint array is entirely due to the leakage through the reverse biased rectifying 

memristors as there is no direct path to ground. However, when volistor logic is performed in a crossbar array there is 

 

Fig. 13 Realization of the De Morgan equivalent for the NAND-AND-EXOR expression 𝑓. The crossbar network is comprised of four 

crossbar arrays each of size 4×4. The function is realized in a six-step procedure. (a) The first logic level of 𝑓 is realized with volistors, 

(b) the second logic level of 𝑓 is realized with mixed-input gates, and (d)-(e) the rest of the logic levels are realized with stateful logic. 

Crossbar drivers are indicated by 0V, V+, V−, RG, and HZ. In each step, the performed operation is depicted by logic gates and the results 

of the operations are shown as outputs of the gates 
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an additional power consumption in memristors not taking part in the operations. This is true for stateful logic as well. 

Since the power consumption in both cases is the same and we are only interested in comparing SL and VL, this 

additional power is not discussed. In this section, the power consumption in a crosspoint array for 𝑆1 > 0 and 𝑆1 = 0 

is analyzed separately. For ease of reference, let 𝑆1and 𝑆0denote the numbers of source memristors set to 𝑣𝑖𝑛 = 1 

and 𝑣𝑖𝑛 = 0, respectively; 𝑇 denotes the number of target memristors; PSL and PVLdenote the total power consumption 

in memristors and in load resistor RG during SL and VL operations, respectively; and td denotes the switching delay—

the time required to completely switch from the close state of a target memristor T to the open state. 

5.1  Analysis of power consumption and propagation delays in a 1×8 crosspoint array for 𝑆1 >0 

Table 5 compares the switching delay, td, and the overall power consumption in memristors and in load resistor RG 

during SL and VL operations for various compositions of 𝑆1, 𝑆0 and 𝑇, 
PSL

PVL
 . From the simulation results shown in 

Table 5, the following is observed.  

Table 4 Switching power consumption in each crosspoint array 
element 

Logical 

Op. 
PS0 PS1 PT PRG 

VL 
(VHL)

2

ROPEN
 

(V+ − VHL)
2

ROPEN × 10
−3

 

 

(V+ + VHL)
2

ROPEN
 0 

SL 
(V+ − V̂HL)

2

ROPEN
 

(V+ − V̂HL)
2

ROPEN × 10
−3

 

 

(V+ + V̂HL)
2

ROPEN
 

V̂HL
2

ROPEN
× 

10√10 

 

Table 5 Circuit element power consumption, propagation delay and power ratio in a 1×8 cross point array 

(S1, S0, T) Op PS1 

(nW) 

PS0 

(nW) 

PT 

(nW) 

PRG 

(nW) 

td 

(ns) 

Pavg 

(nW) 

PSL
PVL

 

(2, 2, 1) VL 2.224e-3 0.555 2.226 0 4.044 3.340 6.13 

SL 0.168 0.168e-3 2.192 17.946 4.239 20.474 

(2, 3, 1) VL 3.471e-3 0.555 2.225 0 4.044 3.897 5.254 

SL 0.168 0.168e-3 2.192 17.947 4.239 20.476 

(2, 4, 1) VL 4.993e-3 0.554 2.224 0 4.054 4.450 4.601 

SL 0.168 0.168e-3 2.192 17.947 4.239 20.476 

(2, 4, 2) VL 8.868e-3 0.553 2.221 0 4.064 6.672 3.397 

SL 0.187 0.187e-3 2.190 17.911 4.227 22.666 

(2, 3, 3) VL 11.22e-3 0.553 2.220 0 4.073 8.341 2.955 

SL 0.207 0.207e-3 2.187 17.876 4.288 24.645 

(2, 2, 4) VL 0.014 0.552 2.219 0 4.083 10.008 2.701 

SL 0.229 0.229e-3 2.185 17.838 4.288 27.036 
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1) In SL and VL, PT is approximately 2nW, i.e. the changes to the number and the high/low composition of input 

values slightly affect the power consumed by any individual target memristor T. This is expected given the 

characteristics of the rectifying memristors and considering that VHL≈ Vin. 

2) The major contributor to the power consumption in SL is RG— it consumes approximately 8 times more power 

than each target memristor. In VL power consumption, PRG = 0. 

3) The minor contributors to the power consumption in SL is S0 × PS0
SL. 

4) The major contributors to the power consumption in VL are determined based on 𝑆0 and 𝑇. 

 5) For any combination of 𝑆1,  𝑆0, and 𝑇, 
PSL

PVL
> 2. The lower bound of 

PSL

PVL
 obtained for the composition of (𝑆1,  𝑆0 

, 𝑇)= (1, 0, 7) is 2.129. 6) For any combination of 𝑆1,  𝑆0, and 𝑇, td is always lower for VL.  

As a summary, we observed that in a 1×8 crosspoint array, VL circuit is faster than SL and consumes at most half 

the power of its SL technology equivalent.  

In a 1×8 crosspoint array, for any composition of 𝑆1, 𝑆0, and 𝑇, where 𝑆1 >0, the power ratio can be approximated 

based on the following power properties, Property 1- Property 4.  

Property 1. When 𝑆1 >0, the power consumption in a target memristor during VL operation can be approximated 

as in (5). 

PT
VL ≈ 4 × PS0

VL                                  (5) 

Proof: The power consumption in a target memristor during VL operation is PT
VL =

(VHL−V
−)2

ROPEN
=
(VHL+V

+)2

ROPEN
 and the 

power consumption in a source memristor set to logic ‘0’ during VL operation is  PS0
VL =

VHL
2

ROPEN
 . So, 

PT
VL

PS0
VL =

(VHL+V
+)
2

VHL
2 . 

Let V+ = VHL + ε. As a result, 
PT
VL

PS0
VL = [

2VHL+ε

VHL
]
2

= [2 +
ε

VHL
]
2

. The upper and lower bounds of 
PT
VL

PS0
VL, obtained for the 

upper and lower bounds of 
ε

VHL
, are calculated for (𝑆1,  𝑆0 , 𝑇)= (1, 1, 6) and (𝑆1,  𝑆0 , 𝑇)= (6, 1, 1), respectively. These 

compositions were simulated using LTSPICE obtaining 4.002 ≤
PT
VL

PS0
VL ≤ 4.052. Therefore, for any combination of  𝑆1,  

𝑆0 , and 𝑇 where 𝑆1 > 0, we can assume PT
VL ≈ 4 × PS0

VL. 

Property 2. When 𝑆1 >0, the power consumption in the load resistor can be approximated as in (6). 

PRG ≈ 8 × PT
SL                                                                                                                                                              (6) 
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Proof: The power consumption in the load resistor is PRG =
V̂HL

2

RG
 and the power consumption in a target memristor 

during SL operation is  PT
SL =

(V̂HL−V
−)2

ROPEN
=
(V̂HL+V

+)2

ROPEN
. So, 

PRG

PT
SL =

V̂HL
2

RG
×

ROPEN

(V̂HL+V
+)2
=
ROPEN

RG
×

1

[
V̂HL+V

+

V̂HL
]
2. Let V+ =

V̂HL + ε̂. As a result, 
PRG

PT
SL =

ROPEN

RG
×

1

[
2V̂HL+ε̂

V̂HL
]
2 =

ROPEN

RG
×

1

[2+
ε̂

V̂HL
]
2. Computing the upper bound of 

PRG

PT
SL  requires 

computing the lower bound of voltage ratio 
ε̂

V̂HL
. The upper and lower bounds of  

PRG

PT
SL  or the lower and upper bounds 

of 
ε̂

V̂HL
 are calculated for the compositions of  (𝑆1,  𝑆0 , 𝑇)= (7, 0, 1) and (𝑆1,  𝑆0 , 𝑇)= (1, 0, 7), respectively. These 

compositions were simulated using LTSPICE obtaining 7.542 ≤
PRG

PT
SL ≤ 7.866. Therefore for any combination of 𝑆1,  

𝑆0 , and 𝑇 where 𝑆1 > 0, we can assume PRG ≈ 8 × PT
SL.  

Since PT
VLand PT

SL, for any combination of  𝑆1, 𝑆0, and 𝑇 where 𝑆1 > 0, are approximately 2nW, they can be replaced 

with PT in (5) and (6), i.e. PT ≈ PT
VL ≈ PT

SL. 

 

Property 3. When 𝑆1 >0, the power consumption in source memristors during SL operation is considerably smaller 

than the overall power consumption in target memristors and load resistor RG as in (7). 

PS
SL

PSL−PS
SL ≪ 1                                                                                                                                                                   (7) 

Proof: The simulation results show that the power consumption in source memristors during SL operation PS
SL is 

negligible when compared to the overall power consumption in target memristors and load resistor RG. The power 

consumption in source memristors set to logic ‘1’ is 103 times larger than the power consumption in source memristors 

set to logic ‘0’ during SL operation, 
PS1
SL

PS0
SL = 10

3, which can be shown as follows: 
PS1
SL

PS0
SL =

(V+−V̂HL)
2

RCLOSED
×

ROPEN

(V+−V̂HL)
2 = 10

3. 

Substituting PS1
SL = 103 × PS0

SL to 
PS
SL

PSL−PS
SL results in 

(𝑆1×10
3+𝑆0)×PS0

SL

PSL−PS
SL . Substituting PSL − PS

SL with 𝑇 × PT + PRG or its 

equivalent (𝑇 + 8) × PT in 
(𝑆1×10

3+𝑆0)×PS0
SL

PSL−PS
SL   results in 

(𝑆1×10
3+𝑆0)

(𝑇+8)×
PT

PS0
SL

. It is required to compute the lower bound of 
PT

PS0
SL to 

verify 
(𝑆1×10

3+𝑆0)

(𝑇+8)×
PT

PS0
SL

 ≪ 1. This power ratio 
PT

PS0
SL is equal to 

(V̂HL−V
−)2

ROPEN
×

ROPEN

(V+−V̂HL)
2 or 

PT

PS0
SL = (

2V̂HL

ε̂
+ 1)2 with the 

substitution of V+ = V̂HL + ε̂. The lower bound of 
PT

PS0
SL, obtained for the lower bound of 

V̂HL

ε̂
, is calculated for (𝑆1,  𝑆0 , 
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𝑇)= (1, 1, 6). This composition results in 
V̂HL

ε̂
=21.949 and therefore 

(𝑆1×10
3+𝑆0)

(𝑇+8)×
𝑃𝑇

𝑃𝑆0
𝑆𝐿

=0.036 which is considerably smaller 

than 1 and thus proves (7). The immediate consequence of (7) for any combination of 𝑆1,  𝑆0 , and 𝑇 where 𝑆1 > 0 

is PSL − PS
SL ≈ PSL used in deriving (9). 

 

Property 4. The power consumption in source memristors driven by logic ‘1’ during VL operation is considerably 

smaller than the overall power consumption in source memristors driven by logic ‘0’ and target memristors as in (8). 

𝑆1×PS1
VL

PVL−𝑆1×PS1
VL ≪ 1                                                                                                                                                               (8) 

Proof: The simulation results show that the power consumption in source memristors driven by logic ‘1’ during VL 

operation is negligible when compared to the overall power consumption in memristors. This results can be proved as 

follows. 
S1×PS1

VL

PVL−S1×PS1
VL =

S1×PS1
VL

S0×PS0
VL+T×PT

. Using (6), 
S1×PS1

VL

S0×PS0
VL+T×PT

≈
S1×PS1

VL

S0×
PT
4
+T×PT

=
S1

PT

PS1
VL(

S0
4
+T)

. The lower bound of 
PT

PS1
VL is 

required to verify 
S1×PS1

VL

PVL−S1×PS1
VL ≪ 1, and is obtained for the composition of (S1,  S0 , T)= (1, 0, 7). Note that 

PT

PS1
VL = 

(2VHL+ε)
2

ROPEN
×

RCLOSED

(V+−VHL)
2 = 10

−3 × (
2VHL

ε
+ 1)2 where ε = V+ − VHL. Using LTSPICE simulator, the lower bound of 

VHL

ε
 

for the given combination is 70.929 and consequently 
PT

PS1
VL =20.409. Therefore, 

S1×PS1
VL

PVL−S1×PS1
VL ≈0.007 which is 

significantly smaller than 1 and thus proves (8).  The immediate consequence of (8) for any combination of S1,  S0 , 

and T where S1 > 0 is PVL − S1 × PS1
VL ≈ PVL used in deriving (9). 

According to (7) and (8), 
PSL

PVL
≈

𝑇×PT+PRG

𝑆0×PS0
VL+𝑇×PT

, and according to (5) and (6), 
𝑇×PT+PRG

𝑆0×PS0
VL+𝑇×PT

≈
𝑇×PT+8×PT

𝑆0×
PT
4
+𝑇×PT

. Therefore, 

for any combination of 𝑆1,  𝑆0 , and 𝑇 where 𝑆1 > 0, we can assume: 

PSL

PVL
≈

𝑇+8

𝑇+
𝑆0
4

                                                                                                                                                                      (9) 

The lower bound of (9) is larger than 2. Simplifying the inequality 
𝑇+8

𝑇+
𝑆0
4

> 2 results in 𝑇 +
𝑆0

2
< 8. In a 1×8 crosspoint 

array for any composition of 𝑆1,  𝑆0 , 𝑇 where 𝑆1 > 0, the inequality 𝑇 +
𝑆0

2
< 8 holds and so 

PSL

PVL
> 2. 

In terms of propagation delay, volistor gates perform faster than stateful gates. The propagation delay in both SL 

and VL operations corresponds to the voltage drop across the target memristors or equivalently the voltage of the 

common nanowire during the operations. The lowest voltage drop across the target memristors is obtained for the 

composition of (𝑆1,  𝑆0 , 𝑇)= (1, 0, 7) for which td is 4.136ns and 4.477ns for VL and SL, respectively. The highest 
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voltage drop across the target memristors is obtained for the composition of (𝑆1,  𝑆0 , 𝑇)= (7,0, 1) for which td is 

4.030ns and 4.089ns for VL and SL, respectively. Note that the increase of 𝑆1 reduces the propagation delay in both 

SL and VL operations. 

5.2 Analysis of power consumption in a 1×n crosspoint array for 𝑆1 =0 

In a 1×8 crosspoint array, for 𝑆1 = 0 and any combination of  𝑆0 and 𝑇, our simulation results show that 
PSL

PVL
> 1. 

Table 6 compares the power consumption in memristors and load resistor RG for  𝑆1 = 0 and various compositions of 

 𝑆0 and 𝑇 during VL and SL operations. In all compositions, 𝑇 is kept constant at 1 and  𝑆0 is varied between 1 and 7. 

Table 6 shows that the increase of  𝑆0 has almost no effect on 𝑃𝑉𝐿, i.e. for all given compositions the power 

consumption in memristors during VL operation is almost equal to the power consumption in only target memristors.  

Property 5. When 𝑆1 = 0, the power consumption in source memristors driven by logic ‘0’ during VL operation is 

considerably smaller than the overall power consumption in target memristors as in (10). 

 𝑆0×PS0
VL

𝑇×PT
VL ≪ 1                                                                                                                                                                     (10) 

Proof: Our simulation results show that the overall power consumption in memristors during VL operation is almost 

equal to the power consumption in only target memristors when 𝑆1 = 0. The power ratio 
 𝑆0×PS0

VL

𝑇×PT
VL  is equal to 

 𝑆0

𝑇
×

 VHL
2

RCLOSED
×

ROPEN

( VHL+V
+)2
= 103(

 𝑆0

𝑇
) ×

1

(1+
V+

 VHL
)2

 . The upper bound of 
PS0
VL

PT
VL is calculated for the composition of (𝑆0 , 𝑇) =

 (7, 1), i.e. this composition maximizes VHL. For this composition,  VHL =-75.417µV and thus 
PS0
VL

PT
VL =1.106×10−4 which 

is considerably smaller than 1 and proves (10). Note that for a larger crosspoint array equation (10) is also valid, e.g. 

in a 1×64 crosspoint array, the upper bound of 
PS0
VL

PT
VL is calculated for (𝑆0 , 𝑇) = (63, 1). For this composition, VHL =-

8.3807µV, PVL =0.558nW, and consequently 
PS0
VL

PT
VL = 1.229 × 10

−5 ≫ 1. The immediate consequence of (10) for any 

combination of S0 and T is PVL ≈ PVL −  S0 × PS0
VL used in computing 

PSL

PVL
. Note that for 𝑆1 = 0, PT

SL ≠ PT
VL and the 

increase of 𝑆0 increases the 
PSL

PVL
 ratio as shown in Table 6. 

Table 7 compares power ratio 
PSL

PVL
 for various compositions of  𝑆0 and 𝑇. In a 1 × 𝑛 crosspoint array, for 𝑆1 = 0, the 

power consumption in all memristors and load resistor RG during SL operation for (𝑆0 , 𝑇) = (𝑛 − 𝑘, 𝑘) and (𝑆0 , 𝑇) =
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 (𝑘, 𝑛 − 𝑘) is the same, where 1 ≤ 𝑘 < 𝑛. In other words, if the voltage on the common nanowire of the crosspoint 

array for (𝑆0 , 𝑇) = (𝑛 − 𝑘, 𝑘) is V̂HL, this voltage for (𝑆0 , 𝑇) = (𝑘, 𝑛 − 𝑘) becomes −V̂HL. For example, for (𝑆0 , 𝑇) =

 (2, 6), V̂HL = -51.096mV, but for (𝑆0 , 𝑇) = (6, 2), V̂HL = 51.096mV. For both compositions, PSL =4.246nW, as 

shown in Table 7. This circuit characteristic causes  
PSL

PVL
 to grow as 𝑆0 approaches n. As 𝑆0 grows, the voltage drop 

across the target memristors during SL operation is larger than the voltage drop across the target memristors during 

VL operation. Since all target memristors show the same resistance when reverse biased, 
PSL

PVL
> 1. Recall that in SL 

operation all source memristors are connected to V+, whereas in VL operation, under the assumption of 𝑆1 = 0, all 

source memristors are only connected to 0V. Moreover, the power consumption in source memristors during VL 

operation is negligible as shown in (10), therefore the increase of  𝑆0 only slightly affects PVL. However, the power 

consumption in source memristors and in load resistor RG during SL operation can significantly increase the 
PSL

PVL
 ratio. 

When 𝑆0 = 𝑇, during SL operation |V+ − V̂HL| = |V
− − V̂HL|, and thus V̂HL = 0V and PRG = 0V. In other 

words, PT
SL = PS0

SL. In this case, 
PSL

PVL
≈2. For example, in a 1×8 crosspoint array for (S0 , T) = (4, 4), 

PSL

PVL
=2.113 or in 

a 1×64 crosspoint array for (S0 , T) = (32, 32), 
PSL

PVL
=2.005.  

In a 1×8 crosspoint array, for any composition of 𝑆0 and 𝑇,
PSL

PVL
> 1, i.e. the lower bound of power ratio 

PSL

PVL
 is 1.025, 

computed for (𝑆0 , 𝑇) = (1, 7). This composition maximizes PVL, while minimizes PSL as shown in TABLE 7.  

However, in a 1×n crosspoint array where 𝑛 > 8, the decrease of 𝑘 in (𝑆0 , 𝑇) = (𝑘, 𝑛 − 𝑘) can bring 
PSL

PVL
 to less than 

1, as shown in Table 8. Table 8 shows various compositions of 𝑆0 and 𝑇 for which 
PSL

PVL
< 1. In all compositions, for 

any given 𝑆0, only the lower bound of 𝑇 for which 
PSL

PVL
< 1 is presented, i.e. a larger 𝑇 leads to a smaller 

PSL

PVL
. 

 

 

Table 6 Comparison of power ratio 
PSL

PVL
 of a multi-input nor realized in a 1×8 cross point array with 𝑆1 = 0 and various values of𝑆0 

(S1, S0,T) Op. PS0 

 (nW) 

PT 

 (nW) 

PRG 

(nW) 

Pavg 

(nW) 

PSL
PVL

 

(0, 1, 1) VL 0.556e-3 0.556 0 0.557 2.004 

SL 0.558 0.558 0 1.116 

(0, 2, 1) VL 0.139e-3 0.557 0 0.557 2.975 

SL 0.527 0.589 0.014 1.657 

(0, 4, 1) VL 0.035e-3 0.557 0 0.557 4.772 

SL 0.474 0.648 0.114 2.658 

(0, 7, 1) VL 0.011e-3 0.557 0 0.557 6.427 

SL 0.407 0.731 0.392 3.58 
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5.3 Analysis of power consumption and propagation delays in a 1×64 crosspoint arrays for 𝑆1 >0 

Tables 9, 10, 11 and 12 compare the switching delay and the overall power consumption in a 1×64 crosspoint array 

during SL and VL for various compositions of 𝑆1, 𝑆0, and 𝑇, where 𝑆1 >0. All simulation results, shown in Tables 9 

through 12, are consistent with the first four observations stated for a 1×8 crosspoint array in Section 5.1. However, 

unlike the last two observations stated for a 1×8 crosspoint array, the following is observed.  

1) The main contributors to the power ratio 
PSL

PVL
 are 𝑆0, 𝑇 and PRG. For example, holding 𝑇 constant while 

increasing 𝑆0, as shown in Table 9, decreases the power ratio 
PSL

PVL
. In contrast, holding 𝑆0  constant while increasing 𝑇, 

as shown in Table 10, brings 
PSL

PVL
 close to 1.  

Table 7 Comparison of power ratio 
PSL

PVL
 of a multi-input multi-output nor realized in a 1×8 cross point array with 𝑆1 = 0 

and various values of 𝑆0 and 𝑇 

(S1, S0, T) Op PS0 

(nW) 
PT 

(nW) 
PRG 

(nW) 
Pavg 

(nW) 

PSL
PVL

 

(0, 1, 7) VL 0.027 0.550 0 3.877 1.025 

SL 0.731 0.407 0.392 3.972 

(0, 2, 6) VL 0.005 0.554 0 3.352 1.267 

SL 0.671 0.455 0.174 4.246 

(0, 3, 5) VL 0.002 0.556 0 2.786 1.582 

SL 0.613 0.505 0.044 4.408 

(0, 4, 4) VL 0.556e-3 0.556 0 2.226 2.113 

SL 0.588 0.558 0 4.704 

(0, 5, 3) VL 0.200e-3 0.557 0 1.672 2.636 

SL 0.505 0.613 0.044 4.408 

(0, 6, 2) VL 0.062e-3 0.557 0 1.114 3.811 

SL 0.455 0.671 0.174 4.246 

(0, 7, 1) VL 0.011e-3 0.557 0 0.557 6.427 

SL 0.407 0.731 0.392 3.972 

 

Table 8 A multi-input multi-output nor with power ratio 
psl

Pvl
< 1 for some combinations of 𝑆0 and 𝑇 with 𝑆1=0 realized in a 1 × 𝑛 

cross point array 

(S1, S0, T) Op PS0 

(nW) 

PT 

(nW) 

PRG 

(nW) 

Pavg 

(nW) 

PSL
PVL

 

(0, 1, 8) VL 0.035 0.549 0 4.427 0.987 

SL 0.757 0.388 0.508 4.369 

(0, 2, 12) VL 0.020 0.551 0 6.652 0.997 

SL 0.818 0.347 0.830 6.63 

(0, 3, 16) VL 0.016 0.552 0 8.88 0.990 

SL 0.869 0.315 1.147 8.794 

(0, 4, 20) VL 0.014 0.552 0 11.096 0.982 

SL 0.912 0.290 1.447 10.895 

(0, 5, 23) VL 0.012 0.552 0 12.756 0.992 

SL 0.933 0.278 1.601 12.66 

(0, 6, 26) VL 0.010 0.553 0 14.438 0.998 

SL 0.951 0.268 1.742 14.416 

(0, 7, 30) VL 0.010 0.553 0 16.66 0.987 

SL 0.982 0.253 1.987 16.451 
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2) The propagation delay td in VL is shorter than in SL if 
PS1
SL

PS1
VL > 1, and is equal or longer than in SL if 

PS1
SL

PS1
VL ≤ 1. 

In a 1×64 crosspoint array, for any composition of 𝑆1, 𝑆0, and 𝑇, where 𝑆1 >0, equations (5), (7) and (8) hold, and  

since 7.078 ≤
PRG

PT
SL ≤ 8.328, equation (6) can still approximate the relation between PRG  and PT

SL during SL operation. 

As a result, power ratio 
PSL

PVL
 can still be approximated as in (9). All derivations are in the same manner as shown in 

Section 5.1. 

Table 9 shows that VL consumes more power than SL when 𝑆0 >33; in this case, an increase of 𝑇 brings the 
PSL

PVL
 

ratio close to 1 as predicted by (9). This prediction is confirmed in Table 10. The converse is also true, when 𝑆0 <33, 

VL consumes less power than SL and the increase of  𝑇 brings the 
PSL

PVL
 ratio close to 1, as shown in Table 11. Note 

that the increase of 𝑆1 slightly affects the 
PSL

PVL
 ratio as shown in Table 12. 

In terms of propagation delay, volistor gates perform faster than stateful gates when 
PS1
SL

PS1
VL > 1. When 

PS1
SL

PS1
VL ≈ 1, the 

propagation delay in both operations is almost the same; when 
PS1
SL

PS1
VL < 1, stateful gates perform faster than volistors. In 

other words, the propagation delay changes with the voltage on the common nanowire of a crosspoint array or 

equivalently the voltage drop across the target memristors. A logic gate performs faster if the voltage drop across its 

target memristors is larger. The increase of  S0 versus the decrease of S1 results in faster stateful gates and vice versa 

as shown in Table 9. In addition, the increase of  T versus the decrease of S1 results in faster volistor gates. Table 11 

shows the increase of td in SL versus VL for constant  S0 with T varied from 1 to 57.  

 

Table 9 Comparison of delay td and power ratio 
psl

pvl
 of a multi-input nor realized in a 1×64 cross point array with 𝑆0 ≥33 and varied 

𝑆1 

(S1, S0, T) Op. PS0 

(nW) 

PS0 

(nW) 

PT 

(nW) 

PRG 

(nW) 

td 

(ns) 

Pavg 

(nW) 

PSL
PVL

 

(30, 33, 1) VL 0.757e-3 0.556 2.228 0 4.041 20.599 1.009 

SL 0.770e-3 0.770e-6 2.228 18.541 4.041 20.792 

(29, 34, 1) VL 0.857e-3 0.556 2.227 0 4.034 21.156 0.982 

SL 0.824e-3 0.824e-6 2.227 18.539 4.042 20.767 

(25, 38, 1) 
 

VL 1.423e-3 0.558 2.227 0 4.048 23.467 0.885 

SL 1.107e-3 1.107e-6 2.227 18.533 4.044 20.760 

(13, 44, 1) VL 0.007 0.554 2.222 0 4.072 26.689 0.778 

SL 0.004 4.069e-6 2.224 18.484 4.060 20.760 

(1, 62, 1) VL 2.021 0.492 2.098 0 4.907 34.623 0.583 

SL 0.579 0.579e-3 2.159 17.406 4.470 20.18 

 



31 
 

Table 9 shows 
PSL

PVL
<1 when 𝑆0 > 33, regardless of the 𝑆1 value. Table 12 reinforces our conclusion that 𝑆1 has 

almost no effect on the power ratio, 
PSL

PVL
. The increase of 𝑆0 , and the decrease of 𝑆1result in PS1

VL > PS1
SL and thus a 

longer switching delay td for VL.  

 Table 10 shows how the increase of 𝑇 affects 
PSL

PVL
 when 𝑆0 >33. The increase of 𝑇 brings 

PSL

PVL
 close to 1. For all 

compositions, td is longer for VL. This long propagation delay is related to the increase of 𝑇 and the large 𝑆0. 

Table 11 shows how the increase of 𝑇 affects 
PSL

PVL
 when 𝑆1and 𝑆0 are kept constant at 1 and 6, respectively. For all 

compositions, shown in Table 11,  
PRG

𝑆0×PS0
VL ≈5.2; however the increase of 𝑇 brings 

PSL

PVL
 close to 1, reducing the effect of 

PRG

𝑆0×PS0
VL in 

PSL

PVL
 significantly as predicted by (9). As a result, executing a multi-input multi-output gate in a small 

crosspoint array, e.g. 1×8, with VL is more power efficient than with SL. This conclusion is consistent with (9) and 

with the simulation results shown in Table 5. The increase of 𝑇 results in PS1
SL > PS1

VL  and thus longer td for SL.  

Table 10 Comparison of delay td and power ratio 
psl

pvl
 of a multi-input nor realized in a 1×64 cross point array  with constant input 

values 𝑆0 and 𝑆1, and varied  𝑇 

(S1, S0, T) Op. PS1 

(nW) 

PS0 

(nW) 

PT 

(nW) 

PRG 

(nW) 

td 

(ns) 

Pavg 

(nW) 

PSL
PVL

 

(1, 40, 1) VL 0.908 0.513 2.141 0 4.575 23.569 0.856 

SL 0.603 0.603e-3 2.157 17.383 4.461 20.167 

(1, 40, 4) VL 1.179 0.507 2.129 0 4.665 29.975 0.888 

SL 0.821 0.821e-3 2.145 17.187 4.543 26.621 

(1, 40, 8) VL 1.592 0.5 2.113 0 4.780 38.496 0.914 

SL 1.161 1.161e-3 2.130 16.928 4.65 35.175 

(1, 40, 16) VL 2.592 0.484 2.081 0 5.049 55.248 0.943 

SL 2.005 2.005e-3 2.098 16.421 4.895 52.074 

 

Table 11 Comparison of delay td and power ratio 
psl

pvl
 of a multi-input nor realized in a 1×64 cross point array with constant 

number of inputs and varied outputs  

(S1, S0, T) Op. PS1 

 (nW) 

PS0 

 (nW) 

PT 

 (nW) 

PRG 

(nW) 

td  

(ns) 

Pavg 

(nW) 

PSL
PVL

 

(1, 6, 1) VL 0.035 0.549 2.212 0 4.103 5.541 3.636 

SL 0.643 0.643e-3 2.155 17.345 4.454 20.147 

(1, 6, 5) VL 0.140 0.54 2.195 0  4.223 14.355 2.002 

SL 0.960 0.96e-3 2.139 17.074 4.571 28.735 

(1, 6, 15) VL 0.693 0.519 2.152 0 4.474 36.087 1.383 

SL 2.020 2.020e-3 2.098 16.420 4. 874 49.922 

(1, 6, 30) VL 2.263 0.489 2.090 0 4.942 67.897 1.192 

SL 4.247 4.247e-3 2.040 15.482 5.411 80.954 

(1, 6, 57) VL 7.104 0.439 1.985 0 6.026 122.883 1.096 

SL 10.069 10.069e-3 1.94 13.925 6.681 134.634 
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Table 12 shows how the increase of 𝑆1 affects 
PSL

PVL
 when 𝑆0 >33 and  𝑇 are kept constant at 40 and 1, respectively.  

The increase of 𝑆1 has almost no effect on 
PSL

PVL
, i.e. all compositions result in almost the same power ratio 0.856. 

Although the increase of 𝑆1 has almost no effect on 
PSL

PVL
, it does decrease the propagation delay in both SL and VL 

operations.  

As a summary, in a 1×8 crosspoint array, the power consumption in SL is higher than in VL and volistors operate 

faster than stateful gates. In a 1×64 crosspoint array, when 𝑆1 > 0, the majority of the power consumption in VL 

is 𝑆0 × PS0
VL + 𝑇 × PT, and in SL is PRG + 𝑇 × PT as described in (5)-(8). In this case, power ratio 

PSL

PVL
 can be 

approximated with (9). In a 1×64 crosspoint array, a multi-input volistor gate consumes less power than a multi-input 

stateful gate, unless the majority of inputs are logic ‘0’. When 𝑆1 = 0, a multi-input volistor gate consumes less power 

than a multi-input stateful gate. In a 1×64 crosspoint array, for 𝑆1 > 0, a logic gate with high fan-out consumes the 

same power, regardless of the implementation, SL or VL. When 𝑆1 = 0, the majority of the power consumption in VL 

is 𝑇 × PT
VL as shown in (10). However, in SL operation, the power consumption in each circuit element depends on 

the combination of 𝑆0 and 𝑇. 

6. MEMORY APPLICATION 

Memristors are nanoscale nonvolatile devices used primarily as resistive memory, e.g. resistance RAM. The generic 

structure for memristive memory is a crossbar array. The crossbar arrays can be vertically stacked creating a 3D 

crossbar memory [16]. The potential problem of the crossbar structure is the leakage pathways from surrounding 

memory cells. In a recent work [17], Vourkas et al proposed memories comprised of parallel/serial complementary 

Table 12 Comparison of delays td and power ratio 
psl

pvl
 of a multi-input nor realized in a 1×64 cross point array with varying 

𝑆1 and 𝑆0 >33  

(S1, S0, T) Op. PS1 

 (nW) 
PS0 

 (nW) 
PT 

 (nW) 
PRG 

(nW) 
td  

(ns) 
Pavg 

(nW) 

PSL
PVL

 

 (1, 40, 1) VL 0.908 0.513 2.141 0 4.585 23.569 0.856 

SL 0.603 0.603e-3 2.157 17.383 4.468 20.167 

(5, 40, 1) VL 0.039 0.548 2.212 0 4.140 24.327 0.850 

SL 0.027 0.027e-3 2.215 18.326 4.122 20.677 

(10, 40, 1) VL 0.010 0.553 2.221 0 4.079 24.441 0.849 

SL 0.007 0.007e-3 2.223 18.456 4.080 20.749 

(20, 40, 1) VL 0.002 0.555 2.226 0 4.064 24.466 0.849 

SL 1.727e-3 1.727e-6 2.226 18.52 4.057 20.781 
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memristive switches. In order to have states that are distinguishable, they introduced insulating junctions within a 

crossbar array to restrain leakage pathways [18].  

In another approach, Kim et al fabricated a crossbar array utilizing rectifying memristors rather than standard 

memristors [4].  The use of rectifying memristors eliminates the leakage pathways due to the diode like behavior of 

memristors, i.e. the small 
𝐼−

𝐼+
 ratio, see Section 2. Furthermore, the large 

𝑅𝑂𝑃𝐸𝑁

𝑅𝐶𝐿𝑂𝑆𝐸𝐷
 ratio of the rectifying memristors 

allows for multilevel memory as demonstrated in [4]. This memory array can be programmed exploiting volistor gates. 

As demonstrated in Section 5, volistor gates are more efficient than stateful gates in terms of power consumption. In 

the process of programming the memory array, first, all memristors are initialized to low resistance state. This 

initialization step can be implemented in one clock cycle. Second, every row or column of memristors from the 

memory array can be programmed within one clock cycle. This step requires m or n clock cycles to program all 

memory cells of an  𝑚 × 𝑛 memory array.  The latter approach for realization of memory is more efficient than the 

former approach in terms of simplicity, power consumption, reliability, and robustness e.g. the second approach allows 

for realization of multilevel memory. Furthermore, realization of memory array with rectifying memristors allows for 

programming the memory cells exploiting volistors, which is a more power-efficient approach than the conventional 

stateful approach. This distinction between memories is originated from the property of rectifying memristors over 

standard memristors.  

Volistors can be used to create memory-like digital sensor integrating devices that read voltages from many sensors 

in parallel/serial mode and convert them to words of a stored resistive information that can be next processed by 

combinational stateful memristive circuits.  

7. CONCLUSION 

Volistors capitalize on the characteristics of rectifying memristors to allow voltages to be used directly as inputs. 

There is no need to store inputs as resistances in memristors before logic can be performed. This eliminates the use of 

RG to read out the inputs in the first logic level and thus eliminates the most power-hungry circuit element in stateful 

logic. There is no static power in our circuits. The switching power consumed by volistor logic in a crosspoint array 

is entirely due to the leakage through the reverse biased rectifying memristor as there is no direct path to the ground. 

Using volistors at the first level provides NOR and AND directly which provides a flexibility sufficient to remove the 
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need for IMP gates in stateful logic and to realize all subsequent levels with only NOR/NOT. Realizing all stateful 

logic levels with NOR/NOT simplifies the driver circuitry and removes the need for keeper circuits. An additional 

advantage is that the first-level volistor logic can have as many inputs as the number of available memristors in the 

crosspoint array within a single operation. However, inputs set to 0V incur a higher power penalty than the inputs set 

to V+ or V−. The two-dimensional, multi-output property of volistors provides for both a large fan-out (at the cost of 

increased power consumption) and for a great flexibility in the placement of calculation results. Using multiple 

crossbars in a network provides parallelization leading to pipelined and SIMD architectures in the data path. Several 

different first-level volistor operations can be computed in separate crossbars at the same time, greatly speeding up 

what is typically the most complex level of implementing Boolean functions. Subsequent logic levels can be 

accomplished in connected crossbars in an approach that uses mixed-input gates and stateful NOR. This hybrid 

approach with volistors and stateful NOR can be used to compute logic faster, with less power and with simpler 

external control circuitry than a solely stateful approach.  
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